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Molecular dynamics (MD) simulations have been actively used in the study of protein
structure and function. However, extensive sampling in the protein conformational space
requires large computational resources and takes a prohibitive amount of time. In this
study, we demonstrated that variational autoencoders (VAEs), a type of deep learning
model, can be employed to explore the conformational space of a protein through MD
simulations. VAEs are shown to be superior to autoencoders (AEs) through a benchmark
study, with low deviation between the training and decoded conformations. Moreover, we
show that the learned latent space in the VAE can be used to generate unsampled protein
conformations. Additional simulations starting from these generated conformations
accelerated the sampling process and explored hidden spaces in the conformational
landscape.

Keywords: protein system, conformational space, variational autoencoder, molecular dynamics, deep learning

1 INTRODUCTION

Molecular dynamics (MD) simulations have been applied extensively to understand protein
structure, function, and kinetics. Klepeis et al. (2009); Song et al. (2020) Through the
development of hardware and software, e.g., graphics processing unit (GPU) Shaw et al. (2009)
and OpenMM Eastman et al. (2017), the simulation time scale has climbed from nanoseconds to
milliseconds. However, this time scale is still insufficient in the study of slow-motion molecular
events such as large-scale conformational transitions. Hartmann et al. (2014) Moreover, the energy
landscapes of proteins are discretized with many local energy minima separated by high energy
barriers. Krivov (2011) This rough energy landscape limits the applications of MD simulations and
hinders a complete sampling of protein movements.

In recent years, enhanced sampling methods have been developed to address this issue. One class
of methods introduces biasing potentials, such as Gaussian-accelerated MD (GaMD) Hamelberg
et al. (2004), to expand the landscape. However, some domain knowledge is required to define the
essential coordinates, e.g., collective variables (CVs). Maximova et al. (2016) Another class iteratively
conducts new simulations by selecting seed structures from less sampled regions. Those starting
structures can be chosen from the results of Markov state models Bowman et al. (2010) or
dimensionality reduction methods.

The advancement of deep learning provides an alternative approach for protein sampling. Several
studies have demonstrated the success of both autoencoders (AEs) and variational autoencoders
(VAEs) in their applications to protein conformations and functions (Degiacomi, 2019; Lemke and
Peter, 2019; Tsuchiya et al., 2019; Jin et al., 2021; Ramaswamy et al., 2021). These models are capable
of learning a low-dimensional representation through the encoder model while predicting new
protein conformations through the decoder model. Moreover, the learned latent space in one protein
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system is biologically meaningful and can be transferred to a
similar system, with latent variables be treated as CVs. (Sultan
et al., 2018).

In this study, we proved the success of variational
autoencoders in protein sampling by using the enzyme
adenosine kinase (ADK) as an example. The crystallized
ADK is initially in its closed state and undergoes a series of
conformational changes to its open state (Schrank et al.,
2013). MD simulations were conducted to sample this
process and used for model training. A benchmark study
was conducted to compare the performance of both VAEs
and AEs with regard to the encoder and decoder models.
VAEs perform better than AEs and are selected for further
analysis. Random points in the middle of the closed and open
states in the latent space were selected and decoded into new
protein conformations. Additional MD simulations starting
from these predicted conformations, together with the
training simulations, sampled a complete transition from
the closed to the open states and explored hidden
conformational spaces.

2 METHODS

2.1 Molecular Dynamics Simulations
The initial structures of the closed and open states of ADK
were taken from the Protein Data Bank (PDB) Berman et al.
(2000) with the PDB IDs as 1ake and 4ake, respectively. Chain
A was extracted with the removal of ligands and crystal waters
as the starting structure in both states. The systems were
added with hydrogen atoms and solvated in a periodic
boundary box of TIP3P water molecules Jorgensen et al.
(1983). Na+ and Cl− ions were used to neutralize the
system. Energy minimization was performed with the steep
descent method for each system. 100 picoseconds of canonical
ensemble (NVT) Langevin MD simulations were carried out,
followed by 200 picoseconds of isothermal–isobaric ensemble
(NPT) simulations at 1 atm and 300 K. Finally, the systems
were switched back to NVT. Both the closed and open states
conducted 5 nanoseconds simulations initially while the
closed state simulations continued to 50 nanoseconds. Each
MD simulation was repeated three times independently. The
electrostatic interactions were calculated using the particle
mesh Ewald (PME) algorithm (Essmann et al., 1995). Bonds
associated with hydrogen atoms were constrained using the
SHAKE algorithm Ryckaert et al. (1977) with 2 fs step size. All
simulations were conducted with CHARMM27 force field
(Foloppe and MacKerell, 2000) and OpenMM 7 Eastman
et al. (2017).

Trajectories were aligned to the first frame and 1,660 heavy
backbone atoms were selected. The Cartesian coordinates were
extracted and further normalized as features using the MinMax
scaling. Coordinate c, (c ∈ x, y, z) for atom i in structure k is
normalized as:

normed cki �
cki −min(c)

max(c) −min(c) (1)

2.2 Autoencoders and Variational
Autoencoders
Autoencoders are a type of unsupervised deep learning models
that are designed to encode an input to a low-dimensional latent
space and decode it back (Baldi, 2012). For this purpose,
autoencoders normally have a hourglass shaped architecture,
as shown in Figure 1. The first part of the hourglass is an
encoder module for compression and the later part is a
decoder module for reconstruction. The latent vectors are
expected to capture the key representational information of
the input space.

However, such classical autoencoders fail to learn a useful or
well-constructed latent spaces and thus lead to unsatisfactory
results in some applications (Wetzel, 2017; Strub and Mary,
2015). These shortcomings limit the application of AEs for a
wider range of problems. To address this, variational
autoencoders are built upon autoencoders with an additional
optimization constraint that latent space follows a certain
distribution (like a normal distribution) (Doersch, 2016).
Through this constraint, information is evenly distributed in
the latent space that enables the model to sample any point
for data reconstruction.

The encoder module, an inference model qϕ(z|x), and the
decoder module, a generative model pθ(x|z) are simultaneously
trained with data x and the latent variable z. Parameters ϕ and θ
parameterize the encoder and decoder, respectively. VAEs model
the joint distribution of the latent space and data as p(x, z) � pθ(x|
z)p(z). The term p(z) is a prior over the latent variables which is
typically chosen as a normal distribution for ease of sampling.
The intractable posterior pθ(z|x) � pθ(x|z)p(z)/(∫pθ(x|z)p(z)dz) is
approximated using the tractable variational Bayes approach
which maximizes the Evidence Lower Bound (ELBO):

L(ϕ, θ;x) � Eqϕ(z|x) logpθ(x|z)[ ]
−KL qϕ(z|x)‖p(z)( )≤ logpθ(x) (2)

where KL is the Kullback-Leibler divergence.
In our implementation, the autoencoders and variational

autoencoders were developed in Python 3.7 using the Keras
package with Tensorflow Abadi et al. (2016) backend v2.4.1.

2.3 Performance Assessment Criteria
Several previous studies (Alam et al., 2020; Alam and Shehu,
2020; Guo et al., 2020) focused on the evaluation of autoencoders
on the generation of nonlinear featurization and the learned
nonlinear representations of protein tertiary structures. In the
current study, a similar strategy was employed to quantify and
compare the performance of autoencoders and variational
autoencoders. Specifically, four metrics were chosen as: 1)
Spearman correlation coefficient, 2) Pearson correlation
coefficient (PCC), 3) root-mean-square deviation (RMSD), and
4) discrete optimized protein energy (DOPE):

1) Spearman correlation coefficient. Spearman correlation
coefficient is used to quantitatively analyze how well
distances between all pairs of points in the original spaces
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have been preserved in the reduced dimensions. Spearman
correlation coefficient is calculated as:

ρ � 1 − 6∑ d2
i

n n2 − 1( ) (3)

where di and n are the difference in paired ranks and number of
samples, respectively.

2) Pearson correlation coefficient (PCC). PCC uses L2 distance
(also referred as Euclidean distance) to estimate the linear
relation between distances in the original space and the
reduced space. PCC is calculated as:

rxy � ∑n
i�1 xi − �x( ) yi − �y( )









∑n

i�1 xi − �x( )
√ 









∑n

i�1 yi − �y( )√ (4)

where n is the sample size, �x, �y are the mean value of distances,
respectively. In the current study, x and y are used to represent
distances input feature space and latent space, respectively.

3) Root-mean-square deviation (RMSD). RMSD is used to
quantify the conformational differences between training
and decoded protein conformations. Given a molecular
structure r with a reference r0, RMSD is calculated as:

RMSD �













∑N

i�1 r0i − Uri( )2
N

√
(5)

where r and r0 are coordinates and normally represented in the
Cartesian space. N is the number of atoms. U is the
transformation matrix for the best-fit alignment between a
given structure and its reference structure.

4) Discrete optimized protein energy (DOPE). The DOPE score
(Shen and Sali, 2006) has been extensively used in the
assessment of both experimentally and computationally

generated models (Deka et al., 2015; Khare et al., 2019).
The lower the DOPE score, the better the model. DOPE
scores were calculated using modeling package
MODELLER (Eswar et al., 2006) version 10.1.

The correlation-based metrics have been widely applied in the
comparison between dimensionality reduction methods for
biomolecules (Tian and Tao, 2020; Trozzi et al., 2021). They
are used here for the encoder module to measure how well the
information is preserved in the latent space. The remaining
metrics, RMSD, and DOPE, are used for the decoder module
to compare the differences between the training and decoded
structures.

Moreover, to evaluate the quality of deep learning models, two
distance-based metrics, maximum mean discrepancy and earth
mover’s distance, were applied to compare the training and
generated distributions. Following the strategy from a previous
study (Alam and Shehu, 2020), RMSDs were calculated as a proxy
variable representing the protein tertiary structures.

1) Maximum mean discrepancy (MMD). MMD is a statistical
analysis to represent distances between projected distributions
using mean embeddings of features. MMD is defined by a
feature map φ: X →H where H is a reproducing kernel
Hilbert space. MMD is calculated as:

MMD(P,Q) � ‖EX∼P[φ(X)] − EY∼Q[φ(Y)]‖H (6)

In the current study, MMD is used for the purpose of model
comparison and selection. A good model is expected to generate
distributions similar to the training sets, leading to small MMD
values.

2) Earth mover’s distance (EMD). EMD is a measurement to
evaluate dissimilarity between two multi-dimensional
probability distributions. It is also known as the
Wasserstein metric in mathemathics. Analogically, two

FIGURE 1 | Autoencoder architecture for ADK protein. The Cartesian coordinates from the closed and open states of ADK trajectories are extracted as inputs. The
encoder module is designed with decreasing number of neurons in hidden layers to encode high-dimensional inputs to a low-dimensional latent space. The decoder
module, with increasing number of neurons in hidden layers, aims to project latent space back to protein structures.
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distributions on a two-dimensional surface could be
considered as two piles of a certain amount of earth (dirt).
EMD is the least amount of work needed of transforming one
pile into the other. EMD is calculated using SciPy v1.5.2
(Virtanen et al., 2020).

Implied time scales were estimated through the construction
of Markov state models (MSMs). Based on the coordinates of
the protein NMP-LID angle plots, 100 cluster centers were
chosen using k-means clustering method. Different lag times
were set to calculate the transition matrix. The relaxation
timescales were estimated using the corresponding second
eigenvalue:

t(τ) � − τ

ln λ1
(7)

where λ1 is the second eigenvalue and τ is the lag time. MSMs and
implied timescales were calculated using the PyEMMA package
(Scherer et al., 2015) version 2.5.7.

3 RESULTS

The enzyme adenosine kinase carries out large conformational
transitions between the open and closed states in the adenosine
triphosphate (ATP) to adenosine diphosphate (ADP) catalysis
reaction. Among various structures of ADK, E. Coli ADK
(abbreviated as ADK) was selected for this study, which is
made up of a CORE domain, a LID domain and a NMP
domain. According to the previous research (Kubitzki and de
Groot, 2008), the CORE domain is relatively rigid while the other
two domains are flexible and are known to switch between open
and closed conformations. To better characterize the protein
conformation, the CORE-LID and CORE-NMP angles were
calculated using four vectors. The protein structure, domains
and vectors as illustrated in Figure 2.

There are four available crystal structures for ADK: a fully
closed state (PDB id: 1AKE), a fully open state (PDB id: 4AKE), a
LID-open state (PDB id: 2AK3) and a NMP-open state (PDB id:
1DVR). The fully closed and open states were used for
simulations while the other two were used as references. 5 ns
MD simulations were conducted for both the open and closed
states. The RMSDs were plotted in Figures 3A,B. The four
characterizing vectors were also calculated and plotted as a 2D
angle map in Figure 3C. Each point in this angle map
corresponds to a protein conformation. It is shown that: 1)
the open state simulations explored larger conformational
spaces compared to the closed state ones; 2) the opening of
the LID and NMP domains in the closed state is observed within
short simulation time. These suggest that the transition occurs in
a short time scale, which aligns with the past findings (Arora and
Brooks, 2007; Hanson et al., 2007; Formoso et al., 2015).
However, given the limited simulation time, a complete
transition path connecting the closed and the open state was
not observed. Moreover, there is almost no overlap between the
conformational spaces covered by these two states.

The Cartesian coordinates in these 5 ns simulations were
scaled and used as the data set for model training. Simulations
with an interval of 4 (e.g., 4, 8, . . .) were extracted as the testing set
and the remaining intervals are used as the training set.
Therefore, the overall data set was split into 75% for training
and 25% for testing. Autoencoders and variational autoencoders
with different number of hidden layers were trained using this
data set. Detailed model architectures are listed in Table 2.

Based on the number of layers in encoder and decoder
modules, the number of neurons is adjusted to keep the same
compression factor (ratio of sizes in adjacent layers) between
layers. We refer to the model with n number of layers in the
encoder as n-layer model (e.g., AE with 3 layers in the encoder as
3-layer AE). A total of 10 models (5 different layer numbers with
2 models) were trained using the training data and tested with the
testing data. Each model was trained three times independently

FIGURE 2 | Protein structures of ADK in (A) open state and (B) closed state. The LID, NMP, and CORE regions are colored as orange, blue, and grey, respectively.
Four vectors, V1-V2 for CORE-NMP angle and V3-V4 for CORE-LID angle, are used to characterize protein conformations. The related residues are illustrated in Table 1.
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and the mean value of each metric was calculated. The results of
performance assessment metrics are plotted in Figure 4.

The variational autoencoder with 4 hidden layers performed
the best with high Spearman and Pearson coefficients and
low RMSD.

In terms of the encoder (Figures 4A,B), a larger number of
layers lead to a more complicated network that fail to keep
enough biological information in the latent space. This is
particularly evident in the autoencoders, in which both metrics
drop sharply with increasing number of layers. In contrast,
variational autoencoders kept a relatively flat curve. For the

performance of the decoder (Figure 4C), variational
autoencoders lead to a lower deviation between the training
and decoded protein structures. Based on the elbow criteria, 4-
layer VAE was selected as the final model with good
performance and short training time. The convergence of
the training process was evaluated using Spearman
correlation coefficient, Pearson correlation coefficient, and
RMSD as metrics with regard to the number of training
iterations (epochs) used in the training process of 4-layer
VAE. The convergence of these values is apparent when
approaching 200 epochs (Figure 4D).

FIGURE 3 |MD simulations of the open and closed states. RMSDs in each trajectory are calculated with regard to the first simulation frame. The open and closed
states RMSDs are plotted in (A) and (B). NMP and LID angles were calculated and shown in (C) with the closed state conformations shown in cyan and the open state
conformations in pink.

TABLE 1 | Residue numbers in the centers of mass of heads and tails in the four vectors as shown in Figure 2.

1AKE-4AKE 1DVR 2AK3

Tail Head Tail Head Tail Head

V1 90–99 35–55 95–101, 106–108 39–59 95–104 41–61
V2 90–99 115–125 95–101, 106–108 124–134 95–104 119–129
V3 115–125 179–185 124–134 188–194 119–129 183–189
V4 115–125 125–153 124–134 134–162 119–129 129–157

TABLE 2 | Architectures of autoencoders and variational autoencoders. The number of neurons in the input and output layers is a fixed number of 4980 while the number of
neurons in the encoder and decoder varies with the number of hidden layers. The dimension of the latent space is set to 2.

Input Hidden layers Encoder size Latent space size Decoder size Output

4980 1 128 2 128 4980
2 512, 32 32, 512
3 1024, 128, 16 16, 128, 1024
4 1024, 256, 64, 16 16, 64, 256, 1024
5 2048, 512, 128, 32, 8 8, 32, 128, 512, 2048
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To further evaluate the model performance in decoding protein
conformations, two distance-based metrics were calculated and listed
in Table 3. For both cases, the variational autoencoder with 4 hidden
layers reached the lowest values. This indicates that 4-layer VAE is
capable of generating protein conformations that are closer to the
training distribution. In addition to the comparison of distributions,
the quality of decoded protein conformations is quantified by DOPE
score. The DOPE scores of decoded protein conformations were
calculated with their distributions represented as boxplots in
Figure 5. The mean DOPE score decreases from 1-layer VAE to
4-layer VAE, indicating the increased ability to generate protein
conformations that have lower potential energy. This ability does not
increase further with more complex model structure as shown by the
5-layer VAE.

To summarize, the above results suggest that a variational
autoencoder with 4 hidden layers in both of the encoder and
decoder modules exhibited the best performance in terms of

learning a meaningful latent space and decoding physically
plausible proteins conformations. Therefore, 4-layer VAE was
chosen to conduct further analysis.

Two decoded ADK structures in the open and the closed states
through the selected 4-layer VAE are illustrated in Figure 6. The
mean RMSD between the training and decoded structures is
1.03 �A. The learned latent space is plotted in Figure 7A. It is
shown that the regions of the open and closed states are well
separated. Also, there are blank spaces within each region. Four
data points were manually selected and their decoded structures
are illustrated in Figures 7C–F with the NMP-CORE and LID-
CORE angles plotted in Figure 7B.

It should be noted that the latent space learned the nature of
the characterizing angles as they shared similar trends. Points 1
and 2, originally selected from the open and closed states regions
in the latent space, also lie in the regions of the open and closed
states in the angle map, respectively; points 3 and 4, from the
middle of two states in the latent space, also locate in the
boundary of these two states in the angle map. This indicates
that the learned latent space can be used to generate similar or
different protein conformations by selecting nearby or distant
points in the latent space, respectively.

To further explore the conformational spaces starting from the
generated structures, additional 5 ns simulations, following the same
procedure as described in the Molecular dynamics simulations
section, were conducted using the decoded structures of points 3

FIGURE 4 | Performance assessment results in (A) Spearman correlation coefficient, (B) Pearson correlation coefficient and (C) RMSD with different models and
varying number of hidden layers. (D) Convergence trend of the training process using the variational autoencoder with 4 hidden layers.

TABLE 3 | Variational autoencoder evaluation using MMD and EMD metrics.
Variational autoencoder with n number of hidden layers is abbreviated as Vn.
The lowest value in each metric is shown in bold font.

Metric V1 V2 V3 V4 V5

MMD 0.0480 0.0171 0.0216 0.0115 0.0177
EMD 0.3221 0.2116 0.2225 0.1476 0.2144
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and 4. For comparison, the training data set of 5 ns closed state
simulations was extended to 50 ns.

Two angle maps are plotted in Figure 8 to show the
conformational spaces from the 50 ns closed state simulations
and a combined MD simulations from the original 5 ns MD
simulations in the open and closed states and the additional 5 ns
simulations from the generated structures. It is shown that the MD
simulations consisting of four short trajectories covered a similar
conformational space compared with one long MD simulations.
Both of these simulations explored the regions near the intermediate

state of LID-open NMP-closed structure (PDB id: 2AK3). A full
transition from the closed state to the open state can be constructed
using both landscapes.Moreover, the combined simulations sampled
hidden spaces near LID-closed NMP-open structure (PDB id:
1DVR) while these regions are less sampled in the long trajectory.

To quantitatively compare the sampling efficiency, implied
timescales in both trajectories were estimated based on the 2D
coordinates on the angle maps. K-means clustering method was
used with 100 cluster centers. Markov state models were built and
the implied timescales were calculated for each trajectory. The

FIGURE5 |DOPE score distributions of variational autoencoders with varying number of hidden layers. Median andmean values are represented in solid black lines
and orange triangles, respectively. 4-layer VAE reached the lowest DOPE score with mean value of −23,401.

FIGURE 6 | Comparison between the ADK native structures (grey) and decoded structures (red) in (A) the open state and (B) the closed state in the 4-layer VAE.
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results are shown in Figure 9. It is shown that the short combined
simulations in Figure 8B exhibited similar implied timescales as
the reference trajectory.

4 DISCUSSION

The protein energy landscapes could be divided into many local
energy minima which are represented as the metastable

conformational states. These conformations are separated by
free energy barriers that are much higher than kBT. (He et al.,
2003) Due to this reason, MD simulations are often trapped in a
local minimum for a long simulation time before jumping to
another. In this study, we aim to accelerate this inefficient process
by directly taking protein structures from the less sampled
regions as the initial structures for additional MD simulations.
However, protein structures are high-dimensional data with the
degrees of freedom as 3N in the Cartesian space. Unlike ADK

FIGURE 7 | Four points [points 1-4 in (A) and (B)] in the latent space were selected and their decoded structures are displayed in (C–F). It is shown that points 1 and
2 locate in the open and closed states, respectively. Points 3 and 4 in the frontiers of the latent space also locate in the intermediate regions of the protein angle map.

FIGURE 8 | Protein conformational spaces from (A) 50 ns simulation from the closed state and (B) four sets of 5 ns simulation from the closed state, the open state
and two generated conformations (point 3 and 4).
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protein which has known intrinsic collective variables (NMP-LID
angles) to characterize protein conformational space, most
proteins do not have such representations.

To overcome this problem, We proposed an application of
variational autoencoders to sample protein conformational spaces.
The model is demonstrated to capture the key variables in
characterizing protein structures as the decoded conformations are
similar to the training frames. This capability comes from the non-
linear nature of variational autoencoders. As shown in the case of
other methods (Das et al., 2006; Tribello et al., 2012), this leads to an
improved ability to learn the movement of covalently bonded atoms
(Degiacomi, 2019).

With the high accuracy in projecting low-dimensional data
points back to high-dimensional protein structures, the latent space
can be used to generate new and plausible protein structures not in
the training space. Since the latent space holds a distance
similarity—that is, the distances between points in the latent
space are proportional to the deviations of their corresponding
decoded protein structures—it can be used to produce either
similar conformations by selecting points near the training set
or distinct conformations from distant points. In the current study,
both kinds of points were selected. The decoded protein structures
from points near the training data are compared through
visualization and LID NMP angle map. The produced protein
structures from the intermediate regions could be used to start new
MD simulations for additional sampling. This strategy led to highly
efficient conformational spaces sampling with less computational
cost. It should be noted that those data points were selected
manually via latent space visualization in the current study.
Automatic data selection for massive parallel simulations is
possible within the framework of the current results.

We heuristically applied several metrics for quantification and
comparison based on the previous studies. Specifically, the
performance of encoder modules was determined by
Spearman and Pearson correlation coefficients, as the encoder
module can be treated as a dimensionality reduction technique
and these two indicators have been widely used in such tasks. The

performance of decoder modules was defined as the resemblance
between the training and decoded protein conformations. RMSD
and the DOPE score were used to quantify structure and system
energy differences, respectively. The DOPE score has been used in
the assessment of computationally generated models (Deka et al.,
2015; Khare et al., 2019). A good model is expected to have a low
DOPE score. We systematically compared the DOPE scores of
generated protein conformations in different VAE settings. It is
shown that a complicated model architecture with more hidden
layers can generate protein conformations with lower DOPE
scores, while this is converged after 4 hidden layers. We
further compared the RMSD distributions between training
and generated protein conformations with MMD and EMD
indicators. Under both cases, 4-layer VAE achieved the lowest
scores and was considered the best in representing protein
conformational spaces.

Sampling efficiency is compared between the 20 and 50ns
trajectories. Currently, this is defined as the implied timescale
based on the sampled protein NMP-LID angles. It can be seen
from Figure 8 that, compared with the complete reference
trajectory, the 20ns trajectory sampled similar conformational
regions within shorter time. Moreover, the implied timescale
calculation reveals that we can observe markovian behavior
from the 20ns sampling and get the “correct” timescales we
would obtain from a 50ns simulation, showing that our
assisted ML-based sampling strategy is able to capture
biological-relevant transitions between conformational
states with significant less sampling.

Through the angle plot (Figure 8) and the estimated
timescale calculation (Figure 9), it is demonstrated that
short MD simulations including trajectories starting from
the generated conformations in the latent space could
achieve the sampling efficiency comparable to a single long
MD simulation. This suggests that iteratively conducting
short MD simulations starting from conformations
generated in the learned conformational space could
serve as an alternative approach to extensive MD simulations.

FIGURE 9 | Estimated timescales with different lag times. The subplots (A) and (B) correspond to the trajectories in Figures 8A,B, respectively. Top 8 timescales
were selected and each was plotted with 95% confidence interval.
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5 CONCLUSION

In summary, we demonstrated the success of variational
autoencoders in exploring protein conformational spaces
through short molecular dynamics simulations. A well-
trained variational autoencoder is capable of projecting
trajectories onto a low-dimensional latent space, which
can be used to produce realistic conformations, either
similar or distant to the training frames, that are not in
the training space. This capability allows the prediction of
unsampled and physically plausible protein conformations.
These conformations can be used as restarters for
additional MD simulations to accelerate sampling process.
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