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Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease
worldwide, and progressive NAFLD can develop into non-alcoholic steatohepatitis
(NASH), liver cirrhosis, or hepatocellular carcinoma (HCC). NAFLD is a kind of
metabolic disordered disease, which is commonly associated with lipid metabolism,
insulin resistance, oxidative stress, inflammation, and fibrogenesis, as well as
autophagy. Growing studies have shown Notch signaling pathway plays a pivotal role
in the regulation of NAFLD progression. Here, we review the profile of the Notch signaling
pathway, new evidence of Notch signaling involvement in NAFLD, and describe the
potential of Notch as a biomarker and therapeutic target for NAFLD treatment.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD), affecting over a quarter of the global population, has emerged
as the highest prevalent type of chronic liver disease (Younossi et al., 2016). NAFLD encompasses a
spectrum of progressive liver diseases including simple steatosis (SS), non-alcoholic fatty steatohepatitis
(NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) (D. Q. Huang et al., 2021; Powell et al.,
2021). NAFLD is defined by the presence of steatosis in >5% of hepatocytes in histological analysis and
exclusion of excessive alcohol consumption daily (≥30 g for men and ≥20 g for women) (EASL et al.,
2016). Evidence suggests that NAFLD is related to liver manifestations of metabolic syndrome such as
obesity, diabetes, insulin resistance (IR), and dyslipidemia (Younossi et al., 2018; Jarvis et al., 2020).

The individual clinical outcomes of patients with NAFLD are highly variable. For the majority of
patients with simple steatosis, their liver disease is in non- or slow-progression. A prospective cohort
study reported in a three-year period, over 20% of patients with simple steatosis developed into
NASH (Wong et al., 2010), a more severe stage in which fatty liver is accompanied by
necroinflammatory changes like hepatocyte ballooning and lobular inflammation (Vernon et al.,
2011). In the final stages, collagen deposition and subsequent vascular remodeling result in fibrosis
and cirrhosis (EASL et al., 2016). Thus far, there is no accurate non-invasive diagnostic biomarker
and effective treatment toward NAFLD (Francque and Vonghia, 2019; Younossi, 2019), and current
therapy is mainly focused on lifestyle changes (EASL et al., 2016; Chalasani et al., 2018).

Studies have shown that NAFLD is mainly characterized by hepatocyte inflammation and
steatosis in the early stage and fibrosis and/or cirrhosis in the late stage (Wang et al., 2020).
However, the pathogenesis of NAFLD has not been fully understood. In 1998, scientists first
proposed the “two-hit” hypothesis to explain that steatosis (the first “hit”) and other factors
associated with free radicals (the second ‘‘hit”) are necessary for NASH progression (Day and
James, 1998). In recent years, based on animal models and descriptive clinical trials, the “multiple
hits” hypothesis is widely accepted (Tilg and Moschen, 2010; Buzzetti et al., 2016; Tilg et al., 2021).
The primary hit is the infiltration and pro-inflammatory state of macrophages in the visceral adipose
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tissue, resulting in IR. Meanwhile, the abnormal lipolysis increases
the delivery of fatty acids to the liver, and along with steatosis,
aggravates the lipid metabolic burden. The imbalance results in the
formation of lipotoxic lipids that generate a series of multiple hits,
including oxidative and/or endoplasmic reticulum (ER) stress,
inflammasome activation, and apoptotic damage, followed by
inflammation, tissue regeneration, and fibrogenesis (Tilg and
Moschen, 2010; Bessone et al., 2019; Sanyal, 2019). Besides,
mitochondrial dysfunctions, lifestyle, and epigenetic and genetic
factors also jointly affect the occurrence and progression of the
NAFLD (Loomba et al., 2021) (Figure 1).

Notch signaling pathway plays a crucial role in cell
differentiation (Amsen et al., 2009; Amsen et al., 2015),
proliferation (Bartolome et al., 2019), and apoptosis
(Guruharsha et al., 2012). Recently, it has also been
demonstrated that Notch is involved in liver development,
homeostasis, and metabolism (Bi and Kuang, 2015; Geisler and
Strazzabosco, 2015; Adams and Jafar-Nejad, 2019). However, the
association of the Notch signaling with NAFLD has rarely been
reported. Here we review the recent advances in Notch signaling in
liver pathophysiology and analyze the Notch signaling pathway as
a potential target to prevent and treat NAFLD.

OVERVIEW OF NOTCH SIGNALING
PATHWAY

Notch signaling is a juxtracrine signal transduction mechanism
that enables cell-cell communication directly (Artavanis-
Tsakonas et al., 1999). In mammals, four receptors (Notch1-4)

and five ligands [Jagged (JAG) 1-2, Delta-like ligand (DLL) 1, 3,
and 4] have been identified in canonical Notch signaling (D’Souza
et al., 2010). In the liver of adults, four Notch receptors are
expressed, while only two Notch ligands (JAG1 and DLL4) are
expressed (Y. Chen et al., 2012). The ligand-receptor interaction
is the initiation of Notch signaling pathway, making various
cellular regulations more precise and orderly (Bray, 2016).

The core signaling pathway most commonly used to describe
Notch-dependent processes is named the canonical Notch
signaling pathway (Andersson et al., 2011; Guruharsha et al.,
2012). The ligand presented by the Notch signal sending cell
binds to the receptor on the signal-receiving cell. The endocytosis
of the ligand leads to a conformational change of the Notch
receptor, exposing the cleavage site of the ADAM10. Subsequent
cleavage of the γ-secretase complex releases the Notch
intracellular domain (NICD) (Kopan and Ilagan, 2009). NICD
then migrates to the nucleus, binds to the transcription factor
RBP-Jκ (also called CSL) (Kovall and Blacklow, 2010), and
recruits the co-activator Mastermind-like (MAML) to initiate
downstream gene transcription, including the hairy enhancer of
split (HES) and HES-related (HEY) family genes (Nam et al.,
2006; Wilson and Kovall, 2006; Bolos et al., 2007; Guruharsha
et al., 2012) (Figure 2).

Different from other classical signal transduction processes,
the canonical Notch signaling pathway is characterized by the
lack of cascade amplification in the transduction process, and
only NICD is generated after a Notch receptor is consumed.
Therefore, its signal intensity is crucial for generating the
corresponding cellular response, and any deviation in the
expression level of any molecular component in the Notch

FIGURE 1 | The pathogenesis of NAFLD. Schematic representation illustrating cognition toward the progression of NAFLD: from “two-hit” hypothesis to “multiple
hits” hypothesis. The early “two-hit” hypothesis, in which the first “hit” is steatosis, leads to the second “hit”: oxidative stress, endotoxin, etc. The “multiple hits”
hypothesis considers several parallel hits jointly affect the NAFLD pathogenesis, which includes, but is not limited to oxidative and/or ER stress, lipid metabolism
deregulation, immune system modulations, mitochondrial dysfunctions, lifestyle, and epigenetic and genetic factors (NAFL, non-alcoholic fatty liver, i.e., simple
steatosis without hepatocellular injury; NASH, non-alcoholic steatohepatitis; HCC, hepatocellular carcinoma; ER, endoplasmic reticulum).
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signaling pathway may have a vital impact (Andersson et al.,
2011). For example, Alagille syndrome (AGS) is caused by
mutations in the gene for the Notch ligand JAG1 and
NOTCH2 receptor (McDaniell et al., 2006). Currently, various
Notch signaling pathway modulation approaches have been
explored, including inhibition of the ligand-receptor
interaction and interference with the proteolytic process of the
receptor (Groth and Fortini, 2012; Shao et al., 2012; Andersson
and Lendahl, 2014). Several Notch inhibitors are demonstrated
effects in the NAFLD (Table 1).

NOTCH IN LIPID METABOLISM

As the central hub of lipid homeostasis, the liver is responsible for
coordinating the whole process of lipid circulation, including the
synthesis, export, redistribution, and utilization of free fatty acids
(Nguyen et al., 2008). The main pathways that constitute hepatic
lipid homeostasis, including uptake of circulating lipids, de novo
lipogenesis (DNL), fatty acid oxidation (FAO), and export as
very-low-density lipoprotein (VLDL) particles (Gluchowski et al.,
2017; Ipsen et al., 2018). Hallmarked by hepatic steatosis, NAFLD
is connected with lipid metabolism. When lipid acquisition
exceeds lipid disposal in the liver, that is, the uptake of fatty
acids and DNL covering oxidation and output of fatty acids,
hepatic steatosis occurred (Ipsen et al., 2018). Feng et al. (2017)
proposed that no significant differences between free fatty acids
(FFAs) in lean or obese patients with NAFLD were observed, and
the value of serum FFAs in early diagnosis of NAFLD.

The studies suggested that nutrition-induced activation of
mammalian target of rapamycin (mTOR) may cause an
increase in liver lipid content, which also increases the activity
of basal serine/threonine kinases, leading to a self-perpetuating

FIGURE 2 | The canonical Notch signaling pathway. Notch signaling
pathway is currently thought to be activated by three steps of proteolysis.
First, the mammalian Notch receptors are cleaved by a furin-like convertase in
the Golgi compartment. After digestion, the extracellular subunits and
transmembrane subunits formed by Ca2+ dependent non-covalent bonding
to form heterodimers, and exocytosed to the cell membrane become mature
Notch receptors. Second, Notch ligand-receptor binding enables proteolytic
cleavage of the Notch extracellular domain by ADAM10 metalloprotease, and
Notch receptor releases extracellular subunits. Third, γ-secretase complex
cleaves the remnant receptor to allow the release and nuclear translocation of
the NICD, where NICD forms a trimeric complex with transcription factor RBP-
Jκ(or CSL) and the co-activator MAML, imitating the expression of Notch
target genes transcription. (ADAM, a disintegrin and metalloprotease10; RBP-
Jκ, recombination signal binding protein immunoglobulin kappa J; NICD,
Notch intracellular domain; CSL, CBF1–suppressor of hairless–LAG1; MAML,
mastermind-like).

TABLE 1 | Major Notch signaling inhibitors in NAFLD

Inhibitor Target Function Object References

Peroxiredoxin 6 (PRDX6) Notch1 Improve lipid accumulation through induction of
mitophagy

Mice Lee et al. (2019)

Notch1 decoy Notch1 Decrease hepatic glucose production Mice Funahashi et al. (2008) Pajvani
et al. (2013)

N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-
phenylglycine t-butyl ester (DAPT)

Notch1 Alleviate lipid accumulation and hepatocyte injury Mice Zhang et al. (2021)

Delta-like1 homolog (DLK1) Notch1 Reduce hepatic steatosis and improve glucose
and insulin tolerance

Mice Lee et al. (2016)

Triptolide (TP) Notch1 Initiate oxidative stress in hepatocyte Mice Shen et al. (2019)
Hepatocyte Toll-like receptor 4 (TLR4) Jag1/JAG1 Reduce NASH related liver fibrosis Mice/

Human
Yu et al. (2021)

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) NICD Ameliorate hepatic lipogenesis dyslipidemia and
insulin resistance

Mice Chartoumpekis et al. (2018)

γ-secretase inhibitor (GSI) γ-secretase Improve glucose metabolism and ameliorate liver
fibrosis

Mice Richter et al. (2020)

Liver-specific Rbp-jκ knockout (L-RBP-Jκ) RBP-Jκ Protect from obesity-induced insulin resistance Mice Pajvani et al. (2011)
Silybin (SIL) NOTCH1 Hepatoprotective and antitumorigenic effect in

HCC cells
Human Zhang et al. (2013)

Delta-tocotrienol (δ-T) NOTCH1 Reduce biochemical markers of hepatocellular
injury and steatosis

Human Pervez et al. (2020)
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lipogenic cycle (Lamming and Sabatini, 2013; Caron et al., 2015;
Han and Wang, 2018). Pajvani et al. (Pajvani et al., 2013)
demonstrated that inhibition of Notch signaling prevented
hepatic steatosis by blocking mTOR complex 1 (mTORC1)
activity, which could be reversed by rapamycin treatment.
They also showed that Notch signaling augmented mTORC1
function and SREBP1c-mediated lipogenesis and that inhibition
of hepatic Notch signaling protects from the fatty liver by
reducing DNL.

Although the specific pathogenesis of lipid metabolism
disorder in NAFLD patients is still not completely clear,
studies have shown it may be associated with Notch pathway
regulation (Li et al., 2019). Ding et al. (2020) investigated the
dynamic role of Notch gene expression in the development of
NAFLD in vitro and in vivo. They used palmitic acid (PA) and
methionine-choline-deficient (MCD) models to assess notch
signaling genes expression changes at different time points.
Based on the characteristics of Notch mRNA expression levels,
they evaluated that expression of Notch3 mRNA has been
dynamically changed significantly in the development of
hepatic steatosis during NAFLD (Ding et al., 2020).
Furthermore, Auguet et al. (2020) explored the association
between the Notch transcriptional repressor and hepatic
expression of lipid metabolism-related genes in a cohort of
women with NAFLD. They found a negative relationship
between hepatic HEY2 expression and low-density lipoprotein
(LDL) cholesterol (Auguet et al., 2020).

NOTCH IN INSULIN RESISTANCE

It is generally recognized that IR is pivotal in the pathogenesis and
progression of NAFLD (Lomonaco et al., 2012). IR is essentially a
decrease in the sensitivity of whole-body, liver, and adipose tissue
to insulin, which is involved in the development of hepatic
steatosis (E. Bugianesi, 2010). In NAFLD patients, increases in
circulating glucose and insulin associated with IR promote
hepatic DNL (Smith et al., 2020). Specifically, when IR occurs,
it causes an impaired ability of insulin to inhibit adipose tissue
lipolysis, resulting in increased delivery of FFAs to the liver
(Bugianesi et al., 2005). Meanwhile, large lipid deposition
promotes IR, which leads to fasting hyperglycemia and
compensatory hyperinsulinemia, further contributing to the
pathophysiology of NAFLD via exacerbating DNL (Donnelly
et al., 2005).

The abnormal activation of Notch signaling pathway and IR
are closely linked. It is recognized factor forkhead box protein O1
(FOXO1) has a beneficial effect on insulin-mediated glucose
homeostasis (Matsumoto et al., 2007; O-Sullivan et al., 2015).
Notch signal mainly affects hepatic glucose via the synergistic
effect of NICD and FoxO1 transcription. Glucose-6-phosphatase
catalytic subunit (G6PC) and phosphoenolpyruvate
carboxykinase (PCK1) are both rate-limiting enzymes of
hepatic glycogenolysis and gluconeogenesis, which would be
correlated with Notch activation (Valenti et al., 2013;
Dongiovanni et al., 2016). Pajvani et al. (2011) reported that
combined haploinsufficiency of FoxO1 and Notch1 notably

improves insulin sensitivity in diet-induced IR. Hepatic
overexpression of Notch1 regulates hepatic gluconeogenesis by
inducing G6PC in a FoxO1-dependent mode, in turn, aggravates
insulin resistance (Pajvani et al., 2011; Bernsmeier et al., 2016).
Additionally, the reduction ofmetabolic activity in brown adipose
tissue (BAT) has been found connected with IR in human
(Stanford et al., 2013; Mottillo et al., 2016). Bi et al. (2014)
revealed mice in which Notch1 or Rbp-jκ selectively deleted in
adipocytes show upregulated expression of BAT-specific genes
and improvement in glucose tolerance and insulin sensitivity.

Based on the close relation between IR and Notch, several
possible pharmacological targets of NAFLD are identified.
Blocking the abnormal expression of Notch at the gene level
can inhibit the accumulation of liver gluconeogenesis and
triglycerides (TGs), thereby reducing the risk of NAFLD. The
cleavage of NICD by γ-secretase inhibitor (GSI) exhibited an
improvement of glucose homeostasis and insulin sensitivity in
diet-induced obese (DIO) mice (Pajvani et al., 2011). Lee et al.
(2016) demonstrated that Delta-like 1 homolog (DLK1), an
inhibitory regulator of Notch signaling, would reduce hepatic
steatosis and hyperglycemia via exogenous administration.
Chartoumpekis et al. (2018) showed nuclear factor (erythroid-
derived 2)-like 2 (Nrf2) could profoundly ameliorate hepatic
lipogenesis and IR by repressing NICD. Besides, researchers
also found plant extracts (such as curcumin) have been shown
to suppress NOTCH1, which could ameliorate fatty liver and
enhance insulin sensitivity in the high-fat diet (HFD) model
(Zhao et al., 2017; Saadati et al., 2019; El et al., 2021).

NOTCH IN OXIDATIVE STRESS

Oxidative stress (OS) is a concept used to describe an imbalance
between pro-oxidants and antioxidants, leading to cellular
damage and tissue injury (Sies, 2015). The chronic high-
calorie diet causes lipid accumulation in hepatocytes and
excessive generation of reactive oxygen species (ROS) (Sahini
and Borlak, 2014). Meanwhile, affected by lipotoxicity from high
levels of lipid metabolites, OS inhibits insulin sensitivity and
facilitates DNL (Gehrke and Schattenberg, 2020).

In the pathophysiological process of NAFLD, OS is considered
a pivotal mediator of the inflammatory response (Koek et al.,
2011). Notch signaling has been reported to be associated with
steatosis and OS. It has been proposed that ROS like H2O2

regulates the expression of Notch (Marinho et al., 2014).
Notch1 regulates the expression of lipid oxidation genes and
exhibited an obvious lipid accumulation reduction in Notch1
deficient antisense transgenic (NAS) mice (Song et al., 2016).
Similarly, Notch1 inhibitor reduces ethanol-induced OS and lipid
accumulation in HepG2 cells (Wang et al., 2014).

Among the multiple mechanisms that accelerate the
progression of NAFLD to NASH, mitochondrial dysfunction is
the prime one (Caldwell et al., 1999). Mitochondrial
abnormalities disrupt the balance between pro-oxidants and
antioxidants, leading to an increase of FFAs (Begriche et al.,
2013). Peroxiredoxin 6 (PRDX6) is a mitochondrial antioxidant
enzyme and is highly expressed in the liver (Fisher, 2011; Arriga
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et al., 2019). Lee et al. (2019) demonstrated that PRDX6 induces
effects of maintaining mitochondrial integrity and inhibits OS-
induced Notch signaling, thereby reducing ROS production and
lipid accumulation. They pointed out that PRDX6 mitophagy-
mediated mechanisms offer endogenous protection against
NAFLD (Lee et al., 2019).

Moreover, triptolide (TP) is the main ingredient of the
medicinal herb Tripterygium wilfordii Hook f (TWHF) (Ziaei
and Halaby, 2016). TP caused hepatotoxicity through initiating
OS. Shen et al. (2019) investigated TP inhibited the protein
expression of Notch1 and NICD, and the activation of Notch
signaling has the potential to protect against TP-induced live
injury. Interestingly, Huang et al. (2021) demonstrated that dose-
related TP as an allosteric AMPK agonist alleviates NAFLD.
Combined, the regulation of Notch signaling pathway may better
enable TP to play a protective role in NAFLD.

NOTCH IN INFLAMMATION AND
FIBROGENESIS

Liver fibrosis is a decisive factor of liver disease progression,
particularly as it is associated with adverse prognosis and
mortality in patients with NASH (Vilar-Gomez et al., 2018;
Powell et al., 2021). Even in the early stage of fibrosis, it is
shown a series of adverse liver-related events are gradually
increasing (Angulo et al., 2015; Dulai et al., 2017; Hagstrom
et al., 2017). In advanced NASH, hepatocytes are partially
replaced by fibrotic scar tissue, the severe pathological change
makes it difficult to treat NASH by correcting the underlying
metabolic abnormality. Therefore, anti-fibrosis has become the
focus of NASH therapy.

Notch activity is almost absent in healthy adult hepatocytes,
mildly elevated in simple steatosis, and significantly increased in
NASH (Valenti et al., 2013; Zhu et al., 2018). In various mouse
models of fibrosis, over 80% of collagenous myofibroblasts are
caused by hepatic stellate cell (HSC) (Mederacke et al., 2013).
Notch-activated hepatocytes facilitate liver profibrogenic in
NASH by both osteopontin (Opn) secretion mediated HSC
activation in vitro and in vivo (Zhu et al., 2018), leading to a
continuous extracellular matrix (ECM) accumulation and liver
parenchyma gradually replaced by fibrous tissue (Mederacke
et al., 2013). Conversely, in Notch loss-of-function mouse
models, hepatocyte-specific liver inflammation and fibrosis are
reduced, suggesting maladaptive hepatocytic Notch response to
NASH-associated liver fibrosis (Zhu et al., 2018).

Sawitza et al. (2009) explored Jag1 as one of the cell surface
ligands in Notch signaling activates HSC to stimulate α-SMA and
collagen production. Yu et al. (2021) proved increasing Jag1 is
responsible for fibrosis-inducing Notch reactivation. Also, other
hepatic non-parenchymal cells could activate the Notch pathway
to promote NASH latently through various mechanisms. Duan
et al. (2018) investigated Notch activation in liver sinusoids
endothelial cell (LSEC), which leads to HSC activation and the
subsequent hepatic fibrosis, by downregulating eNOS-sGC
signaling. Besides, researchers found that inhibitors inactivate
M1 polarization of macrophage by regulating Notch signaling

could reduce the secretion of inflammatory cytokine and
fibrogenesis in CCl4-induced liver injury mice (Bansal et al.,
2015; Xu et al., 2015; Sheng et al., 2020). Additionally,
γ-secretase inhibitor (Chen et al., 2012) and Notch3 siRNA
(Y. X. Chen et al., 2012) suppressed the myofibroblastic gene
expression of rat HSC line by blocking Notch signaling.
Therefore, selective interruption of these Notch-related targets
may provide more anti-fibrosis strategies for NAFLD (Romeo,
2019).

NOTCH IN AUTOPHAGY

Autophagy is a process in which cells degrade and metabolize their
own damaged organelles or protein aggregation (Wang et al., 2019),
which plays a vital role in regulating multiple liver functions and
maintaining hepatic homeostasis (Ueno and Komatsu, 2017).
Accumulating evidence suggests autophagy regulates liver-
mediated systemic glucose and lipid metabolism (Singh et al.,
2009; Galluzzi et al., 2014). Meanwhile, the liver is surrounded by
exogenous substances from the portal vein circulation, including
potential inflammatory mediators, in which autophagy has major
cell-protective and anti-inflammatory effects (Deretic et al., 2013;
Deretic and Levine, 2018; Hazari et al., 2020). All of the above
suggests autophagy is associated with the occurrence and
development of various liver diseases such as NAFLD.

The lipid droplets (LDs) are specialized cytosolic organelles in
which some organs including the liver store neutral lipids (such as
TGs) to protect from lipotoxicity (Gross and Silver, 2014). The
progression of LDs degradation is regarded as a specific form of
autophagy, also known as lipophagy (Garcia et al., 2018). Recent
studies have revealed that disturbances in lipophagy have been
linked to hepatic lipid accumulation, the process of lipophagy
could be regarded as a new way of controlling NAFLD
development (Grefhorst et al., 2021).

Because autophagy can remove damaged organelles,
autophagy may alleviate hepatocellular injury during NASH.
The protective effects of carbamazepine-induced autophagy
could reduce steatosis and improve IR in the NAFLD model
(Lin et al., 2013). Indeed, modulating autophagy may prevent the
progression of NAFLD. Zhang et al. (2021) investigated that
Notch1 is an activated intensity of autophagy in FFA-treated
HepG2 cells, and decreased Notch1 levels may alleviate
hepatocyte damage by enhancing autophagy, which could be
reversed by autophagy inhibitor chloroquine. Niture et al. (2018)
demonstrated that inhibition of Notch reduced the expression of
autophagy biomarker and serotonin-mediated liver cell steatosis.
These findings provide helpful clues for the strategy of Notch
signaling pathway to regulate autophagy and thereby remit the
progression of NAFLD.

NOTCH IN NAFLD-RELATED HCC

HCC is the fourth leading cause of cancer-related deaths worldwide
and occurs in patients with various chronic liver diseases (Bray et al.,
2018; Llovet et al., 2021). Although hepatitis B virus (HBV) infection
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has been the prominent risk factor of HCC, NAFLD has become the
most rapidly growing driver of HCC in many countries (Younossi
et al., 2019; Hester et al., 2020). The incidence in patients with
NAFLD-related HCC increases with the histological stage, which is
highest in patients with NAFLD-cirrhosis (Ioannou, 2021).

Thus far, the exact pathogenesis underlying NAFLD-induced
HCC is only incompletely understood but mainly focuses on the
effects of DNA damage response, inflammation, autophagy, and
intestinal microbiota (Anstee et al., 2019; Behary et al., 2021). In
addition, the chronic activation of metabolic pathways seems to
play a critical role (Baffy et al., 2012). These pathways may
provoke infinite hepatocyte proliferation and genomic
instability, and on the other hand, provide a
microenvironment conducive to malignant transformation and
tumor growth.

Recent studies suggest that Notch signaling pathway is
frequently associated with tumorigenesis (Nowell and Radtke,
2017). Selective blocking of Notch1 inhibits cancer cell growth
and deregulates angiogenesis (Wu et al., 2010). By performing
RNA sequencing of hepatocyte populations HFD-fed reporter
mice, Zhu et al. (2021) illustrated that Notch-active hepatocytes
showed transcriptional enrichment of ECM-related genes, which
may represent a mechanism that persists in the tumorigenic

process. Furthermore, they found HFD-diet mice with Notch-
active mutation spontaneously formed fully developed liver
tumors (Zhu et al., 2021). Therefore, it can be inferred that
the continuous activation of Notch signaling pathway promotes
the occurrence of NAFLD-related HCC.

CONCLUSION AND PERSPECTIVE

NAFLD is a manifestation of metabolic syndrome in the liver.
With the changes in lifestyle and dietary habits, the incidence of
NAFLD is rising rapidly. The previous studies have revealed the
significance of the Notch signaling pathway in metabolism. The
abnormal expression of Notch may lead to several metabolic
disorders, thus inducing NAFLD. Although the relation between
NAFLD and Notch signaling has been observed both in vitro and
in vivo, most of the research findings are based on phenotypic
studies and the underlying mechanisms and potential
associations between different Notch molecules, and require
further in-depth research.

The development of liver-specific Notch inhibitors is pivotal
for the treatment of NAFLD-related hepatic lipid accumulation,
IR, OS, fibrogenesis, and autophagy progression (Figure 3). But

FIGURE 3 | Overview of potential therapeutic targets of Notch signal pathway in NAFLD. Summarize the recent critical advances evolving Notch signaling in the
NAFLD. Intrahepatic lipid levels depend on the balance between lipid acquisition and disposal. Therefore, lipid accumulation is the result of uptake of fatty acids and de
novo lipogenesis exceeding export as VLDL and oxidation of fatty acid, which is also a main pathophysiological change of NAFLD. The five potential pathways to
intervene in NAFLD are focused on (1) hepatic lipid accumulation, (2) insulin resistance, (3) oxidative stress, (4) inflammation and fibrogenesis, and (5) autophagy
(lipophagy) progression. Although several aspects of these functions remain to be fully understood, these findings offer an intriguing rationale for investigating Notch-
based therapies in patients with NAFLD. Furthermore, the “hepatokines” secreted by hepatocytes may help reveal the complex molecular regulation in NAFLD. (NICD,
Notch intracellular domain; FFAs, free fatty acids; mTORC1, mammalian target of rapamycin complex one; FOXO1, factor forkhead box protein O1; G6PC, glucose-6-
phosphatase catalytic subunit; PCK1, phosphoenolpyruvate carboxy kinase; TGs, triglycerides; VLDL, very-low-density lipoprotein; ROS, reactive oxygen species;
PRDX6, peroxiredoxin 6; ECM, extracellular matrix; HSC, hepatic stellate cell; LSEC, liver sinusoids endothelial cell).
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until now, most intervention studies are conducted in animal
models (especially mice), the potential role of Notch regulators in
human NAFLD needs to be explored extensively. Recently, the
rising field of “hepatokines” biology would help reveal the
complex molecular regulation in NAFLD (Watt et al., 2019). If
so, it would promote the development of more non-invasive
diagnostic tests to improve early diagnosis rates.

There is no specific and effective pharmacotherapy toward
NAFLD, however, some drugs have shown therapeutic
potential by regulating a Notch signal pathway. Vitamin E
(α-tocopherol) is a dietary antioxidant recommended as a
treatment for NASH (Yakaryilmaz et al., 2007; Chalasani
et al., 2018). Recent clinical research supports vitamin E use
brought obvious histological benefits and improved prognosis
in patients with NASH (Sato et al., 2015; Brunt et al., 2019;
Vilar-Gomez et al., 2020). δ-tocotrienol, an isomer of vitamin
E, has been explored to inhibit tumor invasion and metastasis
via downregulating the NOTCH1 signaling pathway
(Rajasinghe et al., 2018). Notably, Pervez et al. (2020)
launched a randomized, double-blind, placebo-controlled
trial of 71 patients with NAFLD. Compared with placebo,
δ-tocotrienol significantly reduced biochemical markers of
hepatocellular injury and steatosis in patients (Pervez et al.,
2020). Silybin (SIL), a hepatoprotective drug, could be an
inhibitor targeting the NICD, RBP-Jκ, and Hes1 proteins in
HCC cells and exert antitumorigenic effects (Zhang et al.,
2013).

The precise drug delivery without toxicity brings a wide
application prospect for the treatment of NAFLD. A
nanoparticle-mediated delivery system to target GSI in the
liver (GSI NPs) has been developed (Richter et al., 2020),

which avoids goblet cell metaplasia caused by intestinal Notch
inhibition (van Es et al., 2005). Based on similar studies above
would advance clinical therapy research, thereby optimizing
therapies for various NAFLD subtypes to increase the cure
rate while complications can be decreased. In a word, findings
on Notch signaling pathway research could bring NAFLD
patients a hopeful future with ever more promising targets for
prevention and treatment.
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GLOSSARY

AGS Alagille syndrome

DIO diet-induced obese

DLK1 Delta-like 1 homolog

DNL de novo lipogenesis

ECM extracellular matrix

ER endoplasmic reticulum

FAO fatty acid oxidation

FFAs free fatty acids

FOXO1 factor forkhead box protein O1

G6PC glucose-6-phosphatase catalytic subunit

GSI γ-secretase inhibitor

HCC hepatocellular carcinoma

HFD high-fat diet

HSC hepatic stellate cell

IR insulin resistanceinsulin resistance

IR insulin resistanceinsulin resistance

LDs lipid droplets

LSEC liver sinusoids endothelial cell

MCD methionine-choline-deficient

mTOR mammalian target of rapamycin

mTORC1 mTOR complex 1

NAFL non-alcoholic fatty liver

NAFLD non-alcoholic fatty liver disease

NASH non-alcoholic fatty steatohepatitis

NAS Notch1 deficient antisense transgenic

NICD Notch intracellular domain

Nrf2 nuclear factor (erythroid-derived 2)-like 2

Opn osteopontin

OS oxidative stress

PA palmitic acid

PCK1 phosphoenolpyruvate carboxy kinase

PRDX6 Peroxiredoxin 6

ROS reactive oxygen species

SIL Silybin; δ-T(Delta-tocotrienol)

SS simple steatosis

TGs triglycerides

TP triptolide

TWHF tripterygium wilfordii Hook f

VLDL very-low-density lipoprotein
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