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Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to
viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis
and even cancer. The US Food and Drug Administration has not approved any drugs that
act directly against liver fibrosis. The only treatments currently available are drugs that
eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is
expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and
searching for new treatments against it. This review summarizes how parenchymal,
nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic
stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell
metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight
discoveries of novel therapeutic targets, which may provide new insights into potential
treatments for liver fibrosis.
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INTRODUCTION

Liver Fibrosis
Liver fibrosis is a repair response to chronic liver injury caused by various pathogenic factors,
and it is characterized mainly by the excessive accumulation of extracellular matrix (ECM),
especially collagen fibers (Reeves and Friedman, 2002). If the pathogenic factor is not removed,
liver fibrosis can progress to liver cirrhosis and even hepatocellular carcinoma, which elevates
risk of mortality.

Liver fibrosis has become one of the most common liver diseases worldwide, and it has also
become one of the leading indications for liver transplantation. The global prevalence of
nonalcoholic fatty liver disease (NAFLD) is 25.24%, and its prevalence is particularly high in the
Middle East, South America and Asia. Just over half of patients (59.1%) with NAFLD, and in
particular 40.76% of patients with liver fibrosis, progress to nonalcoholic steatohepatitis (NASH)
(Younossi et al., 2016). Liver disease accounts for approximately 2 million deaths per year worldwide,
among which 1 million deaths occur due to complications from cirrhosis, which is currently the 11th
most common cause of death globally (Asrani et al., 2019).

Alcohol abuse, chronic viral hepatitis, obesity, autoimmune hepatitis, metabolic syndrome
and cholestasis are the most common causes of liver fibrosis (Bataller and Brenner, 2005). If
the pathogenic factors are acute or self-limiting, wound-healing responses are transient, and
the liver architecture can return to normal. When the factors persist, the inflammatory phase
begins and hepatic stellate cells (HSCs) activate, leading to ECM deposition and destruction
of the liver architecture. The pathogenesis of liver fibrosis is complicated and involves
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multiple types of liver cells and inflammatory reactions. Its
main pathological features are collagen deposition and
damage of liver structure. Numerous studies of anti-
fibrosis targets have focused mainly on collagen
deposition and various types of hepatic cells.

HEPATIC CELLS IN LIVER FIBROSIS

Liver fibrosis is a complex process of liver self-repair that involves
multiple types of hepatic cells. Intercellular crosstalk within the
liver microenvironment is critical for the maintenance of normal
hepatic functions and cell survival (Marrone et al., 2016). The
chronic presence of external pathological factors can injury
hepatocytes; activate inflammatory cells such as macrophages;
promote infiltration of lymphocytes; trigger proliferation of
sinusoidal endothelial cells and capillarization of sinusoidal
endothelial cells, blocking perfusion between blood and liver
cells and causing abdominal aortic hypertension; and activate
bile duct cells (Boyer-Diaz et al., 2021). These changes ultimately
lead to the activation of HSCs, the most important source of
myofibroblasts, to synthesize excess ECM, resulting in liver
fibrosis. HSC activation is considered central in liver fibrosis.
However, other types of liver cells also play important roles in
fibrosis. Indeed, HSCs activation depends on the interaction with
other hepatic cells, including hepatocytes, liver sinusoidal
endothelial cells, inflammatory cells and biliary cells
(Figure 1). These cells interact with each other and promote
or inhibit the activation of HSC through production of cytokines
and other signalling molecules. Targeting the crosstalk between
HSCs and other hepatic cells might be a novel option for liver
fibrosis treatment.

Hepatic Stellate Cells
Activation of HSCs, often referred to as their “trans-
differentiation”, is the major cellular source of matrix protein-
secreting myofibroblasts, which are the major driver of liver
fibrogenesis (Higashi et al., 2017; Tsuchida and Friedman,
2017; Cai et al., 2020). HSCs, which are also called vitamin
A-storing cells, lipocytes, interstitial cells, fat-storing cells or
Ito cells, exist in the space between parenchymal cells and
liver sinusoidal endothelial cells of the hepatic lobule. They
store 50–80% of the total vitamin A in the body; they store
the vitamin A in the form of retinyl palmitate in lipid droplets in
the cytoplasm (Senoo et al., 2010). HSCs in the space of Disse are
also thought to contribute reversibly to portal hypertension
(McConnell and Iwakiri, 2018).

Stimulating HSCs with external factors such as lipid
peroxides or pro-fibrotic cytokines leads them to lose lipid
droplets, proliferate, and transform into myofibroblasts. The
cells then begin to produce ECM and they acquire contractile,
pro-inflammatory, and fibrogenic properties (Bataller and
Brenner, 2005). The disordered accumulation of ECM
results in scar and liver fibrosis (Gandhi, 2017). Many
current anti-fibrosis treatments aim to prevent HSCs from
contributing to fibrosis, such as by blocking their activation
by external factors, inhibiting their proliferation, promoting

their apoptosis (Trivedi et al., 2021), and preventing their
adoption of a high metabolic state (Du et al., 2018; Khomich
et al., 2019).

The major signaling pathways involved in HSCs activation
contains: growth factors and ligand-receptor signaling pathways
(Wnt/β-catenin, Hedgehog, YAP/TAZ, FGF, cAMP-PKA-
CREB), profibrogenic response pathways (TGF-β, PDGF/
VEGF/CTGF, ROCKs, Axl/Gas6, Notch, renin angiotensin
system), cell death signaling (autophagy, ER stress, oxidative
stress), immune-related signaling (TLRs, LPS, DAMPs,
interleukin), metabolic regulated pathways (Acc, Hedgehog,
YAP, leptin), Nuclear receptors (FXR, LXR, PPARs, VDR) and
epigenetic changes (miRNA, lncRNA, DNA methylation, histone
modification) (Figure 2). Although some clinical drugs were
found to be positive for liver fibrosis treatment in clinical
trails including PPAR-γ agonist (pioglitazone), angiotensin
receptor blockers (losartan, telmisartan, olmesartan and
candesartan), and glucagon-like peptide-1 receptor agonists
(liraglutide), the safety and effect of these drugs need to be
further confirmed (Georgescu, 2008; Mantovani et al., 2021).
Clinical existing drugs like angiotensin receptor blockers, PPAR-
γ agonist may be accompanied by side effects due to their wide
range of effects, and they may not be suitable for the treatment of
simple liver fibrosis. It is necessary to find new therapeutic targets.

Myofibroblasts, which are not present in the healthy liver, are
activated in response to liver injury (Friedman, 2008; Kisseleva
and Brenner, 2021). They form from resident mesenchymal cells,
epithelial cells (e.g. hepatocytes and cholangiocytes), endothelial
cells, bone marrow stem cells, portal fibroblasts and HSCs
(Wynn, 2008). The most important characteristic of liver
fibrosis is the excessive deposition of ECM, in which
myofibroblasts play the most important role (Karsdal et al.,
2016). This makes ECM production a primary target for anti-
fibrotic therapy. Inflammation often accompanied liver injury
(Koyama and Brenner, 2017), which involves the production and
release of such cytokines as CTGF, PDGF, and TGF-β. These
cytokines activate myofibroblasts to produce abundant ECM
(Wynn, 2008), inducing liver fibrosis.

Hepatocytes
Hepatocytes are the most important parenchymal cells in liver;
they account for more than 80% of all liver cells. Together with
cholangiocytes, hepatocytes help maintain liver homeostasis (Dai
et al., 2020). Damage to hepatocytes, together with subsequent
inflammatory and fibrogenic signaling cascades, is thought to
trigger fibrosis (Tu et al., 2017). After damage by
microenvironmental factors, hepatocytes secrete pro-
inflammatory and pro-fibrotic factors, activating inflammatory
cells and HSCs, in turn promoting fibrosis (Wang et al., 2016a;
Zhang et al., 2019; An et al., 2020). The epithelial-mesenchymal
transition (EMT) in hepatocytes promotes the progression of
liver fibrosis. Fructose induces hepatocytes to upregulate
fibroblast-specific protein1 and vimentin, while
downregulating E-cadherin, thereby promoting EMT (Cicchini
et al., 2015; Song et al., 2019).

In early-stage liver disease, if liver cell damage can be reversed,
then hepatocytes can be promoted and liver fibrosis reversed.
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This is the aim of hepatoprotective drugs currently used in the
treatment of liver diseases. In late-stage liver disease, in contrast,
it is often impossible to inhibit the death of hepatocytes. This may
be because HSCs are in a highly activated state, and they can
secrete pro-fibrotic factors. Drugs that fail to target liver cells
selectively and that instead are taken up by HSCs can promote
HSC proliferation and inhibit their apoptosis. The problem of this
“two-way” action must be taken into account when designing
treatments that promote apoptosis or inhibit proliferation.

Liver Endothelial Cells
LSECs act as permeable barriers and portal pressure regulators,
they mediate the transcript of nutrients, they recruit
lymphocytes from the blood, and they secrete cytokines and
growth factors from their sinusoidal side (Asahara et al., 1999).
LSECs have the highest endocytotic capacity of all human cells
(Poisson et al., 2017). They also interact with HSCs and
hepatocytes, and they are critical to maintain HSC
quiescence and regenerate hepatocytes (Hu et al., 2014), thus
inhibiting intrahepatic vasoconstriction and fibrosis. LSECs
maintain HSC quiescence via a pathway that is stimulated by
vascular endothelial growth factor (VEGF) and that depends on
nitrous oxide (NO) (Asahara et al., 1999; Marrone et al., 2013;
DeLeve, 2015). In chronic liver injury, LSECs undergo
capillarization, they downregulate eNOS and NO synthesis,
and they secrete profibrogenic and proinflammatory
cytokines such as TGF-β1, PDGF, TNF-α and IL-6, thereby
promoting liver fibrosis (Lafoz et al., 2020).

Cholangiocytes
Cholangiocytes are epithelial cells lining the intra- and extra-
hepatic bile ducts; they are heterogeneous in size and function
and mediate solute transport processes that determine the
composition and flow of bile (Banales et al., 2019). Their
dysfunction lies at the heart of cholangiopathies. During
biliary disease, various pathological stimuli such as
gastrointestinal hormones, bile acids, angiogenic factors, and
nerve growth factor can activate cholangiocytes, leading to
biliary proliferation, known as a ductular reaction. The result
is an epigenetically-regulated transcriptional program involving
secretion of TGF-β1, CTGF, p16, CCL2 and SA-β-gal, ultimately
leading to a profibrogenic micro-environment, HSC activation,
and enhanced liver fibrosis (Zhou et al., 2018; Elssner et al.,
2019; Jalan-Sakrikar et al., 2019). The ductular reaction
contributes to the initiation and progression of liver fibrosis
(Glaser et al., 2009).

Many recent studies have explored the role of cholangiocytes
in liver fibrosis. For example, non-canonical NF-κB can
contribute to cholangiocyte proliferation and the ductular
reaction, accelerating liver fibrosis (Elssner et al., 2019). The
long non-coding RNA H19, present in exosomes from
cholangiocytes, can activate HSCs and promote cholestatic
liver fibrosis (Liu et al., 2019a). Knockout of the secretin
receptor reduces biliary damage and liver fibrosis by slowing
cholangiocyte senescence (Zhou et al., 2018). These findings
suggest that targeting the activation of cholangiocytes and the
ductular reaction can mitigate biliary fibrosis.

Inflammatory Cells
The acute inflammation that arises in response to liver injury is
thought to help mitigate infection and promote liver repair and
regeneration (Karin and Clevers, 2016). Chronic
inflammation, in contrast, is detrimental and contributes to
liver fibrosis through the involvement of multiple types of
inflammatory cells, including Kupffer cells, recruited
macrophages, neutrophils, Th17 cells and Tregs (Berumen
et al., 2021; Wen et al., 2021). Macrophages play a dual role
in the progress of fibrosis. M1 macrophages produce
inflammatory cytokines, while M2 macrophages regulate
inflammatory responses and secret matrix metalloproteases
(MMPs), the main enzymes that degrade ECM, thereby
reversing fibrosis (Pradere et al., 2013; Luo et al., 2019).
Thus, the balance between M1 and M2 macrophages
influences whether fibrosis progresses or not (Sica et al.,
2014). Interestingly, recent studies have suggested that M1,
but not M2 macrophages, inhibit liver fibrogenesis by
recruiting endogenous macrophages and “polarizing” them
into a restorative Ly6Clo phenotype, which secrets high
levels of MMPs for collagen degradation, as well as high
levels of hepatocyte growth factor for hepatocyte
proliferation (Ramachandran et al., 2012; Ma et al., 2017).

Kupffer cells, the resident macrophages of the liver, play a
central role in liver inflammation. They are resident
macrophages that localize within the lumen of the liver
sinusoids, and they account for about 30% of sinusoidal
cells (Bouwens et al., 1986; Koyama and Brenner, 2017). In
response to hepatocyte injury, Kupffer cells become active and
secret pro-inflammatory and pro-fibrosis factors. TGF-β,
which is secreted mainly by Kupffer cells and plays a key
role in liver fibrosis (Xu et al., 2020), binds to a receptor on
HSCs to activate them and induce production of collagen
(Wang et al., 2019a). Hepatic macrophages also enhance
liver fibrosis through the release of IL-1β, TNF-α, CCL2 and
PDGF. During liver steatosis, neutrophils and Kupffer cells
release reactive oxygen species (ROS), promoting HSC
activation and liver fibrosis (Jiang et al., 2012; Dat et al.,
2021). Th17 cells produce IL-17, which activates Kupffer
cells and express the proinflammatory cytokines IL-6, IL-1β
and TNF-α. IL-17 also directly activates HSCs and promotes
collagen production via the STAT3 pathway (Meng et al.,
2012). Th22 cells, for their part, produce IL-22, which
drives TGF-β-dependent liver fibrosis (Fabre et al., 2018).

In this way, many types of inflammatory cells and complex
molecular pathways are involved in liver fibrosis. Future studies
aiming to treat liver fibrosis by targeting inflammatory cells
should cautiously consider the potentially complex effects of
such treatment.

NEW THERAPEUTIC TARGETS

Liver fibrosis can be reversed in early stages if the pathological
insult can be removed. Here we summarize recent reports on
signaling pathways that contribute to liver fibrosis and on efforts
to target such pathways as a therapeutic strategy.
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TGF-β Signaling
TGF-β signaling is a core regulator of fibrosis, and it can induce
fibrosis via canonical and non-canonical (non-Smad) pathways
(Figure 3) (Finnson et al., 2020). In both cases, myofibroblasts are
activated, leading to excessive ECM production and inhibition of
ECM degradation (Meng et al., 2016). TGF-β binds to its cognate
receptor TGF-β type II receptor, inducing the nuclear
translocation of Smad2 and Smad3, which regulate the
transcription of fibrotic target genes (Zhang et al., 2021a).

In the canonical pathway, Smad2/3 is activated by
phosphorylation but potentially also by lysine acetylation
to promote liver fibrosis (Bugyei-Twum et al., 2018; Wang
et al., 2019a; Zhong et al., 2020; Zhang et al., 2021a). The
chromatin deacylase Sirtuin 6 is also an important regulator
of liver fibrosis through its influence on metabolism, DNA
repair, gene expression, and mitochondrial biology (Andrew
et al., 2020). Sirtuin6 deficiency induces aging-dependent
fibrosis in liver and other organs in mice. Sirtuin6 may
deacetylate Smad3 as well as Lys-9 and Lys-56 in histone 3

to repress the expression of key TGF-β signaling genes (Maity
et al., 2019). By deacetylating lysines 333 and 378 of Smad3,
sirtuin6 may inhibit Smad3 activity, protecting against liver
fibrosis (Zhong et al., 2020). Like Smad3, Smad2 is also a
major acetylated substrate of sirtuin6. Sirtuin6 deacetylates
lysine 54 on Smad2, reducing TGF-β/Smad2 signaling in
HSCs and thereby alleviating liver fibrosis. By
deacetylating Smad2, sirtuin6 influences its
phosphorylation and nuclear translocation (Zhang et al.,
2021a). These findings suggest that TGF-β signaling is a
master regulator of fibrosis and warrants multilayer
control, and that sirtuin6 may regulate TGF-β signaling at
multiple levels.

TGF-β also regulates other signaling pathways through non-
Smad signaling pathways, such as pathways involving Wnt/
β-catenin, MAPK, mTOR, IKK, PI3K/Akt, and Rho GTPase,
thereby contributing to liver fibrosis (Zhang, 2017; Mi et al.,
2019). TGF-β-mediated upregulation of FoxO3a and the DNA
demethylase TET3 in HSCs facilitates hepatic fibrogenesis (Xu

FIGURE 1 | Intercellular crosstalk during liver fibrosis. HSCs activation is the major driver of liver fibrosis that depends on the interaction with other hepatic cells,
including hepatocytes, biliary cells, liver sinusoidal endothelial cells and inflammatory cells. These cells interact with each other and promote or inhibit the activation of
HSCs through production of hormones, cytokines(blue) and other signalling molecules(green).
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et al., 2020; Kim et al., 2021). TGF-β can also regulate
proteasomal degradation of EZH2 in cholangiocytes,
supporting biliary fibrosis (Jalan-Sakrikar et al., 2019). TGF-β
upregulates hyaluronan (HA) synthase 2, leading to increased
production of HA, a major extracellular matrix
glycosaminoglycan and biomarker for cirrhosis. HA promotes
the fibrogenic, proliferative, and invasive properties of HSCs via
pathways involving the receptors CD44, Toll-like receptor 4
(TLR4), and Notch1 (Yang et al., 2019). TGF-β1 activates the
p65/MAT2A pathway to decrease levels of
S-adenosylmethionine, thereby facilitating liver fibrosis (Wang
et al., 2019b).

Several pathways inhibit TGF-β signaling, making them
interesting as therapeutic strategies. Transcriptional
intermediary factor 1γ, a negative regulator of the TGF-β
pathway, interacts with Smad2/3 and binds to the promoter of
the α-smooth muscle gene (α-SMA), downregulating α-SMA and
activating HSCs (Lee et al., 2020). ECM1 interacts with αv
integrins to keep TGF-β in an inactive form, thereby
preventing HSC activation and liver fibrosis (Fan et al., 2019).
Recent studies have explored epigenetic regulation of Smad- and
non-Smad-mediated pathways in TGF-β signaling, highlighting
the complex role of such signaling in fibrosis.

Notch Signaling
Notch signaling is a conversed intercellular signaling pathway
that regulates interactions between physically adjacent cells.
Accumulating evidence suggests that Notch signaling
participates in liver fibrosis by mediating myofibroblasts trans-
differentiation and the EMT (Hu and Phan, 2016). When any one
of five ligands (Delta-like1/3/4, Jagged-1/2) binds to the receptor
for Notch1-4, the Notch intracellular domain (NICD) is released
and translocates to the nucleus, where it binds to transcription
factor CBF1/Suppressor of hairless/Lag1 (CSL) and modulates
gene expression (Kovall and Blacklow, 2010). Notch activity in
hepatocytes correlates with disease severity and treatment
response in patients with NASH, and Notch is upregulated in
a mouse model of diet-induced NASH and liver fibrosis. Forced
activation of Notch in hepatocytes induces fibrosis by
upregulating Sox9-dependent Osteopontin (Opn) secretion
from hepatocytes, which activates resident HSCs (Zhu et al.,
2018). Endothelial Notch1 overexpression results in LSEC
dedifferentiation and accelerates liver fibrogenesis through
eNOS-sGC signaling, and it alters the angiocrine profile of
LSECs to compromise hepatocyte proliferation and liver
regeneration (Duan et al., 2018). DLL4, a ligand of Notch
signaling, is up-regulated in the LSECs of fibrotic liver of

FIGURE 2 | Major molecules and signaling pathways regulating hepatic stellate cells (HSCs) activation and liver fibrosis. Undergo physiological conditions, HSCs
exist as a quiescent phenotype (qHSCs), which store vitamin A and stay in a low metabolic state. After stimulating by a serious of factors (including chronic infection,
excess alcohol consumption, non-alcoholic fatty liver disease, autoimmune liver diseases and hereditary diseases), qHSCs activate into activated HSCs (aHSCs) and
liver fibrosis develop. Activated HSCs lose stored retinol, produce excessive collagen/α-SMA and stay at a high metabolic state. HSCs activation is regulated by a
number of signaling pathways and molecules, including proliferation, fibrogenesis, cell death, inflammatory signalings, metabolic pathways, nuclear receptors and
epigenetics.
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patients and of mice treated with CCl4, consistent with LSEC
capillarization involving endothelin-1 (Chen et al., 2019a). Notch
signaling is an attractive target for treating liver fibrosis; so far,
Wnt/β-catenin signaling, miR-30c, liver fibrosis-associated
lncRNA1 have been found to influence such signaling (Zhang
et al., 2017; So et al., 2018; Gu et al., 2021). Notch signaling can
also cross-talk with other signaling pathways involving TGF-β
and Hedgehog, which together can regulate liver fibrosis (Xie
et al., 2013; Wang et al., 2017; Fan et al., 2020).

Some compounds attenuate liver fibrosis by targeting Notch
signaling and so may be novel potential therapeutic candidates
for the treatment of liver fibrosis. For example, capsaicin shows
liver fibrosis progression by regulating Notch signaling to reduce
secretion of inflammatory cytokine TNF-α, which attenuates
myofibroblast regeneration and fibrosis mediated by HSCs
(Sheng et al., 2020). The natural sesquiterpene costunolide
exerts potent antifibrotic effects by disrupting the WWP2/
PPM1G complex, promoting Notch3 degradation and
inhibiting the Notch3/HES1 pathway (Ge et al., 2020). The
Notch inhibitor niclosamide exerts hepatoprotective effects
against BDL-induced liver fibrosis (Esmail et al., 2021).
Dibenzazepine, a bioavailable γ-secretase inhibitor and Notch
antagonist, prevents activation of Notch receptors and is already
in clinical trials as an anticancer treatment (Takebe et al., 2014). A
nanoparticle system has been developed to deliver dibenzazepine
to the liver for treatment of liver fibrosis and obesity-induced type
2 diabetes mellitus (Richter et al., 2020).

Wnt Signaling
During liver fibrosis, canonical(β-catenin-dependent) and non-
canonical (β-catenin-independent) pathways of Wnt signaling
are activated and some proteins in the pathways are upregulated
(Wang et al., 2018; Hu et al., 2020; Yu et al., 2020). In β-catenin-
dependent pathways, Wnt ligation to cell surface receptors
induces downstream phosphorylation and stabilization of
β-catenin, which then translocates to the nucleus, where it acts
together with p300 or CBP as a transcriptional co-activator of the
T cell factor/lymphoid enhancer-binding factor (TCF/LEF)
promoter (Miao et al., 2013; Lien and Fuchs, 2014; Nusse and
Clevers, 2017). Non-canonical pathways comprise the β-catenin-
independent planar cell polarity pathway and the non-canonical
Wnt/Ca2+ pathways (De, 2011). Better understanding of Wnt
signaling may provide novel insights into the pathophysiology of
liver fibrosis.

Wnt also interacts with other pathways to influence liver
fibrosis. For example, it blocks the phosphorylation of Smad3
and ERK to inhibit TGF-β1-induced trans-differentiation of
fibroblasts into myofibroblasts (Liu et al., 2020a). The Wnt/
β-catenin pathway may interact with the Smo-independent
Gli1 pathway to promote HSC contraction via TCF4-
dependent transrepression of Sufu (Zhang et al., 2021b). The
“protein regulator of cytokinesis 1” (PRC1), which regulates the
Wnt/β-catenin signaling pathway, may induce Gli1-dependent
osteopontin expression to contribute to liver fibrosis (Rao et al.,
2019). Wnt signaling may play a dual role in liver repair and liver
ECM deposition: it promotes liver fibrosis in the BDL mouse
model of liver fibrosis, but it protects the liver in the MDR2 KO

mouse model of cholestatic liver disease (Jarman and Boulter,
2020). Thus, efforts to target the Wnt signaling to alleviate liver
fibrosis should consider how to reduce scarring without affecting
repair.

Numerous molecules have been identified that can inhibit
Wnt signaling, such as antagonists, short interfering RNA
(siRNA), soluble receptors, and the transcription inhibitors
DKK1, ICG-001, PRI-724, and honokiol (Miao et al., 2013;
Akcora et al., 2018; Nishikawa et al., 2018; Hu et al., 2020; Lee
et al., 2021). These molecules may be candidate drugs for fibrosis
treatment.

YAP/TAZ Signaling
YAP/TAZ, a downstream effector of the alternativeWnt signaling
pathway, is involved in liver fibrosis (Park et al., 2015). The YAP/
TAZ-TEAD transcriptional complex plays an important role in
the activity of the Hippo pathway (Bai et al., 2012; Crawford et al.,
2018). YAP is activated in HSCs in patients with fibrotic livers,
and inhibiting YAP using verteporfin impedes fibrogenesis in
CCl4 mice (Mannaerts et al., 2015). Thus, inhibition of YAP may
be a novel approach for treating fibrosis. Blockade of YAP reduces
HSC activation and proliferation, while promoting their
apoptosis. Loss of YAP also inhibits Wnt/β-catenin activity
(Yu et al., 2019). Dynein-mediated interaction between YAP
and acetylated microtubules may drive nuclear localization of
YAP in the soft matrix, increasing TGF-β1-induced
transcriptional activity of Smad for myofibroblast
differentiation (You et al., 2020). Interestingly, activation of
YAP attenuates hepatic damage and fibrosis in studies of liver
ischemia-reperfusion injury, which may reflect the complex role
of YAP in liver repair and fibrosis through processes such as Wnt
signaling (Konishi et al., 2018; Liu et al., 2019b). The expression of
YAP and TAZ in HSCs as well as hepatocytes promotes
parenchymal inflammation and fibrosis (Mooring et al., 2020).

Verteporfin is the most commonly used small molecule
inhibitor of YAP. Many other molecules alleviate fibrosis via
inhibiting YAP/TAZ signaling, including magnesium
isoglycyrrhizinate, acid ceramidease, dopamine receptor D1
agonist, and liquiritigenin (Li et al., 2018; Haak et al., 2019;
Lee et al., 2019; Alsamman et al., 2020). Given its complex role in
liver regeneration and HSC proliferation in different stages of
NAFLD, balancing the activity of YAP in hepatocytes and HSCs
during different disease stages is key for efficacy.

Hedgehog Signaling
Growing evidence indicates that the hedgehog pathway is a
critical regulator of adult liver repair and, hence, a potential
diagnostic and/or therapeutic target in cirrhosis (Figure 4)
(Machado and Diehl, 2018). Gli1 is the downstream
transcriptional activator of hedgehog signaling, and it is also a
marker of mesenchymal cells. Previous studies have confirmed
perivascular Gli1+ mesenchymal-like cells to be a major driver of
organ fibrosis (Kramann et al., 2015). Peribiliary Gli1+

mesenchymal cells are a subset of stromal cells characterized
by active hedgehog signaling; these cells proliferate, acquire a
myofibroblast phenotype, and surround the biliary tree in
response to cholestatic injury, promoting liver fibrosis (Gupta
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et al., 2020). In fact, aberrant activation of hedgehog signaling in
not only mesenchymal cells but also HSCs is considered crucial in
liver fibrosis (Li et al., 2020a).

Some signaling factors and epigenetic modifications regulate
hedgehog signaling and thereby influence HSC activation. These
factors include lipopolysaccharide, palmitic acid, and the protein
“predicted paired box 6” (Duan et al., 2017; Pan et al., 2017; Li
et al., 2020a; Zhu et al., 2021), which may therefore be therapeutic
targets in liver fibrosis. One study also suggested that miR-200a
inhibits Gli3 expression and may function as a novel anti-fibrotic
agent (Li et al., 2020b). Treating HSCs with the DNAmethylation
inhibitor 5-azadC prevents their proliferation and activation by
restoring expression of Patched (PTCH1) (Yang et al., 2013). The
metabolic state of HSCs affects their activation, and hedgehog
signaling regulates metabolism (Chen et al., 2012; Du et al., 2018).
Further work is needed to clarify exactly how hedgehog signaling
regulates HSC activation and metabolism, thereby
influencing liver.

Many chemical inhibitors of hedgehog inhibitors have been
identified, including Gant61, GDC-0049, MD85, and vismodegib.

These compounds have shown promise against liver fibrosis
in vivo and in vitro (Li et al., 2019a; Kumar et al., 2019;
Jiayuan et al., 2020). The naturally occurring iridoid
glucoside geniposide, extracted from Gardenia jasminoides
Ellis, inhibits hedgehog and thereby HSCs (Lin et al., 2019).
These compounds are less effective against liver fibrosis in
part because they cannot be delivered specifically to the liver.
Two studies have achieved such delivery using nanoparticles,
which improved drug efficacy. One group replaced the
sulfonamide group of the hedgehog inhibitor GDC-0449
with two methylpyridine-2yl groups at the amide nitrogen,
generating MDB5. This inhibitor was more potent at
inhibiting hedgehog signaling and HSC proliferation
in vitro. The research group also developed MDB5-loaded
micelles, which enhanced systemic delivery of the drug and
efficacy against liver fibrosis (Kumar et al., 2019). In another
study, the hedgehog inhibitor vismodegib was loaded into
cRGDyK-guided liposomes, which markedly inhibited the
fibrogenic phenotype in vivo. The delivery system targeted
the delivery of vismodegib to activated HSCs rather than

FIGURE 3 | Schematic diagram depicting possible mechanisms involved in the fibrogenesis of TGF-β signaling and its crosstalk with other signaling pathways.
Signaling starts with TGF-β binding to TGFβR2 (TβR2), which activates TGFβR1 (TβR1). The active TβR1 phosphorylates and acetylates Smad2/3, which complex with
Smad4, translocate into nucleus and promote profibrotic genes expression. As another active form of Smad2/3, acetylated Smad2/3 are reported to be regulated by
Sirtuin6, P300/CBP, ERK5 and P/CAF. Smad7 negatively regulates TGF-β signaling through competing with Smad2/3 for interaction with TβR1 in the presence of
STRAP and SMURF1/2. TGF-β can also activate non-canonical TGF-β pathways, including MAPK, PI3K/AKT, PAK2, RhoA, LIMK1/2, pP2A, Eefla1and Ras pathways.
In addition to canonical and non-canonical pathways, TGF-β/Smad signaling shares crosstalk with other signaling pathways in liver fibrosis, including TNF-α, IFN-γ, YAP/
TAZ, Wnt and JNK signaling. These pathways influence TGF-β signaling by affecting the activation and nuclear translocation of Smad2/3. TF: transcription factors, p:
phosphate group, Ac: acetylate group.
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quiescent HSCs, leading to preferential accumulation in
fibrotic liver. These finding illustrate the promise of
delivering therapeutic agents to activated HSCs to treat
liver fibrosis (Li et al., 2019a).

Fibroblast Growth Factor Signaling
Fibroblast growth factor (FGF) signaling is a prerequisite for
adequate would healing, repair and homeostasis in various tissues
and organs (Seitz and Hellerbrand, 2021). Since liver fibrosis is a
wound healing response to liver injury, FGFs play an important
role in hepatic fibrosis by acting as paracrine, and endocrine
mediators of hepatocyte regeneration and HSC migration,
proliferation and trans-differentiation (Schumacher and Guo,
2016). The paracrine FGFs (FGF1-10, FGF16-18, FGF20 and
FGF22) bind strongly to heparan sulphate proteoglycans, which
limits FGF diffusion through ECM and restricts their action to the
site of secretion (Ornitz and Itoh, 2015; Seitz and Hellerbrand,
2021).

The three endocrine FGFs, FGF19 (mouse homolog FGF15),
FGF21 and FGF23 participate in phosphate, bile acid,
carbohydrate and lipid metabolism and thereby affect liver
homeostasis (Itoh, 2010; Itoh et al., 2016; Kuro-o, 2019).
Recent studies illustrate how FGF15/19 and FGF21 affect
hepatic fibrosis and HSC activation. Hepatic accumulation of
bile acid is central to the pathogenesis of cholestasis-induced
liver injury, and excessive levels of cytotoxic bile acids in the

liver can lead to liver fibrosis (Schaap et al., 2014). Expression of
FGF15/19 is strongly induced by farnesoid X receptor (FXR) in
the ileum, and the protein is secreted into the portal blood and
transported to the liver, where it represses the expression of
CYP7a1, a rate-limiting enzyme in bile acid synthesis, thereby
mitigating liver fibrosis (Inagaki et al., 2005; Liu et al., 2020b).
While enterocytes of the terminal ileum likely produce most
FGF15/19, HSCs express FGFR4, while HSCs secrete FGF19.
Enhanced FGF19/FGFR4 signaling blocks HSC proliferation
and activation, which may help explain the anti-fibrotic
effects of FGF19 observed in previous studies (Zhou et al.,
2017; Hirschfield et al., 2019; Tian et al., 2021). FGF15
deficiency inhibits the development of hepatic fibrosis in
animal models of NASH or liver fibrosis (Uriarte et al., 2015;
Schumacher et al., 2017; Schumacher et al., 2020).

These findings suggest that FGF15/19 exert hepatoprotective
effects via a pathway independent of bile acids. In contrast to
FGF15/19, FGF21 is expressed predominantly in hepatocytes and
is released in response to high levels of glucose and free fatty acids
as well as low levels of amino acids. In this way, FGF 21 can
prevent fatty liver, hepatic steatosis and hepatotoxicity (Reinehr
et al., 2012; Seitz and Hellerbrand, 2021). FGF21 also inhibits
HSC activation via TGF-β andNF-κB pathways, and it can induce
HSC apoptosis through caspase-3, which attenuates hepatic
fibrogenesis (Xu et al., 2016). FGF21 may participate in
metabolism-related liver disease.

FIGURE 4 | The different state of hedgehog signaling pathway. In the absence of ligands, the signaling is on “Off state”, PTCH1 inhibits the activity of Smo. Protein
kinase (including PKA, CK1 andGSK3β), SuFu and KIF7 phosphorylate Gli, which leads proteolytic cleavage of Gli to Gli-repressor (Gli-R). Gli-R represses the expression
of target genes. In Hhn secreting cells, the precursor of Hh is auto-cleaved and can be modified by a cholesterol at C-terminus to form Hhn on ER membrane. After this
process, Hhn is secreted from the secreting cells and bind to PTCH1. PTCH1 is degraded in endosome, and consequently Smo repression is removed. Activated
Smo inhibits the effect of PKA on Gli proteins, leading to the dissociation of SuFu, and Gli active form (Gli-A) is formed. Gli-A promotes the expression of target genes.
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Gas6 Signaling
Growth arrest-specific gene 6 (Gas6), a ligand of the TAM
receptor (Tyro3, Axl, Mer), is a vitamin K-dependent protein
expressed primarily by Kupffer cells, whereas Axl is found in
both macrophages and quiescent HSCs in normal liver
(Bárcena et al., 2015; Shrivastava et al., 2016). Serum levels
of Gas6 correlate directly with liver stiffness and are
significantly higher in patients with advanced fibrosis and
primary biliary cholangitis (Bellan et al., 2016; Hayashi et al.,
2020). In fact, the Gas6/TAM system has recently emerged as
an important player in the progression of liver fibrosis and as
a novel biomarker of liver fibrosis (Bellan et al., 2019; Smirne
et al., 2019). CCl4-induced liver fibrosis activates the Gas6/
Axl pathway, which in turn promotes HSC activation.
Disrupting the pathway through Gas6 deficiency, Axl
knockout or pharmacological inhibition attenuates hepatic
fibrosis (Lafdil et al., 2006; Fourcot et al., 2011; Bárcena et al.,
2015). Similarly, the rs4374383 polymorphism in the gene
encoding Mer modulates HSC activation, affecting the
severity of fibrosis in NAFLD (Petta et al., 2016). Gas6
also participates in both cardiac and pulmonary fibrosis by
binding TAM (Espindola et al., 2018; Chen et al., 2019b; Li
et al., 2019b). Targeting Gas6 signaling may be a potential
treatment for liver fibrosis, so how Gas6 contributes to liver
fibrosis should be further explored.

Ferroptosis Signaling
Ferroptosis is a recently recognized form of regulated cell
death, characterized by the presence of unusually small
mitochondria with quite dense mitochondrial membrane,
loss of mitochondria crista, rupture of the outer
mitochondrial membrane, and accumulation of iron-based
lipid reactive oxygen species (Xie et al., 2016). Ferroptosis is a
defensive mechanism against cancer, neurotoxicity and
ischemia/reperfusion-induced injury (Liang et al., 2019; Li
et al., 2020c; Song and Long, 2020). In mice, an MCD diet
induces iron accumulation, cell death and hepatic ferroptosis.
Conversely, ferroptosis inhibitors alleviate MCD-diet
induced inflammation, fibrogenesis and liver injury,
suggesting an important role of ferroptosis in NASH (Li
et al., 2020d). Ferroptosis is also an iron-dependent form
of regulated cell death triggered by toxic lipid peroxidation,
which is inhibited by glutathione peroxidase 4 (GPX4) in
steatohepatitic liver (Qi et al., 2020).

Ferroptosis is now considered a new strategy for inhibiting
HSCs to alleviate liver fibrosis (Zhang et al., 2018; Zhang et al.,
2020a; Zhang et al., 2020b). How ferroptosis is regulated in
HSCs remains unclear, although the RNA-binding protein
ELAVL1/HuR, ZFP36/TTP, iron regulatory protein2 and the
BRD7-p53-SLC25A28 complex appear to be involved.
Ferroptosis can be trigged by inhibiting GPX4 (e.g.,
altretamine), inhibiting system Xc- (e.g., sorafenib, erastin,
and sulfasalazine), depleting glutathione (e.g., BSO), or
applying certain environmental conditions (e.g., high
extracellular glutamate, amino acid starvation, cystine
deprivation) (Alim et al., 2019). Thus, these treatments may
be effective against liver fibrosis.

cAMP-PKA-cAMP-Responsive
Element-Binding Signaling
Cyclic cAMP (cAMP) is well-known as an antifibrogenic second
messenger (Li et al., 2019c). The downstream cAMP-responsive
element-binding (CREB) protein is a nuclear protein that binds to
the cAMP-responsive element (CRE) in the promoter of the gene
encoding neuropeptide, and CREB has been implicated in HSC
activation and liver fibrosis (Cui et al., 2021). CREB-1, following
its activation by phosphorylation, inhibits HSC proliferation and
collagen expression in vitro (Deng et al., 2011), and it is involved
in TGF-β3 auto-regulation in HSCs (Houglum et al., 1997).
Phosphorylation or acetylation of CREB-1 in rat HSCs inhibits
the TGF-β1 pathway, downregulating collagen I (Deng et al.,
2016).

In contrast to these studies suggesting that CREB-1 can inhibit
fibrosis, some studies indicate that it can promote hepatic fibrosis.
One study, for example, suggested that phosphorylated CREB-1
promotes fibrosis by transactivating TGF-β1 expression (Wang
et al., 2016b). Acetaldehyde can activate HSC-T6 cells, while
caffeine can act via the adenosine A2A receptor to inhibit the
cAMP/PKA pathway and thereby suppress such activation
(Wang et al., 2015). Blocking the interaction between CREB
and β-catenin using the selective inhibitor PRI-724 reduces
liver fibrosis induced by CCl4 or bile duct ligation (Osawa
et al., 2015).

The potentially opposite effects of CREB in different cellular
contexts suggest its complex involvement in liver fibrosis, which
requires further investigation. Many studies have detected
interaction between cAMP-PKA-CREB signaling and pathways
mediated by TGF-β and Wnt. This may be a fruitful direction for
future research. The molecules currently known to interact with
CREB and to show therapeutic potential against liver fibrosis
inhibit cAMP-PKA-CREB signaling. These molecules include
ICG-001, a selective inhibitor of the CBP/β-catenin interaction
(Henderson et al., 2010); PRI-724, which is phosphorylated on C-
82 and is rapidly hydrolyzed in vivo into its active form, which
shows acceptable toxicity and efficacy in preclinical studies (Lenz
and Kahn, 2014; Osawa et al., 2015), and caffeine (Wang et al.,
2015).

Cellular Metabolism
Under normal circumstances, HSCs are in a resting state and
show low metabolism. Their main function is to store small
vitamin A fat droplets, which contain more than 70% of
vitamin A in the body (Puche et al., 2013). Pro-
inflammatory and pro-fibrotic cytokines can activate HSCs
to release their stored vitamin A, proliferate, and produce
ECM, with the cells adopting a high metabolic state (Chen
et al., 2012; Higashi et al., 2017). In this way, HSCs undergo
dramatic metabolic changes to meet the increased bioenergetic
and biosynthetic demands of mitogenesis and ECM synthesis
(Xie et al., 2015; Para et al., 2019; Zhao et al., 2020; Hewitson
and Smith, 2021). These metabolic changes are often
accompanied by increased glycolysis and mitochondrial
respiration in order to optimize glucose consumption in
HSCs and redirect them to support fibrogenic trans-
differentiation (Lian et al., 2016).
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Recent studies suggest that by changing the metabolism of
activated HSCs, they can be converted into the resting type,
offering opportunities for liver fibrosis treatment. In diseased
livers of animals and patients, the number of glycolytic stromal
cells is associated with the severity of fibrosis. Glycolysis is
upregulated and lactate accumulates in quiescent HSCs that
have been activated to become myofibroblasts. Hedgehog
signaling regulates glycolysis to control the fate of HSCs
(Chen et al., 2012). Increased aerobic glycolysis alone cannot
meet the high metabolic demands of active HSCs: it works
together with glutaminolysis (conversion of glutamine to
α-ketoglutarate) to sustain energy metabolism and permit
anabolism, and this is controlled by hedgehog signaling to
YAP (Du et al., 2018). In vivo, glutaminolysis in HSCs is a
marker of active fibrogenesis, and its cell-specific antagonism
represents a potential therapeutic target by depriving the cells of
glutamine (Du et al., 2020). Acetyl-CoA carboxylase (ACC), a
regulator of fatty acid β-oxidation and de novo lipogenesis, has
been implicated in metabolic reprogramming during HSC
activation. ACC inhibitors prevent the de novo lipogenesis that
is necessary for induction of glycolysis and oxidative
phosphorylation during HSC activation, and such inhibitors
thereby mitigate fibrosis (Bates et al., 2020). In addition to
elevated levels of glutamine, elevated levels of fructose can
increase risk of liver fibrosis (Song et al., 2019; Roeb and
Weiskirchen, 2021). More studies are needed that explore
metabolic regulation of HSCs, since this is a promising
therapeutic strategy against liver fibrosis (Trivedi et al., 2021).

Epigenetics
With the rise of advanced molecular methods, studies have begun
to describe the epigenetic landscape of liver fibrosis, involving
changes in DNA methylation, histone modifications and levels of
non-coding RNAs that control chromatin structure and DNA
accessibility to the transcriptional machinery. DNA methylation
is carried out by three enzyme: DNA methyltransferase 1
(DNMT1), DNMT3A and DNMT3B (Jin et al., 2011). MCP2
influences methylation of the gene encoding PPARγ, leading to its
silencing, which in turn promotes HSC activation (Mann et al.,
2010). DNMT1 and DNMT3B methylates the genes encoding
regulator of calcineurin 1 (RCAN1), prostacyclin synthase
(PTGIS), Septin9 and SAD1/UNC84 domain protein-2
(SUN2), promoting HSC activation and liver fibrosis (Wu
et al., 2017; Chen et al., 2018; Pan et al., 2018; Pan et al.,
2019). These findings suggest that gene methylation is
important for HSC activation. In fact, DNA methylation
affects other epigenetic process, including the expression and
activity of long non-coding RNAs, which in turn influence HSC
activation and fibrosis. One example is the DNMT1-LncRNA
H19 epigenetic pathway, which is involved in HSC activation and
liver fibrosis (Yang et al., 2018a). Hypermethylation of the gene
encoding PSTPIP2 not only activates HSCs but also polarizes
macrophages in mice with CCl4-induced hepatic fibrosis (Yang
et al., 2018b).

It is not surprising, then, that the various histone
modifications, which include methylation, acetylation,
phosphorylation, ubiquitination, deamination, and

sumoylation, are considered targets for fibrosis treatment (El
Taghdouini and van Grunsven, 2016). For example, the enhancer
of zeste homologue 2 (EZH2), which is responsible for the
trimethylation of histone 3 at lysine 27(H3K27me3), is
involved in TGF-β dependent fibrogenic pathways (Martin-
Mateos et al., 2019). EZH2 and the demethylase JMJD3
regulate HSC activation and liver fibrosis (Jiang et al., 2021).
Histone deacetylases 1/2 (HDAC1/2) may regulate liver fibrosis
and may therefore be therapeutic targets (Liu et al., 2021; Zhu
et al., 2021). Many genes are regulated through cross-talk between
histone and DNA mehyltransferases such as G9a and DNMT1.
CM272, a first-in-class reversible inhibitor of G9a and DNMT1,
can halt fibrogenesis without causing toxic effects (Barcena-
Varela et al., 2021).

Numerous non-coding RNAs such as microRNAs and long
non-coding RNAs play important roles in liver fibrosis. For
example, miR-199a, miR-200a/b, miR-122, miR-194/192, miR-
223, miR-21, miR-155 and miR-29 are expressed or enriched in
several types of hepatic cells or in the circulation specifically in the
presence of liver disease, implying that they play important roles
in pathogenesis (Murakami et al., 2011; Wang et al., 2021).
Nanoparticle-based delivery of miR-30c to LSECs inhibits the
DLL4/Notch pathway and angiogenesis, ameliorating liver
fibrosis in vivo (Gu et al., 2021). The lncRNA-ATB is
upregulated in fibrotic liver tissues and activated LX-2 cells.
Knockdown of lncRNA-ATB downregulates β-catenin by
upregulating the endogenous miR-200a and suppressing
activation of LX-2 cells (Fu et al., 2017). HOTAIR act as an
endogenous “sponge” for miR-148b to facilitate expression of
DNMT1, which in turn promotes HSC proliferation and
activation (Bian et al., 2017).

Several inhibitors of DNA methylation (e.g., 5-azadC,
Sennoside A) and histone modifications (e.g., givinostat,
DZNep, GSK-503, GSK-J4) as well as epigenetic inhibitors
such as CM272 have shown promise for treating liver fibrosis
(Yang et al., 2013; Martin-Mateos et al., 2019; Zhu et al., 2020;
Barcena-Varela et al., 2021; Ding et al., 2021; Huang et al., 2021;
Jiang et al., 2021). Epigenetic biomarkers may be useful not only
as treatment targets but also for assaying in tissue and liquid
biopsies in order to predict prognosis of patients with liver
fibrosis. For example, the levels of H3K27ac in specific
oncogenes and of TS, PPARγ-mediated DNA methylation
have been suggested for this purpose (Hardy et al., 2017;
Arechederra et al., 2021; Jühling et al., 2021).

CANDIDATE DRUGS DURING CLINICAL
TRAILS FOR LIVER FIBROSIS

Recently, with the in-depth understanding of the pathogenesis of
liver fibrosis, some new compounds with anti-fibrosis potential
have emerged and are in clinical trial (Rotman and Sanyal, 2017;
Lambrecht et al., 2020; Attia et al., 2021) (Table 1). The
therapeutic targets of these compounds contain metabolism,
gut-liver axis, inflammation and cell death, which share their
effects among whole body. After fully confirming drug’s efficacy
on liver fibrosis, finding a suitable targeted delivery system for
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drugs may help for its clinical use with better treatment efficacy
and lower side effects. The future candidate drugs for liver fibrosis
may develop from the novel targets or its combinatorial use.

CONCLUSION

In this review, we have outlined how major types of hepatic cells
participate in liver fibrosis, and we have described several novel
targets for fibrosis therapy. Our hope is to provide directions for
future investigations.

Early research on the mechanism of fibrosis has focused
mainly on HSC activation and collagen deposition. More
recent research has focused on cellular state and processes,
including metabolism, HSC proliferation and apoptosis, and
epigenetic modifications. These studies have broadened our
understanding of the pathogenesis of fibrosis, and have
pointed out new directions for research into anti-fibrotic
drugs. The many in-depth studies on the pathogenesis of liver
fibrosis have identified novel signaling pathways as well as
signaling crosstalk between TGF-β and Wnt/β-catenin, TGF-β
and hedgehog, or YAP and hedgehog.

These studies will gradually build a complete picture of the
pathogenesis of fibrosis and provide new ideas in the search for
treatment targets. These studies highlight that exploiting crosstalk
between signaling pathways may lead to the development of more
effective drugs against liver fibrosis.
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