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Introduction: Fibrosis, a primary cause of hepatocellular carcinoma (HCC), is intimately
associated with inflammation, the tumor microenvironment (TME), and multiple
carcinogenic pathways. Currently, due to widespread inter- and intra-tumoral
heterogeneity of HCC, the efficacy of immunotherapy is limited. Seeking a stable and
novel tool to predict prognosis and immunotherapy response is imperative.

Methods: Using stepwise Cox regression, least absolute shrinkage and selection
operator (LASSO), and random survival forest algorithms, the fibrosis-associated
signature (FAIS) was developed and further validated. Subsequently, comprehensive
exploration was conducted to identify distinct genomic alterations, clinical features,
biological functions, and immune landscapes of HCC patients.

Results: The FAIS was an independent prognostic predictor of overall survival and
recurrence-free survival in HCC. In parallel, the FAIS exhibited stable and accurate
performance at predicting prognosis based on the evaluation of Kaplan–Meier survival
curves, receiver operator characteristic curves, decision curve analysis, and Harrell’s
C-index. Further investigation elucidated that the high-risk group presented an inferior
prognosis with advanced clinical traits and a highmutation frequency of TP53, whereas the
low-risk group was characterized by superior CD8+ T cell infiltration, a higher TIS score,
and a lower TIDE score. Additionally, patients in the low-risk group might yield more
benefits from immunotherapy.

Conclusion: The FAIS was an excellent scoring system that could stratify HCC patients
and might serve as a promising tool to guide surveillance, improve prognosis, and facilitate
clinical management.
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INTRODUCTION

Worldwide, liver cancers are the sixth most prevalent cancer and
rank second in cancer-related mortality (Sung et al., 2021).
Hepatocellular carcinoma (HCC) is the major histologic
category of primary liver cancers, which mainly arise from
chronic liver diseases, mostly as a result of HBV/HCV
infection, alcoholic liver disease, and liver cirrhosis
(Villanueva, 2019). Although the diagnosis and treatment of
HCCs are increasingly diversified, the clinical benefits are
limited, and the 5-year relapse rate exceeds 70% (Brown et al.,
2019). In clinical practice, the Barcelona Clinic Liver Cancer
(BCLC) staging system is a basic measurement to evaluate risk
and manage the prognosis of HCC patients (Villanueva, 2019).
However, the current staging system is restricted to stratifying
patients and may hinder optimal clinical decisions as HCC
patients present significant heterogeneity (Craig et al., 2020).
The clinical heterogeneity of HCC is actually reflected from
molecular heterogeneity. Therefore, searching for a new tool
via multiple gene panels to stratify patients and further
improve clinical management is imperative.

Fibrosis is a highly dynamic process and is associated with
spatiotemporal regulation, the involvement of multiple
carcinogenic signaling pathways, and the interaction of
inflammation (Koyama and Brenner, 2017; Henderson et al.,
2020). For instance, proteins involved in the mTOR signaling
pathway, mTOR complex 1 (mTORC1) and mTOR complex 2
(mTORC2), have pronounced impacts on fibrogenesis (Huang
et al., 2020). The mTORC1/4E-BP1 axis is a universal molecular
pathway and is involved in the fibrosis progression of different
tissues (Woodcock et al., 2019). Moreover, liver fibrosis could
progress to cirrhosis and is a primary cause of HCC, playing an
important role in the premalignant environment (Affo et al.,
2017). Previous studies demonstrated that both the essential
mediator of fibrogenesis transforming growth factor-β (TGF-
β) and the aberrant glycolysis metabolism could activate hepatic
stellate cells (HSCs), aggravating liver fibrosis (Koyama and
Brenner, 2017; Chang and Yang, 2019). Various cells,
cytokines, and the extracellular matrix are significant and
consist of a fibrotic microenvironment, leading to the
development of HCC (Filliol and Schwabe, 2019). Cancer-
associated fibroblasts (CAFs) in HCC facilitate tumor
metastasis via hedgehog and TGF-β pathways (Liu et al.,
2016b). Inflammation is also involved in the process of
fibrogenesis and regulates immune cells in the tumor
microenvironment (TME) (Mack, 2018). Different phenotypic
and functional macrophages are key players in fibrogenesis, such
as pro-inflammatory M1 macrophages and anti-inflammatory
M2 macrophages, which accelerate the occurrence and
development of fibrosis (Wynn and Vannella, 2016; Schuppan
et al., 2018). Exploring the biological characteristics and immune
landscape of each patient might help increase the understanding
of fibrogenesis.

HCC has a high relapse rate and adverse long-term prognosis,
with a 5-year survival of approximately 18% (Jemal et al., 2017).
New therapeutic strategies are desperately needed to improve
overall survival (OS). Personalized immunotherapy is currently

an encouraging and revolutionized treatment for solid tumors
(Chai et al., 2020). Nevertheless, the therapeutic efficacy is
disappointing as only a small proportion of individuals yield
prominent benefits (Finn et al., 2020). The inter- and intra-
tumoral heterogeneity of HCC may be responsible for different
treatment effects (Craig et al., 2020). Many immune cells are
critical components of the TME and display tight interactions
with tumor cells, which are likely to involve the development of
tumor heterogeneity (Hinshaw and Shevde, 2019; Liu et al.,
2021d). Previous studies have suggested that TME markers
exhibit striking advantages in assessing immunotherapy in
HCC patients (Zhang et al., 2019). As a common approach of
immunotherapy, immune checkpoint inhibitor (ICI) treatment
has made encouraging progress, which aims to help immune
surveillance and target specific immune checkpoints, such as
programmed death-ligand 1 (PD-L1) and cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) (Ribas and
Wolchok, 2018). With the deep investigation of the TME,
patients with objective and durable immunotherapy responses
may be identified, which is conducive to improving clinical
management.

Advances in bioinformatics and machine learning have made
it possible to explore tumor heterogeneity at the genomic level
and identify a robust multigene signature for HCC patients. In
this context, we performed three machine learning algorithms,
including stepwise Cox regression, LASSO, and random survival
forest (RSF) algorithms, to construct and validate a stable
signature. Based on the expression of fibrosis-associated genes
(FAGs), an individualized fibrosis-associated signature (FAIS) for
HCC patients was identified. Furthermore, the clinical and
molecular characteristics, underlying biological functions,
immune cell infiltration, and immune checkpoint profiles of
FAIS were explored. Using the T-cell inflammatory signature
(TIS) and Tumor Immune Dysfunction and Exclusion (TIDE)
algorithms, the immunotherapy efficacy was evaluated for each
patient. The initial establishment of the FAIS for stratifying risk
could facilitate clinical benefits, help improve therapeutic
strategies, and promote prognostic management of HCC
patients. Collectively, this study might support optimized
decision making in immunotherapy and further facilitate
better clinical outcomes for HCC patients.

MATERIALS AND METHODS

Public Data Collection and Processing
In this study, gene expression data were retrieved from TCGA
(https://portal.gdc.cancer.gov/) and GEO (https://www.ncbi.nlm.
nih.gov/geo/). All samples enrolled were available for mRNA
sequencing. In the TCGA-LIHC cohort, the corresponding
clinical information, copy number alteration (CNA), and
somatic mutation were obtained from the online portal
cBioPortal (http://www.cbioportal.org/), which contained 363
HCC patients with survival information. The GSE14520
cohort integrated 221 HCC patients who possessed
comprehensive clinical information, including overall survival
(OS) and recurrence-free survival (RFS). All the gene expression
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data are from the patients at diagnosis. The detailed baseline data
from TCGA-LIHC and GSE14520 are summarized in
Supplementary Table S1. OS and RFS were regarded as
primary outcome events for prognostic factor analysis. OS was
measured from the time of surgery to death, and RFS was
estimated from the time of surgery to cancer recurrence.

Construction and Evaluation of Signatures
To obtain a stable and valuable signature, we used three machine
learning algorithms for analysis, including stepwise Cox
regression, LASSO, and RSF algorithms. These algorithms
were fitted based on 10-fold cross-validations. First, some
fibrosis-associated genes (FAGs) were retrieved from the
Molecular Signatures Database (MSigDB, http://www.gsea-
msigdb.org/gsea/msigdb/search.jsp). The other FAGs were
extracted from the study of Job-S et al. (Job et al., 2020).
Second, the limma package was used for differential
expression analysis to identify candidate FAGs. Then, the
overlapping differentially expressed genes (DEGs) were
screened between the TCGA-LIHC and GSSE14520 cohorts.
Kaplan–Meier analysis and univariate Cox regression were
applied to further assess the prognostic value of these genes.
Finally, we constructed three signatures, which were evaluated by
the Kaplan–Meier survival curve, receiver operator characteristic
(ROC) curve, decision curve analysis (DCA), and Harrell’s
C-index. The Kaplan–Meier survival curve was utilized to
display the predictive ability by the Survival R package. Using
the time ROC package, time-dependent ROC curves for survival
variables were created to assess the performance of signatures
based on the area under the ROC curves (AUCs). DCA was
employed to evaluate the clinical utility of the three signatures by
the ggDCA R package. The Harrell’s C-index of three signatures
was calculated and compared to reflect their accuracy and
stability by the compareC R package.

Clinical and Molecule Characteristics
According to the median of the signature’s risk score, the HCC
patients were assigned into high-risk and low-risk groups. The
heatmap with multiple clinical traits was generated by the
Pheatmap R package. The survival status, age, gender, BMI,
AJCC stage, histology grade, and vascular invasion were
displayed as patient annotations. Univariate and multivariate
Cox regression analyses were used to identify the independent
prognostic factors for OS and RFS. For genomic data, the
maftools R package was utilized to explore the landscape of
somatic mutations (Mayakonda et al., 2018). Additionally, the
CNA status was compared between the high-risk and low-risk
groups with chi-square tests.

Biological Function Enrichment Analysis
To further decipher potential biological functions between the
high-risk and low-risk groups, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were performed with the clusterProfiler R package.
The normalized enrichment score (NES) was calculated
according to 1,000 permutations. A false discovery rate (FDR)
< 0.05 was defined as statistically significant. In addition, the

DEGs of the two groups were ranked in accordance with the log2-
foldchange (logFC) value, and the gene set enrichment analysis
(GSEA) algorithm was applied to decode the potential molecular
mechanisms. The hallmark pathway gene sets were obtained from
MSigDB and submitted to identify dramatically carcinogenic
pathways using the GSVA algorithm implemented in the
GSVA R package.

Evaluation of Immune Cell Infiltration and
Immune Checkpoint Expression
According to the research by Charoentong et al.(Charoentong
et al., 2017), immune gene signatures were collected from 28
immune cell subgroups, including innate immune cells and
adaptive immune cells (Supplementary Table S2). The gene
expression profiles and immune gene signatures were utilized
to evaluate the infiltration abundance of 28 immune cells. Using a
single sample gene set enrichment analysis (ssGSEA) algorithm
(Zuo et al., 2020), the scores were calculated and applied to
quantify the infiltration abundance of immune cells in the TME.
To elucidate immunotherapy implications and facilitate clinical
applications, we retrieved 27 co-stimulatory and 14 co-inhibitory
immune checkpoints from the literature Xiao Y et al (Xiao et al.,
2019). Based on expression profiles, the heatmaps and boxplots
were generated with the ggplot2 R package. The correlations
between the risk score and immune infiltration abundance and
immune checkpoint expression were assessed by Spearman’s
correlation analysis.

Estimation of Immunotherapy Efficacy
To evaluate the latent response to ICI treatment for HCC
patients, two approaches were conducted, encompassing the
T-cell inflammatory signature (TIS) and Tumor Immune
Dysfunction and Exclusion (TIDE) analysis. Ayers et al. first
proposed TIS and further predicted clinical response to PD-1
blockade (Ayers et al., 2017). The signature consists of 18
inflammatory genes conspicuously associated with antigen
presentation, chemokine expression, cytotoxic activity, and
adaptive immune resistance. The TIDE (http://tide.dfci.
harvard.edu/) algorithm is used to model tumor immune
evasion, which gathers two primary mechanisms of immune
evasions: T cell dysfunction and T cell exclusion. TIDE is a
prevalent tool that has been applied in mass studies to evaluate
immunotherapy efficacy (Liu et al., 2021a; Liu et al., 2021b; Liu
et al., 2021c). Patients with higher TIDE scores portended
stronger potential for tumor immune evasion and worse
immunotherapy response (Jiang et al., 2018).

Validation of the FAIS via the In-House
Cohort
To further verify the robustness of FAIS, quantitative real-time
PCR was performed to quantify the expression level of 11 genes.
A total of 58 HCC tissues were obtained from patients who
underwent surgical treatment at The First Affiliated Hospital of
Zhengzhou University, and all the patients had written informed
consent. None of the patients received any preoperative
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FIGURE 1 | Identification of FAGs with a significantly prognostic value. (A) Kaplan–Meier curves of OS according to the 11 FAGs in TCGA-LIHC. (B) Univariate Cox
regression of 11 FAGs regarding OS in TCGA-LIHC.
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FIGURE 2 | Establishment of prognostic signatures by threemachine learning algorithms. (A) AIC of stepwise Cox regression analyses. (B)Coefficient of four genes
finally obtained in stepwise Cox regression analyses. (C) LASSO coefficient profiles of the candidate genes for the construction of prognostic signature. (D)
Determination of the optimal lambda is obtained when the partial likelihood deviance reached the minimum value and further generated the key genes with nonzero
coefficients. The dotted vertical line is drawn at the optimal lambda value. (E) Relationship between the error rate and the number of classification trees. (F) Relative
importance values of 11 out-of-bag genes.
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chemotherapy or radiotherapy. The detailed baseline is shown in
Supplementary Table S1. All the tissue samples were
immediately obtained and frozen in liquid nitrogen and
subsequently stored at −80°C. This project was approved by
the Ethics Committee Board of The First Affiliated Hospital of
Zhengzhou University. RNA extraction and reverse transcription
were conducted based on the manufacturer’s protocol. The
sequences of quantitative real-time PCR primers are
summarized in Supplementary Table S3. See Supplementary
Material for details.

Statistical Analysis
The Survival, glmnet, and randomForestSRC R packages were
used to perform stepwise Cox regression, LASSO, and RSF,
respectively. The Kaplan–Meier method and log-rank test were
applied to evaluate the different OS and RFS rates between the
two groups. TheWilcoxon rank-sum test was adopted to estimate
the difference of continuous variables when comparing two
groups. For comparison of more than two groups, the
Kruskal–Wallis test was conducted. Fisher’s exact test or
Pearson’s chi-squared test was carried out to compare
categorical variables. All statistical tests were two-sided tests,
and p < 0.05 was considered as statistically significant. All
data cleaning, statistical analyses, and plots were handled in R
4.0.5 software.

RESULTS

Multiple Machine Learning Algorithms
Construct Robust Signatures
A total of 351 FAGs were retrieved in this study. Using the limma
R package, there were 95 and 52 DEGs between normal and
tumor samples in TCGA-LIHC and GSE14520, respectively. The
overlapping DEGs were further screened as candidate genes,
including 15 downregulated genes and 20 upregulated genes. To
further explore the underlying prognostic value of these 35
FAGs, Kaplan–Meier analysis was carried out, and the results
exhibited that 11 FAGs had a potential prognostic value (p <
0.05) (Figure 1A). In addition, univariate Cox regression
revealed that FCN3 and GADD45B were protective prognostic
indicators, while the remaining genes were all risk factors
(Figure 1B). Based on the expression of these genes in
TCGA-LIHC, we developed signatures for predicting
prognosis by three machine learning algorithms. Stepwise Cox
regression based on the Akaike information criterion (AIC)
showed that signature-1 containing four FAGs was optimal,
including FCN3, SPP1, IGFBP3, and MCM7 (Figure 2A). The
coefficients of signature-1 were -0.13, 0.11, 0.12, and 0.16,
respectively (Figure 2B). Another algorithm LASSO identified
that signature-2 contained eight FAGs, encompassing RPN2,
MCM7, HMGA1, CAPG, SPP1, FCN3, IGFBP3, and
GADD45B (Figure 2C). The optimal lambda was obtained
when the partial likelihood deviance reached the minimum
value. The results suggested that the optimal lambda value
was 0.014, and then signature-2 was constructed (Figure 2D).
Using RSF, signature-3 contained 11 FAGs, and the error rate is

exhibited in Figure 2E. The importance of each variable was
estimated and is shown in Figure 2F. Taken together, we
obtained three signatures to predict the OS of each HCC
patient in the TCGA-LIHC cohort.

The Comparison and Validation of Multiple
Signatures
For OS as an endpoint event, Kaplan–Meier analysis suggested
that the three signatures presented a significant prognostic value
in the TCGA-LIHC cohort (Figures 3A–C). Similar results were
displayed in the GSE14520 cohort (Supplementary Figures
S2A–C). We assessed the three signatures across multiple
dimensions and screened the optimal signature. The
discrimination was evaluated by ROC and C-index, and
clinical utility was assessed by DCA. In the TCGA-LIHC
cohort, the ROC curves of the three signatures exhibited that
the AUCs for predicting OS at 1–5 years were 0.759, 0.712, 0.719,
0.724, and 0.688 in signature-1; 0.761, 0.709, 0.718, 0.723, and
0.690 in signature-2; and 0.900, 0.877, 0.875, 0.888, and 0.889 in
signature-3, respectively (Figures 3D–F). Moreover, the 95%
confidence interval (CI) of the C-index and clinical utility
value were calculated and compared. The C-index values were
0.699 (95% CI: 0.674–0.724), 0.701 (95% CI: 0.676–0.726), and
0.839 (95% CI: 0.824–0.854) among the three signatures,
respectively (Supplementary Figure S1A). As instructed,
signature-3 performed superior accuracy and clinical benefits
compared with the other signatures (Figures 3G–I and
Supplementary Figure S1A). In the GSE14520 cohort, the
ROC curves of the three signatures exhibited that the AUCs
for predicting OS at 1–5 years were 0.672, 0.720, 0.708, 0.699, and
0.686 in signature-1; 0.673, 0.722, 0.704, 0.692, and 0.681 in
signature-2; and 0.699, 0.718, 0.700, 0.655, and 0.652 in signature-
3, respectively (Supplementary Figures S2D–F). The C-index
values were 0.664 (95% CI: 0.633–0.695), 0.660 (95% CI:
0.629–0.691), and 0.643 (95% CI: 0.611–0.675) among the
three signatures, respectively (Supplementary Figure S1B).
The three signatures had similar performance in predicting OS
(Supplementary Figures S1B, S2G–I). After rigorous
comparison and validation, signature-3 presented the highest
predictive accuracy and the best clinical utility and was defined as
the fibrosis-associated signature (FAIS) for subsequent analysis.

The Clinical Characteristics and
Implications
To further characterize and reveal the clinical significance of the
FAIS, we combined clinical factors for assessing the performance
at predicting OS and RFS. Univariate and multivariate Cox
regression analyses suggested that the FAIS was an
independent predictive factor for OS (Figures 4A,B). The
Kaplan–Meier analysis of RFS indicated that the low-risk
group had a favorable prognosis (Figures 4C,D). All results
demonstrated that the FAIS was also an independent
predictive factor for RFS (Figures 4E,F). The above results
elucidated that FAIS may be an excellent clinical management
and translation tool.
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To confirm the clinical implication of the FAIS, a clinical in-
house cohort was used to evaluate its performance. Based on the
median of risk score, patients were divided into high- and low-
risk groups. As expected, patients in the low-risk group exhibited
more favorable prognosis (Figure 5A). In the in-house cohort,
the AUCs for predicting OS at 1–5 years were 0.902, 0.701, 0.821,
0.911, and 0.857 in FAIS, respectively (Figure 5B). The
Kaplan–Meier analysis of RFS also indicated that the low-risk
group had a favorable prognosis (Figure 5C). Multivariate Cox
regression analyses verified that the FAIS was an independent

predictive factor for OS and RFS (Figures 5D,E). All the results
validated the excellent performance and reconfirmed the clinical
applicability of FAIS.

Apart from the prognostic value, there were also differences in
the distribution of clinicopathological characteristics and
molecular alternations in the two groups. Compared to the
low-risk group, most FAGs had higher expression in the high-
risk group, whereas FCN3 and GADD45B exhibited the opposite
pattern (Supplementary Figure S3A). High expression of FCN3
and GADD45B corresponded to a favorable prognosis, which was

FIGURE 3 | Evaluation and comparison of signatures in the TCGA-LIHC cohort. (A–C) Kaplan–Meier curves of OS according to signature-1 (A), signature-2 (B),
and signature-3 (C). (D–F) Time-dependent ROC analysis for predicting OS at 1–5 years according to signature-1 (D), signature-2 (E), and signature-3 (F). (G–I) DCA
curves of signatures for evaluating 1- (G), 2- (H), and 3-year (I) OS.
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FIGURE 4 | Prognosis significance of overall survival and recurrence-free survival for the FAIS. (A) Univariate Cox regression analyses of OS in the TCGA-LIHC
cohort. (B) Multivariate Cox regression analyses of OS in the TCGA-LIHC cohort. (C) Kaplan–Meier curve of RFS according to the FAIS in the TCGA-LIHC cohort. (D)
Kaplan–Meier curve of RFS according to the FAIS in the GSE14520 cohort. (E) Univariate Cox regression analyses of RFS in the TCGA-LIHC cohort. (F)Multivariate Cox
regression analyses of RFS in the TCGA-LIHC cohort.
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consistent with the above and previous results (Zhao et al., 2018;
Wang et al., 2021). For clinicopathological characteristics, there
were no conspicuously different distributions of age, gender, and
BMI (Supplementary Figure S3B). The high-risk group mainly
presented in patients with an advanced AJCC stage, a superior
histological grade, and vascular invasion, predominantly related
to the malignant phenotype and adverse prognosis
(Supplementary Figure S3B). With the advancement of the
AJCC stage and T stage, the FAIS score showed an increasing
tendency, which presumed that the FAIS could stratify HCC
patients, improving clinical outcomes (Supplementary Figures
S3C,D). Overall, the FAIS could serve as an independent
predictor of OS and RFS and help promote the prognostic
management of HCC patients.

The Landscape of Somatic Mutation and
Copy Number Alteration in the Two Groups
We depicted and explored genomic alterations to identify distinct
molecular characteristics in the two groups. A summary of

somatic mutations for all HCC patients is exhibited in
Figure 6A. The most universal features of variant
classification, variant type, and single nucleotide variant (SNV)
class were missense mutations, single-nucleotide polymorphisms
(SNPs), and “C > T”. The variant numbers for each sample and
the mutation frequency of the top 10 genes were rendered
intuitively (Figure 6A). Using the maftools R package, the top
15 mutated genes were identified and defined as significantly
mutated genes (SMGs) between the two groups (Figures 6B,C).
Eight overlapping SMGs were present in the two groups,
encompassing TP53, CTNNB1, TTN, MUC16, MUC4, PCLO,
ALB, and OBSCN, implying that these alterations were
prevalent in HCC. Notably, the tumor suppressor gene TP53,
proto-oncogene CTNNB1, and the largest known protein-
encoded gene TTN were the top three SMGs in both groups.
The alterations of these genes might be important drivers of HCC
progression. Except for the core gene of the cell cycle, TP53, there
were no significant mutation differences of common SMGs
between the two groups (p-value > 0.05), but the metabolic
gene ALB showed a lower mutation frequency in the high-risk

FIGURE 5 | Validation of the FAIS via in-house cohort. (A) Kaplan–Meier curve of OS according to the FAIS in the in-house cohort. (B) Time-dependent ROC
analysis for predicting OS at 1–5 years according to the FAIS. (C) Kaplan–Meier curve of RFS according to the FAIS in the in-house cohort. (D,E) Multivariate Cox
regression analyses of OS (D) and RFS (E) in the in-house cohort.
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group relative to the low-risk group (Supplementary Figure S4).
The mutation of TP53 plays a key role in hepatocarcinogenesis
and is associated with adverse clinical outcomes (Gao et al., 2019).
The ALB gene is involved in both inflamed and metabolic
pathway networks and impacts the prognosis of HCC (Chen
et al., 2020; Wang et al., 2020). Thus, diverse mutations with
specific molecules were associated with opposite clinical
outcomes in the two groups. The amplification and deletion of
copy number alteration (CNA) were further decoded. The top 20
genes were recruited based on copy number amplification and
deletion for each patient. Both amplification and deletion were
not pronounced (all p-value > 0.05), meaning that similar CNA
events existed in the two groups (Figures 6D,E). These results

suggested that somatic mutationmight have more crucial impacts
on distinct prognosis and HCC progression compared to CNA.

Distinct Biological Functions in the Two
Groups
The initiation and development of HCC are regulated via
multiple biological pathways. Using the clusterProfiler and
GSVA R package, we depicted the specific biological
characteristics of the two groups. Based on DEGs, the GO
enrichment analysis indicated that cell division and
biosynthetic processes were conspicuously enriched
(Figure 7A). The KEGG enrichment analysis suggested that

FIGURE 6 | Genomic alterations of high-risk and low-risk groups in the TCGA cohort. (A). Summary of somatic mutations for all HCC patients. (B,C) Top 15
significantly mutated genes in a high-risk group (B) and low-risk group (C). The percentage on the right showed the proportion of samples with mutations. (D,E) Top 20
geneswith significant amplification and deletion of copy number alteration (CNA). Between the high-risk group and low-risk groups, the difference of amplification (D) and
deletion (E) rates are further compared. “Amp” means amplification of CNA. “DEL” means deletion of CNA.
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FIGURE 7 | Distinct biological functions of the two groups. (A,B)GO (A) and KEGG (B) enrichment analysis of differentially expressed genes between the high-risk
group and low-risk group. The top 30 significantly enriched pathways extracted with adjusted p-value < 0.05. (C,D) Enrichment plots depicted by gene set enrichment
analysis (GSEA) based on GO (C) and KEGG (D) gene sets, respectively. (E) Heatmap of 50 Hallmark gene sets between the high-risk group and low-risk group using
the GSVA algorithm.
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FIGURE 8 | Landscape of immune cell infiltration and profiles of immune checkpoint. (A) Distribution of 28 immune cell infiltrations between two risk groups in the
TCGA-LIHC cohort. (B) Correlations between six specific immune cells and risk score using Spearman analysis. (C) Expression heatmap of immune checkpoints
between two risk groups in the TCGA-LIHC cohort. ns p >0.05; *p <0.05, **p < 0.01, ***p < 0.001.
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FIGURE 9 |Deep exploration of immune checkpoints and potential immunotherapy predictor of FAIS. (A)Distribution of co-inhibitory ICPs between two risk groups
in the TCGA-LIHC cohort. (B) Correlations between co-inhibitory ICPs and risk score using Spearman analysis. (C) Correlations between co-stimulatory ICPs and risk
score using Spearman analysis. (D) Distribution difference of TIDE and TIS prediction scores between the high-risk group and low-risk group. (E) Immunotherapy
response ratio of FAIS in the TCGA-LIHC cohort. ns p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001.
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cell cycle and metabolism-associated pathways were identified
(Figure 7B). Due to the significant heterogeneity of HCC, the two
groups might have various functional characteristics. Enrichment
analysis (GSEA) was further conducted, and we discovered that
the significantly enriched cell cycle pathway was a crucial feature
of the high-risk group (Figures 7C,D). Consistent with previous
studies, the cell cycle and metabolism were key biological
functions in HCC (Wu et al., 2020). Moreover, we investigated
the underlying carcinogenic characteristics of the two groups with
the GSVA algorithm. The high-risk group was characterized as
cell cycle-associated pathways, and the low-risk group was
characterized as metabolism-associated functions (Figure 7E).
These results indicated that the two groups displayed different
biological characteristics and were influenced by multiple
pathways.

The Estimation of Immune Infiltration by the
Fibrosis-Associated Signature
Since inflammation and immune cells are key factors for the
process of fibrosis (Mack, 2018) and the FAIS was established
based on FAGs, we hypothesized that there were distinct immune
characteristics in the two risk groups. The ssGSEA algorithm was
utilized to assess the infiltration abundance of 28 immune cells.
As instructed, the heatmap depicted the relative infiltration of
different immune cell populations (Supplementary Figure S5A).
Superior infiltration of active CD8+ T cells was the immune
feature in the low-risk group, whereas pronounced higher levels
of active CD4+ T cells and dendritic cells (DCs) were the immune
characteristics of the high-risk group (Figure 8A). A previous
study proved that CD8+ T cells, named cytotoxic T cells, were the
most crucial factor in killing tumor cells (Maimela et al., 2019).
Therefore, compared to the high-risk group, patients in the low-
risk group had superior CD8+ cell infiltration and might benefit
more from ICI treatment. In addition, we discovered that FAIS
exhibited a broad positive association with different immune cell
categories, except for eosinophil cells (Figure 8B and
Supplemetary Figure S5B). The most significant correlation
was found between FAIS and CD4+ T cells (Figure 8B).

Immune Checkpoint Profiles of
Fibrosis-Associated Signature and
Prediction of Immunotherapy
The landscape of immune checkpoints in the two groups was
decoded to gain new insights into facilitating clinical practice.
Both co-stimulatory and co-inhibitory immune checkpoints
(ICPs) exhibited higher expression in the high-risk group
(Figure 8C). Prior studies suggested that the higher the
expression of ICPs is the more immune suppression there is,
further resulting in immune tolerance and unfavorable prognosis
(Das and Johnson, 2019). Screening specific ICPs in the high-risk
group might yield more benefit from ICI therapy. For most co-
inhibitory ICPs, patients in the high-risk group displayed
superior expression, such as CTLA4 and TIGIT (Figure 9A).
Moreover, the risk score was broad and positively correlated with
the expression of co-inhibitory ICPs (Figure 9B). Consistent with

this finding, patients in the high-risk group also exhibited higher
expression of most co-inhibitory ICPs (Supplementary Figure
S5C). A strongly positive correlation was also found between the
risk score and most co-inhibitory ICPs (Figure 9C). Notably, the
tumor necrosis factor receptor superfamily (TNFRSF) showed
conspicuously higher expression in the high-risk group.
Targeting these specific molecules might have stronger
potential benefits for patients in the high-risk group. To
further evaluate the immunotherapeutic efficacy of the two
groups, we applied TIS and TIDE approaches. The results
indicated that a higher TIS score and lower TIDE score were
characteristics of the low-risk group, implying that these patients
might obtain more considerable benefits and improved clinical
outcomes (Figure 9D). The patients in the low-risk group had a
higher proportion of responders to immunotherapy (Figure 9E).
Overall, the patients in the low-risk group demonstrated a better
immunotherapy response.

DISCUSSION

Hepatocellular carcinoma (HCC) is a complex disease with
elevated incidence and mortality (Villanueva, 2019; Craig
et al., 2020). A previous study reported that there are three
distinct TME phenotypes in HCC that are prominently
associated with prognosis, immune surveillance, immune
escape, and genetic alterations (Liu et al., 2021e). Liver fibrosis
indicates tremendous potential in tumorigenesis and tightly
correlates with prognosis (Kariyama et al., 2019).
Inflammation bursts and the immune responses activate
hepatic stellate cells (HSCs) and favor extracellular matrix
(ECM) deposition, leading to liver fibrosis (Koyama and
Brenner, 2017; Mack, 2018). For instance, Th17 cells produce
IL-17 cytokines and implicate fibrogenesis, and dendritic cells
(DCs) induce HSCs to mediate inflammation and fibrogenesis
(Koyama and Brenner, 2017). In parallel, immune cells are a
major component of TME that have profound impacts on
prognosis, carcinogenesis, and immunotherapy (Liu et al.,
2021e). Therefore, liver fibrosis might interfere with TME
phenotypes and the shape of HCC heterogeneity and even has
implications for the immunotherapy response. Revolutionized
and thrilling progress has been achieved in immunotherapy, but
prominent therapeutic efficacy is limited to a small subset of
populations. It is imperative to increase the understanding of
HCC heterogeneity and search for a stable tool for identifying
patients with excellent immunotherapy response.

Using three machine learning algorithms, a robust FAIS was
ultimately constructed based on FAGs. The advantage of
integrative analysis and comparison by multiple approaches
arises in making the model more applicable and translational.
This study shows that the FAIS was an independent factor for OS
and RFS, which could serve as a prognostic biomarker. According
to previous research, most of the 11 genes included in the FAIS
displayed pivotal roles in the prognosis and progression of HCC
(Liu et al., 2016a; Qu et al., 2017; Wang et al., 2021). FCN3 was
reported to mediate apoptosis, activate the complement lectin
pathway, regulate the immune system, and be a potential
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immunotherapy target and prognosticator for HCC (Wang et al.,
2021). SPP1 was highly expressed in HCC and contributed to
tumorigenesis by promoting a stem-like phenotype (Liu et al.,
2016a). MCM7 regulated the initiation of DNA replication and
driven HCC progression by cyclin D1-dependent signaling (Qu
et al., 2017). There was strong attraction to further decipher the
characteristics of HCC patients, and we comprehensively
explored genomic alterations, clinical features, biological
functions, and the immune landscape.

Patients were assigned into two groups by FAIS, the high-risk
group with the features of an advanced AJCC stage, superior
histological grade, and vascular invasion and the low-risk group
with the traits of an early AJCC stage, inferior histological grade,
and vascular invasion. Mostly, patients in the high-risk group
were linked with poor prognosis, thus facilitating clinical
management. Furthermore, metabolic disorders and aberrant
proliferation are ubiquitous in liver diseases (Piccinin et al.,
2019). The underlying biological pathways of the two groups are
depicted in detail. The high-risk group was mainly enriched in
metabolism-associated pathways, and the low-risk group was
significantly enriched in proliferation-related pathways.
Notably, patients in the high-risk group with adverse
prognosis possessed the highest somatic mutation frequency,
43%, for the TP53 mutation. The DNA-replication kinase CDC7
inhibitor selectively treated liver cancer cells with TP53
mutation, inducing cell senescence (Wang et al., 2019).
Molecular targeted therapies are increasingly prevalent in
cancer treatment (Klinke, 2010). Distinct molecular
alterations could be used as potential therapeutic targets,
particularly for patients with poor prognosis and more
molecular variations.

As an emerging and potential therapeutic approach,
immunotherapy is gradually being incorporated into the
treatment armamentarium in HCC (Llovet et al., 2018).
Currently, because immunotherapy response lacks effective
assessments, a promising indicator is urgently needed to
improve the predictive performance of immunotherapy in
HCC. The immune landscape and immune checkpoint
profiles were dissected to identify the populations that may
benefit. Our results suggested that patients in the low-risk
group might yield more benefit from immunotherapy due to
superior CD8+ T cell infiltration. ICI therapy is the backbone
of immunotherapy aimed at enhancing the durable response
and survival of patients with HCC and employs monoclonal
antibodies targeting immune checkpoints, such as PD1 and
PD-L1 (Cheng et al., 2020). Using TIDE and TIS, we found that
patients in the low-risk group had a better immunotherapy
response. Co-stimulatory and co-inhibitory ICPs are critical
immune molecules that participate in T cell activation. The co-
inhibitory ICPs attenuated anti-tumoral immune responses
and facilitated tumor immune escape by suppressing T cell
functions (Sangro et al., 2020). In the high-risk group, the
expression of co-inhibitory ICPs was more highly and widely
positively associated with FAIS. The aberrant distribution of
co-inhibitory ICPs not only supported that these patients had
worse prognosis but also implied that targeting these specific
molecules via ICI treatment may improve clinical outcomes.

Notably, the co-stimulatory ICPs were significantly elevated in
the low-risk group and exhibited an extensive positive
correlation with FAIS, especially for TNF superfamily
members. TNFRSF9 (also known as 4-1BB) is conducive to
T cell activation and augments tumor immunity. The agonist
anti-4-1BB mAbs demonstrates the capacity to enhance CD8+

T cell responses to promote tumor rejection (Buchan et al.,
2018; Pourakbari et al., 2021). TNFRSF18 (also known as
GITR) combines with the GITR ligand to favor T cell
proliferation, and an anti-GITR antibody agonist (TRX518)
displays potent anti-tumor activity (Zappasodi et al., 2019). In
addition, with the development of co-stimulation agonist
therapy, combination therapy with ICIs is a booming
immunotherapy approach. For patients in the high-risk
group, co-stimulation agonists would be a sensible option.
These results indicated that FAIS could stratify patients and
guide precise treatment to some degree as a promising
biomarker.

Although FAIS displayed many strengths, there are also some
limitations. First, all cohorts retrieved in this study were
retrospective, and further validation of this risk scoring system
should be applied to prospective cohorts. Second, our study used
bioinformatics algorithms to indirectly evaluate the
immunotherapy response rather than large-scale
immunotherapy clinical trials. Third, patients in the high-risk
group had inferior prognosis and poor immunotherapy response,
which needed more attention. In the further research, we will
focus on these populations to develop more effective therapy
strategies.

CONCLUSION

From the perspective of fibrosis, an independent predictor of OS
and RFS, the FAIS was constructed by three machine learning
algorithms. The FAIS could stratify HCC patients who had
distinct genomic alterations, clinical features, biological
functions, and immune landscapes. Our findings also revealed
that FAIS had critical implications for immunotherapy andmight
be a useful tool to favor clinical surveillance and management for
individual patients.
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