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In 2020, nearly 107,000 people in the U.S needed a lifesaving organ transplant, but due
to a limited number of donors, only ∼35% of them have actually received it. Thus,
successful bio-manufacturing of artificial tissues and organs is central to satisfying the
ever-growing demand for transplants. However, despite decades of tremendous
investments in regenerative medicine research and development conventional
scaffold technologies have failed to yield viable tissues and organs. Luckily,
microfluidic scaffolds hold the promise of overcoming the major challenges
associated with generating complex 3D cultures: 1) cell death due to poor
metabolite distribution/clearing of waste in thick cultures; 2) sacrificial analysis due
to inability to sample the culture non-invasively; 3) product variability due to lack of
control over the cell action post-seeding, and 4) adoption barriers associated with
having to learn a different culturing protocol for each new product. Namely, their active
pore networks provide the ability to perform automated fluid and cell manipulations
(e.g., seeding, feeding, probing, clearing waste, delivering drugs, etc.) at targeted
locations in-situ. However, challenges remain in developing a biomaterial that would
have the appropriate characteristics for such scaffolds. Specifically, it should ideally be:
1) biocompatible—to support cell attachment and growth, 2) biodegradable—to give
way to newly formed tissue, 3) flexible—to create microfluidic valves, 4) photo-
crosslinkable—to manufacture using light-based 3D printing and 5) transparent—for
optical microscopy validation. To that end, this minireview summarizes the latest
progress of the biomaterial design, and of the corresponding fabrication method
development, for making the microfluidic scaffolds.
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INTRODUCTION

According to the U.S. Department of Health & Human Services, nearly 107,000 people in the U.S
needed a lifesaving transplant in 2020, while only ∼35% of them have received it. Yet, almost no
FDA-approved (Administration, U.S.F.a.D., 2019) artificial organs are commercially available
today—3 decades after the inception (Langer and Vacanti, 1993) of tissue engineering and after
billions of dollars invested into its development. Therefore, a new approach to biomanufacturing is
needed. Yet, there are still major obstacles restricting the progress of 3D culturing technologies
towards the biomanufacturing of complex organs and tissue recreation in vitro (Ye et al., 2018):
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1) Product Size Limitations—due to the lack of an active
vasculature and blood circulation within lab-grown tissues,
it is difficult to deliver nutrients to/clear metabolic waste from
the inner pore spaces of organ-sized scaffolds. As a result, cell
survival in the deep portions of the large scaffolds is
compromised due to hypoxia, metabolic waste
accumulation and insufficient nutrient availability.

2) Sacrificial Analysis—due to the inability to sample cells and
fluids from within scaffolds nondestructively, and because live
long-term 3D microscopy is challenging. This makes it
necessary to perform destructive testing at the conclusion
of each experiment, such as histological sectioning or crushing
the scaffold for plate reader assays. As a result, a different
sample must be cultured for each new time point. This
balloons the cost of experiments and slows down the
scientific progress tremendously.

3) Product Variability—due to the absence of a native
supervision over the in vitro cell behavior, and lack of
access to the cells post seeding, there is no orchestration
over their actions within the scaffolds. For example, even if
one were to bioprint the perfect artificial tissue (i.e., deposit
the cells into precise locations within a scaffold), the cells
within it would be free to do a number of undesirable things
afterwards: a) migrate away uncontrollably (Wu et al., 2014),
b) differentiate into the wrong tissue type (e.g., a patient grew
mucus tissue in her spine, as a result of stem cell therapy)
(Dlouhy et al., 2014), and c) deposit tissue in the wrong
locations and occlude the scaffold pores. All this leads to
nonviable tissue and poor product consistency.

4) Technology Adoption Barriers—Even if one could generate
the perfect tissue in a laboratory, training hospital staff in
custom culturing protocols for each new product remains
another critical hurdle holding back biomanufacturing
technologies from entering the market. Therefore, there is a
need for an automated 3D cell culturing platform capable of
minimizing the variations between experiments.

Recently, a lot of progress has been made in generating
microscopic 3D cell culturing environments (e.g., posts, fibers,
etc.) in microfluidics devices (Raman et al., 2013; Morrow et al.,
2019). Therefore, adopting the microscopic cell manipulation
technologies for the creation of macroscopic cultures (aka
“microfluidic scaffolds”) can potentially overcome all of the
bottlenecks above by providing the following key elements: 1)
An Active “Vasculature” for distributing metabolites and clearing
waste throughout organ-sized scaffolds; 2) Non-Disruptive Mini-
Probing of the cells and of the fluids within them for ex-situ
analysis [as was done in Supplementary Figure S1 of (Tong et al.,
2020)]; 3) Long-term Live Microscopy validation of the cell/fluid
probing/assaying in #2, where possible (e.g., at objective focal
length depths within the scaffold, assuming an optically
transparent scaffold material); 4) Tissue Modulation via cell
and bio-active chemical (e.g., chemo-attractants, growth and
differentiation factors, drugs, etc.) delivery, in order to
minimize product variability; and 5) Automated
Spatiotemporal Control over the tissue development in a
closed-loop manner, based on optical and chemical assaying

feedback, in order to enable computer-driven culturing. The
overall idea is depicted in Figure 1A.

Therefore, the microfluidic scaffolds offer numerous
advantages over the conventional culturing/biofabrication
methods (see Figure 1B). And, this technology has been
applied to create numerous tissue type and disease models, as
well as biosensors: kidney (Miller et al., 2012), heart (Zhang et al.,
2018), lung (Grigoryan et al., 2019), liver (Zhang et al., 2018;
Grigoryan et al., 2019), blood coagulation (Zhang et al., 2016),
vascularization (King et al., 2004; Wang et al., 2010; Shen et al.,
2019), cancer (Bettinger et al., 2006; Pimentel et al., 2018), and
implantable biosensors (Zhao et al., 2016). However, there are
two main challenges preventing from unlocking the full potential
of these promising technologies:

1) An automated plumbing architecture, which offers numerous
advantages over valve-free microfluidic scaffolds and other
conventional biomanufacturing/culturing methods (see
Figure 1B), capable of localized fluid and/or cell
manipulations needs to be developed: Although several
attempts have been made in the past to create the
microfluidic scaffolds (King et al., 2004; Bettinger et al.,
2006; Bettinger et al., 2007; Wang et al., 2010; Miller et al.,
2012; Zhang et al., 2016; Zhao et al., 2016; Pimentel et al.,
2018; Zhang et al., 2018; Grigoryan et al., 2019; Shen et al.,
2019), these studies mostly focused on developing novel
biodegradable materials for this purpose, while the
plumbing in these devices consisted of rudimentary
straight-through pores (i.e., without any valves or
automation) for simplicity. Most recently, however, our
group has laid a foundation for an automated
“addressable” plumbing that uses Polydimethylsiloxane
(PDMS) microfluidic valves for achieving 2D (with the 3D
version being in progress) fluid and/or cell manipulations at
targeted XY locations within a single culturing space (Tong
et al., 2020). A big advantage of this technology is that it is
scalable to organ-sized scaffolds and can enable single cell
manipulation (which is ideally required for complex tissue
patterning and nondisruptive analysis in-situ); and,

2) The scaffold’s material should be biocompatible
(i.e., nontoxic and be able to support cell adhesion) and
biodegradable (with a tunable degradation time). This is to
give way to the newly formed tissue synthesized by the cells
in the 3D culture. Ideally, the degradation rate of a scaffold
should be synchronized with the in vivo tissue regeneration
rate: for example, soft tissues (e.g., skin) require around
14–21 days, while hard tissues (e.g., bone) need 8 to 12 +
weeks for complete healing (Yildirimer et al., 2012;
Sukpaita et al., 2019; Choi et al., 2021; Ma et al., 2021).
Therefore, ∼6 weeks is an optimal half-life requirement for
a material to be considered to have a degradation long
enough to be used for long-term tissue regeneration
strategies. Furthermore, the material should have
mechanical properties similar to that of PDMS (i.e., an
elastic modulus of 1.32–2.97 MPa and an elongation at
break (i.e., stretchability) of 40% (Johnston et al., 2014)), in
order to make the microfluidic valves (as in the addressable
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plumbing published by our group (Tong et al., 2020))
needed for the localized fluid and cell manipulations
within the scaffold. Moreover, the material should also
be photo-crosslinkable, if a light-based fabrication
approach (e.g., stereolithography 3D printing) would be
used to manufacture the microfluidic scaffolds. Although,
methods that don’t require crosslinking (e.g., micro-
extrusion 3D printing) could be used instead, the light-
based ones tend to yield the highest resolution (which is
desired for the microfluidic scaffolds capable of precise cell
and fluid manipulation in situ (Tong et al., 2021)). Lastly,
another consideration is the refractive index (RI) of the
material, which for optical microscopy should ideally be in
between that of water � 1.33 and of glass � 1.52 (Bashkatov
and Genina, 2003; Ürek et al., 2021). Although not a hard
requirement, it would reduce the light aberrations
experienced by water-dipping objectives commonly used
by the popular 3D long term fluorescence imaging
methods (e.g., Lattice Light Sheet Microscopy).

Hence, given that the foundation for the addressable plumbing
and the automation design have been described in our recent
publication (Tong et al., 2020), the remainder of this minireview
is dedicated to the development of the novel materials for the
microfluidic scaffolds. Although many excellent reviews of
materials used for microfluidics devices have been published in
the past (Huang et al., 2011; Papaefthymiou, 2013; Ren et al.,
2013; Hou et al., 2017; Mou and Jiang, 2017; Convery and
Gadegaard, 2019; Xie et al., 2020), none of them have focused on
the creation of microfluidic scaffolds with an addressable (i.e., with
valves) plumbing. Thus, the discussion is focused solely on the
materials needed for creating the envisioned device. Furthermore, it
does so without assuming a tissue type that the scaffolds would be
used to culture. Hence, the reviewed material properties do not
account for tissue-specific requirements, such as cell adherence and
mechanotransduction. Instead, it is presumed that such
customizations would be accomplished by coating the interior
pore space of the envisioned device with the tissue-specific
proteins via its microfluidic plumbing.

FIGURE 1 | (A) Concept of the microfluidic scaffold with active “vasculature” that enables targeted real-time fluid and cell manipulation within the cultured tissue.
External pumping acts like a “heart”, while the whole process is orchestrated by a computer acting like a “brain”. The computer’s closed-loop responses are based on
feedback from non-destructive chemical analysis and long-term live microscopy throughout the entire duration of the culture. Viable artificial tissue is cultured
automatically and reproducibly. (B) Types of cell and/or fluid manipulations possible in tissue engineering scaffolds. *“Static” refers to one-time
manipulations—usually performed at the start of the experiment. The addressable valve microfluidics hold numerous advantages over the conventional culturing
methods, including the potential for enabling minimally disruptive localized additive (e.g., cell and drug delivery) and subtractive (e.g., probing cell secretions, collecting
biopsies, making corrections by removing tissue overgrowth, etc.) manipulations, which can be used to implement closed (i.e., in response to real time feedback) loop
controls. These are essential for growing complex spatial tissue patterns that evolve over time: for example, some bones in our bodies start out as cartilage and only
subsequently calcify through endochondral ossification(Scotti et al., 2010; Farrell et al., 2011).
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MICROFLUIDIC SCAFFOLD—MATERIALS
AND MANUFACTURING

According to our literature search, the different types of
biomaterials, and corresponding fabrication techniques,
developed for the construction of the microfluidic scaffolds are
summarized in Table 1.

Naturally Derived Materials
The first line of materials reviewed here belongs to those derived
from natural sources, such as: Alginate from seaweed, Gelatin
from animal skin, Silk from worm cocoons, Matrigel from
extracellular matrix and Fibrin from blood. These are
attractive for scaffold manufacturing due to their
biocompatibility with cell and tissue growth.

Extracellular Matrix (ECM) and Cell Wall Materials (e.g.,
Fibrin, Matrigel, and Alginate) (Miller et al., 2012): 3D
perfusable vascular networks were created by casting of Fibrin,
Alginate, or Matrigel hydrogel solutions onto a dissolvable
carbohydrate-glass lattice via a 3D printed sacrificial molding
technique. All three gels were polymerized either chemically or
thermally (as opposed to via photo-crosslinking). Once a
hydrogel was solidified, the sacrificial lattice was dissolved out,
generating a complex 3D vascular network without the need for
any manual alignment or bonding. The optical properties of
Alginate and Matrigel, with an RI ∼1.335–1.34.(Choi et al., 2015;
Funane et al., 2018), are close to that of water; while the Fibrin’s
RI of 1.53–1.62 (Kirichenko et al., 2021) is slightly higher than
that of glass. Despite these attractive properties, however, these
hydrogels are too soft for microfluidic valve fabrication: the elastic
modulus of Alginate is ∼0.1–10 KPa (Candiello et al., 2013), of
Matrigel ∼0.14–1.3 KPa (Kiss et al., 2011) and of Fibrin
∼9.29–30 kPa (Murphy and Leach, 2012; Bachmann et al.,
2020). Thus, despite having an excellent elongation at break

(e.g., ∼400% for Alginate and 52% for Fibrin (Underwood
et al., 2001)), the mechanical properties of these hydrogels are
significantly weaker than that of the PDMS (increasing the
likelihood of device collapse and deformation). Furthermore,
they have shown to degrade too rapidly in vivo: ∼1 week
(Benavides et al., 2015; Shkand et al., 2016; Trujillo et al., 2019).

Silk Fibroin (Zhao et al., 2016): A microfluidic Silk Fibroin
hydrogel scaffold has been created via soft lithography using
PDMS stamps and sacrificial molding. To the best of our
knowledge, this is the only transparent (RI � 1.34 (Shan et al.,
2018)) biodegradable material in Table 1 that has actually been
used to create functional microfluidic valves. The Silk Fibroin was
crosslinked via enzymatic reactions. Next, new layers were
manually cast onto a semi-crosslinked ones to achieve good
bonding. It has an excellent tunable degradation half-life from
hours to years. However, it has not been shown that the material
can be used to generate valve sizes for single cell
manipulation—the construct’s feature sizes in (Zhao et al.,
2016) were quite large: 800–1,200 μm, with a layer thickness of
∼2,500 µm. Therefore, the fabrication method needs to be
optimized to achieve a finer feature resolution of ∼100 µm for
precise cell and fluid manipulations within the microfluidic
scaffolds. Another drawback of Silk Fibroin is that its elastic
modulus of 1 kPa - 1 MPa (Zhao et al., 2016) and elongation at
break of 15–35% (Gu et al., 2020) are lower than that of the
PDMS. In fact, a PDMS support was used with the device in
(Zhao et al., 2016).

Gelatin (Pimentel et al., 2018)/Gelatin Methacrylate
(GelMA) (Zhang et al., 2016): 3D perfusable vascular
networks were fabricated from Gelatin/GelMA by casting an
aqueous hydrogel solution on a 3D printed sacrificial molding.
The mold was then dissolved within the solidified hydrogel to
generate complex 3D vascular networks without any manual
alignment or bonding. Both of the materials are transparent,

TABLE 1 | Comparison of candidate biomaterials that have been used, or could potentially be used, to make microfluidic scaffolds.

Material Fabrication
Type

Automated multilayer
alignment

Photo-
crosslinkable

Optically
Transparent

Slow
degradation

Stretchable Flexible

Naturally-derived Materials

Fibrin 3D ✓ X X X ✓ X
Alginate 3D ✓ X ✓ X ✓ X
Matrigel 3D ✓ X ✓ X N/A X
Silk Fibroin 2D X X ✓ ✓ X ✓
Gelatin 3D ✓ X ✓ X X X
GelMA 3D ✓ ✓ ✓ X ✓ X

Synthetic Materials

PLGA 2D X X ✓ ✓ X ✓
PGS 2D X X N/A X ✓ ✓
APS 2D X X ✓ ✓ ✓ ✓
POMaC 3D ✓ ✓ N/A ✓ ✓ ✓
F127-DA 2D X ✓ ✓ X ✓ X
PEGDA 3D ✓ ✓ ✓ X ✓ ✓

For reference, we consider a material to be: “Optically Transpartent”, if its RI is between that of water (1.33) and of glass (1.52) (Bashkatov and Genina, 2003; Ürek et al., 2021); “Flexible”, if
its elastic modulus is within the PDMS range of 1.32–2.97 MPa (Johnston et al., 2014); “Stretchable”, if its “Elongation at Break” is greater than that of PDMS (which corresponds to a value
of 40%) (Johnston et al., 2014). Lastly, if a material has a degradation half-life of at least 6 weeks, it is considered to be able to support long-term tissue growth.
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with optical properties close to that of water (RI � 1.35–1.39 (Fu
et al., 2017; Rinawati et al., 2018)). After being crosslinked
chemically, Gelatin had an elastic modulus of ∼0.3–20 kPa
(Zhao et al., 2016) and an elongation at break of ∼70% (Lee
et al., 2019). GelMA, on the other hand, is a UV crosslinkable
material. Its elastic modulus is around 3.08–184.52 KPa (Wu
et al., 2019), and its elongation at break can be as large as 80%
(Shin et al., 2012). Unfortunately, both Gelatin and GelMA have a
really short degradation half-life: ∼25 days for gelatin (Saito and
Tabata, 2012) and ∼3 h for GelMA (Zhu et al., 2019). Finally, like
the other naturally derived hydrogels, Gelatin/GelMA are
generally so soft that they require other materials to serve as
mechanical support(Huang et al., 2011).

Synthetic Materials
The second group of materials reviewed here are artificially
designed to have better mechanical properties than their
naturally derived counterparts. Specifically, most of the latter
materials are too soft to make microfluidic valves. Hence the
synthetic materials have been made to improve stiffness and
stretchability, and are therefore, generally better candidates for
the microfluidic scaffolds.

Poly-lactic-co-glycolic acid (PLGA) (King et al., 2004):
Patterned 2D PLGA layers were with complex branching pore
networks has been created via soft lithography. Once
microstructured the films were fabricated, manual layer-by-
layer alignment and thermal bonding were used to stack them
into a 3D scaffold. Thus, given the use of manual fabrication, we
are not aware of this material being compatible (i.e., photo-
crosslinkable) with SLA 3D printing. Besides that, PLGA has
an elastic modulus of 1.4–2.8 MPa (Barrett and Yousaf, 2009),
which makes sufficiently rigid (like PDMS). Furthermore, its RI
of 1.47 (Shan et al., 2018) is close to the range of water and glass
(1.33–1.52), making it suitable to be used with optical
microscopy. Moreover, PLGA has an attractive degradation
half-life of 5–6 weeks (Gentile et al., 2014). However, its
maximum elongation at break is just 10%, making PLGA
making it likely that the microfluidic valves made from this
material could tear during use.

Poly(glycerol sebacate) (PGS) (Bettinger et al., 2006):
Microfluidic scaffolds made out of up to five layers of PGS
have been created using soft lithography with manual
alignment and thermal bonding. The material is reported to
be transparent, though we were unable to find out its exact RI.
It also has a good elastic modulus of 0.77–1.9 MPa (Vogt et al.,
2021) and a high elongation at break 267% (Barrett and Yousaf,
2009). However, it is known to degrade too fast (a half-life of
∼21 days (Pomerantseva et al., 2009)) for long-term tissue
regeneration. Therefore, more work needs to be done to slow
down its degradation time and to make it crosslinkable for light-
based fabrication.

Poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)
(APS) (Wang et al., 2010): Single layer APS vascular networks
were created via soft lithography in conjunction with thermal
curing and bonding. The material is transparent with an RI � 1.5
(Thomas et al., 2012) and has a degradation half-life that is
tunable between 6 and 100 weeks (Bettinger et al., 2009).

Additionally, with an elastic modulus of 0.56–4.34 MPa
(Bettinger et al., 2009; Wang et al., 2010) and an elongation at
break of 21–151% (Bettinger et al., 2009), APS’ mechanical
properties can be made sufficiently close to that of the PDMS.
However, given that it has not been made photo-crosslinkable
and has only been used with 2D manufacturing methods, better
approaches need to be developed for fabricating 3D microfluidic
scaffolds with valves out of the APS.

Poly(octamethylene maleate (anhydride) citrate) (POMaC)
(Zhang et al., 2018): A multilayer POMaC scaffold with a
branching microchannel network was created via 2D soft
lithography, in conjunction with ultraviolet light (UV) photo-
crosslinking, manual alignment and inter-layer bonding using
UV irradiation. Like PGS, the POMaC scaffold was shown to be
transparent, though its RI has not been measured. Additionally,
the material has excellent mechanical properties: an elastic
modulus of 0.03–1.54 MPa and an elongation at break of
48–534% (Tran et al., 2010). Consequently, 25–50 µm thin
vascular walls of the POMaC scaffold proved to be elastic
enough to support pulsating blood flow in an artificial cardiac
tissue implanted into a rat. Furthermore, in a different
application, Digital Micromirror Device Projection 3D printing
was used to photo-crosslink the material(Cha et al., 2014). Hence,
POMaC is one of the best candidate materials that has all (less the
missing RI) of the desired properties in Table 1.

Pluronic F127 di-acrylate (F127-DA) (Shen et al., 2019): A
single layer perfusable microchannel network was created from
the F127-DA hydrogel via a serial soft lithography using 3D
printed molds and PDMS stamps. The material was photo-
crosslinked under UV irradiation. It is transparent and is non-
swelling at 37°C, which helps the microfluidic construct to
maintain its desired channel morphology. Furthermore, it can
be stretched to an incredible 11x (or 1,100%) of its original length
before breaking. Additionally, the F127 hydrogel is transparent
with an RI lower than 1.4 (Galy et al., 2020). However, its elastic
modulus of just ∼75 kPa, making failure more likely due to the
mechanical properties of this material significantly weaker than
that of the PDMS. For example, the microfluidic construct made
from this material has been shown to have a burst limit at
∼600 mmHg (11 psi) due to leakage from its tubing
connections. Hence, the F127-DA is potentially unsuitable for
microfluidic valve fabrication, since a bursting limit pressure of
∼2x (i.e., 20–25 psi) is needed to maintain microfluidic valve
integrity during operation(Kellogg et al., 2014; Tong et al., 2020).
Furthermore, F127-DA has a relatively short degradation half-life
of ∼21 days. Therefore, more work would need to be done
on improving its mechanical and degradation properties,
before the material can be used for 3D microfluidic scaffolds
with valves.

Photocrosslinkable poly(ethylene glycol) diacrylate
(PEGDA) (Grigoryan et al., 2019): Multiple 3D perfusable
multi-vasculature networks were created out of PEGDA using
rapid prototyping SLA 3D printing. The construct was
crosslinked automatically via UV exposure, and no manual
bonding was needed. Similar to POMaC, PEGDA is a
transparent material with an RI � 1.35 (Choi et al., 2013)
which is close to that of water. Furthermore, it can be
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synthesized to exhibit a wide range of mechanical flexibility
values varying from relatively soft ∼0.1 MPa to very stiff
∼18 MPa (Skornia et al., 2007; Chen et al., 2018). And
PEGDA has an elongation at break ranging from ∼21 to above
65% (Chen et al., 2018; Feng et al., 2020). It’s one downside,
however, is a short degradation half-life of just ∼25 days.
Nonetheless, with future work, it can likely get tuned to the
appropriate levels. Therefore, PEGDA is also considered to be a
potential candidate for the microfluidic scaffolds, which meets
most of the criteria outlined in Table 1.

CONCLUSION

In conclusion, microfluidic scaffolds hold the potential to
revolutionize the biomanufacturing of artificial tissues and
organs. However, an easily manufacturable biomaterial capable
of supporting cell growth for extended periods of time, while
maintaining the flexible microfluidic valves and optically
transparent properties, needs to be found to make this
happen. We have reviewed the potential candidate materials
available in the literature and have determined that most
naturally derived hydrogels (e.g., Gelatin/GelMA, and ECM/
Cell Wall hydrogels) generally lack the mechanical properties
for generating sturdy microfluidic valves. For example, Silk
fibroin had to be used in conjunction with supports made
from other (stronger) materials, like PDMS and Acrylic. They
also tend to be leaky, which makes the hydrogels unlikely
candidates for fabrication of the 3D microfluidic scaffolds with
non-rudimentary plumbing. Consequently, synthetic materials
(e.g., PLGA, PGS, APS, POMaC, F127-DA, and PEGDA) have
been specifically designed to have the mechanical properties that
are more tailored towards the microfluidic valve fabrication,
while still retaining the biocompatibility and degradation
profiles of an implantable material. Among these, the best
overall candidate materials for making the microfluidic
plumbing with valves appear to be POMaC and PEGDA,
because they fit most of the criteria in Table 1. While the
former appears to meet all the requirements, we were not able

to find data on its transparency. Meanwhile, the latter has the
drawback of having a relatively short degradation half-life of
∼25 days. However, even with this duration, the material can still
be used for tissues that do not require long-term mechanical
support. Ideally, though, we anticipate that a more stable
version will soon be designed to accommodate all tissue types.
Lastly, despite some of the materials being
photocrosslinkable, all the microfluidic scaffolds reviewed
in this manuscript were made either via solvent casting or
manual stacking/bonding of 2D layers fabricated via soft
lithography. Thus, the manufacturing approaches need to
be improved also, ideally to use automated high-resolution
approaches, such as stereolithography 3D printing. Once such
a material is designed, the advanced microfluidic scaffolds
will, without a doubt, begin to play a more dominant role in
tissue engineering and biomanufacturing.
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