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Due to the lack of effective diagnostic markers and therapeutic targets, esophageal
squamous cell carcinoma (ESCC) shows a poor 5 years survival rate of less than 30%.
To explore the potential therapeutic targets of ESCC, we integrated and reanalyzed the
mutation data of WGS (whole genome sequencing) or WES (whole exome sequencing)
from a total of 1,145 samples in 7 large ESCC cohorts, including 270 ESCC gene
expression data. Two new mutation signatures and 20 driver genes were identified in
our study. Among them, AP3S7, MUC16, and RPS15 were reported for the first time. We
also discovered that the KMT2D was associated with the multiple clinical characteristics of
ESCC, and KMT2D knockdown cells showed enhanced cell migration and cell invasion.
Furthermore, a few neoantigens were shared between ESCC patients. For ESCC,
compared to TMB, neoantigen might be treated as a better immunotherapy
biomarker. Our research expands the understanding of ESCC mutations and helps the
identification of ESCC biomarkers, especially for immunotherapy biomarkers.

Keywords: esophageal squamous cell carcinoma, mutation, neoantigen, immunotherapy, KMT2D, bioinformactics

INTRODUCTION

Esophageal cancer (EC) is the fourth most common cancer in China, with 375,000 annual deaths,
90% of which are esophageal squamous cell carcinoma (ESCC) (Chen et al., 2016). Due to the lack
of effective diagnostic markers, most of ESCC patients are diagnosed at the advanced stages and
are not suitable for surgical treatment. Due to the limited treatment methods, the 5 years survival
rate of ESCC is less than 30% (Younes et al., 2002; Koshy et al., 2004). Therefore, it is imperative
to explore new biomarkers and novel targets for ESCC diagnosis, prognosis, and clinical
treatment.

In recent years, series of whole genome sequencing (WGS) and whole exome sequencing (WES)
studies had been performed in ESCC (Lin et al., 2014; Song et al., 2014; Cao et al., 2015; Zhang
etal., 2015; Hu et al., 2016; Qin et al., 2016; Sawada et al., 2016; Chang et al., 2017; Chen et al., 2017;
Dai et al., 2017; Du et al,, 2017; Liu et al., 2017; Nature, 2017; Dai et al., 2018; Yan et al., 2019; Yu
etal., 2019; Cui et al., 2020; Dutta et al., 2020; He et al., 2020; Liu et al., 2020; Mangalaparthi et al.,
2020). As a result of that, several ESCC driver genes had been identified. However, limitations in
sample size and the algorithms used in driver gene identification still exist. More than half of the
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driver genes were identified in only one cohort, and few
biomarkers were identified as especial immunotherapy-
related biomarkers. At the same time, because of the lack of
therapeutic targets for ESCC, targeted therapy treatment has not
been improved significantly.

Here, we performed an integrative analysis using multiple
datasets from 7 published cohorts, 270 ESCC gene expression
data to explore potential biomarker especially immunotherapy
biomarkers of ESCC. We found that the integration of data with
a larger sample size is helpful in not only discovering new
mutation signatures and new driver genes, but also identifying
more potential biomarkers, especially low-frequency
mutation genes.

METHODS

Data Collection and Analysis

ESCC mutation data: The DNA mutation data was downloaded
from the results of articles of 7 cohorts (Lin et al., 2014; Song et al.,
2014; Zhang et al,, 2015; Sawada et al., 2016; Chang et al., 2017;
Nature, 2017; Cui et al., 2020), which provided whole mutation
data, whole clinical information of sample and the sample
number was bigger. All mutation results were uniformly
converted into MAF format (https://docs.gdc.cancer.gov/Data/
File_Formats/MAF_Format,  Supplementary = Table S2,
Supplementary Table S3 was the clinical information of
samples). ESCC gene expression data: 1) TCGA-ESCA gene
expression data download from UCSC xena, different
expression genes (DEGs) were identified by ¢ test. 2)
GSE53625 chip data download from NCBI GEO. Use blast
alignment for each probe of the GSE53625 chip data against
the hgl9 reference genome. 100% alignment was required, and
mismatches and indels were not allowed. For multiple probes
aligned to the same gene, the expression value of the gene was the
average of all probes. There were a total of 270 ESCC gene
expression data.

Mutation Signature Analysis

We used sigflow to analyze the mutation signature of the exon
regions of all samples in SBS, DBS, ID types, and we also analyzed
the whole genome of the 508 samples in SBS, DBS, ID types.

TMB and Neoantigen Analysis
TMB calculation: total TMB (aTMB)=(SNV + indel)/30M,
fTMB= (exclude nonsynonymous SNV + indel)/30 M.

HLA allele typing: Use optitype to identify HLA-A, HLA-B,
HLA-C alleles on the 90 WES samples.

Neoantigen identified: First used maf2vcf (https://github.com/
mskec/vef2maf) to convert the MAF to VCF, then used vep
(McLaren et al., 2016) to annotate VCF referred to pvactools
manual, next used pvactools to perform neoantigen analysis on
samples. The BindLevel of the peptide with SB or WB as
candidate neoantigen.

Tumor neoantigen burden (TNB): Count the number of all
candidate neoantigen in the sample.

Integrative ESCC Genomic Analyses

Tumor neoantigen score (TNS): The neoantigen score was
the sum of the scores of all mutant peptides of the gene (Gscore).

nAA
Gsore = Zl %, AAscore = {logz (YZ/M)

Where Gscore represented the neoantigen score of the gene, W
represented the binding score of wild-type peptide with the HLA
allele, M represented the binding score of the mutant peptide with
the HLA allele, and AAscore represented the ratio of wild-type
peptide binding score to mutant peptide binding score, if the
mutant peptides did not have a corresponding wild-type peptide,
such as mutant peptides produced by frameshift caused by indel,
the ratio was 15.

Driver Gene Analysis

MutSigCV, driverml, oncodrivefml, and oncodriveclut]l were used
to identify driver genes based on coding region mutation of 1145
ESCC patients. For driverml, the p < 0.01 was used as the
threshold, and for MutSigCV, oncodrivefml, oncodriveclutl,
the FDR<0.05 was used as the threshold. The gene that was
discovered by two software and more was identified as driver gene
of ESCC. Used maftools (Mayakonda et al., 2018) to draw a
mutation profile of the driver gene.

Mutual Exclusion Analysis
We used maftools to analyze gene exclusion and analysis, with a
p = 0.05 as a threshold.

Clinical Correlation Analysis

Generally, we divided cancer patients into two groups: young
and old by the threshold value of age as 60. To improve the
grouping method, we used the kmeans clustering method
(https://github.com/dstein64/kmeansld) to divide the
patients into two groups according to age. And the
clustering was also based on 60 years old. The samples were
divided respectively into two groups by the different clinical
characteristics: T stage (T1-T2 VS T3-T4), TNM (S1-S2 VS S3-
S3), gender (male VS female), lymph node metastasis (YES VS
NO), smoking (YES VS NO), drinking (YES VS NO), tumor
grade (G1-G2 VS G3-G4). For the tumor location, the samples
were divided into upper, middle, and lower three groups. And
because there are only 6 samples of M1, so we do not analyze M
stage. Clinical information of all ESCC were in Supplementary
Table S3.

Data Visualization

We used ggscatterstats, ggwithinstats, venn, volcano graph, and
histogram to draw related graphs on the hiplot platform (https://
hiplot.com.cn/), and used R ggplot2 package to plot other graphs.

Statics Analysis

The Fisher test was used to analyze the gene mutation with
clinical characteristics, and the t-test was used to analyze the
correlation between the gene mutation with numerical variables,
such as age, aTMB, fTMB etc.
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For survival analysis, we used the survminer of the R package
to analyze the survival differences between groups. For numerical
variables, we use surv_cutpoint to determine the best cut point.

Cell Culture Conditions

The ESCC cell lines used in this study were from our lab. All
ESCC cell lines were cultured in HyClone™ RPMI-1640 medium
(GE Healthcare Life Sciences, HyClone Laboratories, Logan, UT,
United States) with 10% fetal bovine serum (FBS; Gibco; Thermo
Fisher Scientific, Inc., Waltham, MA, USA) at 37°C in a 5% CO,
incubator. Replace the culture medium according to the cell status
and subculture cells when the density of cells increases to about
80-90%.

Knockdown of KMT2D in ESCC Lines

For the knockdown of KMT2D, we used the interfering RNAs
(siRNAs) containing the sequence: 5'-GCACCATCATTCGGA
ACGA-3’ (KMT2D-sil) and 5'- CCAGTACTTTCGCTTCGAA
-3 (KMT2D-si2). Cells at the logarithmic growth phase were
transfected with siRNA using riboFECTTM CP Reagent
(RIBOBIO, Guangzhou, China) according to the company’s
recommendation. The efficiency of knockdown was
determined by real time-PCR.

RNA Extraction and Real Time PCR

Total RNA of ESCC cells was isolated by using RNAiso plus
(Takara, Dalian, China). Complementary DNA (cDNA)® was
synthesized from 2 pg of total RNA using a Prim®eScript RT
reagent Kit with gDNA Eraser (Takara). TB Green Premix Ex
Taq® IT kit (Takara) was used in real time PCR. All real time PCR
reactions were performed in triplicate with an Applied
Biosystems Step One Plus (ABI, Foster City, CA,
United States). The relative expression of target genes was
determined by normalization to GAPDH expression and
calculated using the 274" formula. The primer sequences of
GAPDH and KMT2D used in this study were listed in
Supplementary Table S7.

Cell Invasion and Migration Assay

The invasion and migration ability of cells were detected using
transwell plates (8 um, Corning, Inc.). For the migration assays,
50,000 to 80,000 cells/well were inoculated into the upper
compartment of the transwell plate with serum-free culture.
The lower part of the chamber was filled with culture fluid
containing 10% FBS. The upper surface cells are removed after
24 h or 48 h. The cells passing through the membrane are fixed
with 4% formaldehyde and stained with 0.1% crystal violet.
Random five fields were chosen to count the number of
transmigrated cells. For the invasion assays, the upper
chambers were precoated with 100 ul Matrigel (1: 8 mixed
with FBS-free media; BD Biosciences, Heidelberg, Germany)
and proceeded as the same as described above.

Cell Proliferation Assay

In total, 5 x 10 transfected cells were seeded into each well of a
96-well plate in a final volume of 200 pl. After cultured for 24, 48,
72,96 h, 20 ul CCK8 solution was added into each well, then the

Integrative ESCC Genomic Analyses

TABLE 1 | ESCC cohort and samples.

Year ESCC sample number Journal

2014 88 Nature

2014 1183 Nature Genetics

2015 104 American Journal of Human Genetics
2016 144 Gastroenterology

2017 96 Nature

2017 92 NATURE COMMUNICATIONS

2020 508 Cell Research

cells were incubated at 37°C for 30 min. The relative number of
surviving cells in each group was measured by a
spectrophotometer at 490 nm.

Colony Formation Assay

Cells were seeded in a 6-well plate at a density of 1,000 or 1,500
cells/well and incubated for 10 days at 37°C with 5% CO,. After
PBS cleaning, The cells were fixed with 4% polyformaldehyde for
30 min and stained with 1% crystal violet for 30 min. The
numbers of colonies containing more than 50 cells were
counted under the microscope.

RESULTS
ESCC Cohort and Samples

Dozens of research cohorts have been published since 2014
(Supplementary Table S1) (Liu et al, 2017; Yu et al,, 2019;
Dutta et al., 2020; He et al., 2020; Mangalaparthi et al., 2020; Song
etal, 2014; Cao et al., 2015; Zhang et al., 2015; Hu et al., 2016; Qin
et al,, 2016; Sawada et al., 2016; Chang et al., 2017; Chen et al,,
2017; Dai et al., 2017; Du et al., 2017; Dai et al., 2018; Yan et al.,
2019; Cui et al., 2020; Liu et al., 2020; Nature, 2017; Lin et al.,
2014). In this study, we integrated and re-analyzed the 7 large
cohorts including a total of 1,145 samples (Table 1) (Lin et al,
2014; Song et al., 2014; Zhang et al.,, 2015; Sawada et al., 2016;
Chang et al., 2017; Nature, 2017; Cui et al., 2020). The whole
analysis pipeline was shown in Figure 1A. There were 508 WGS
samples and 637 WES samples a total of 149,085 mutations in the
coding region (Supplementary Table S2). The median of ESCC
tumor mutation burden (TMB) of nonsilent mutation in the
coding region was located between Uterine Corpus Endometrial
Carcinoma (UCES) and Liver hepatocellular carcinoma (LIHC),
and was lower than Esophageal adenocarcinoma (EAC)
(Supplementary Figure S1).

Mutational Signatures in ESCC

The previous analyses of ESCC mutation signatures of ESCC were
all based on single base substitution (SBS). Here, we re-analyzed
the SBS, double-base substitution (DBS), and small insertions and
deletion (ID) signatures separately in both the coding regions of
1,145 ESCC samples and the whole genome of 508 ESCC using
sigflow (Wang et al., 2020a). Total of 8 SBS, 9 DBS, 9 ID
signatures were identified in the whole genome region
(Figures 1B-D). 6 SBS and 2 DBS, and 3 ID signatures in the
coding regions (Figures 2A-C). Annotated with the COSMIC
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signatures, we found that the signatures in the coding region
(Supplementary Table S4) and those in whole genome region
(Supplementary Table S6) are similar in some aspects. A larger
number of signatures were identified in our study. Besides that,
two new signatures that have not been reported before were
discovered in the whole genome region. One was WGS-SBS-S3
related to possibly damage by reactive oxygen species and the
other was WGS-DBS-S1 related to prior chemotherapy treatment
with platinum drugs. WGS-DBS-Slwere correlated with the
overall survival (OS) rates (Figure 2D, p = 0.00044). Next, we
analyzed the correlation between signatures of coding regions and
clinical characteristics (Figure 2E, Supplementary Table S5) or
the OS rates. We found that most of them were related to
drinking, smoking, gender and lymph metastasis (FDR<0.05).
WES-SBS-S6 (Figure 2F, p = 0.00044) and WES-ID-Sigl
(Figure 2G, p = 0.00044) were correlated with the OS rates.

Tumor Mutation Burden in ESCC

TMB is an important cancer immunotherapy biomarker
(Boumber, 2018a; Chan et al., 2019; Jardim et al., 2020). Adult
and pediatric patients with high TMB (>10 mutations/megabase)
were approval for pembrolizumab by FDA (Subbiah et al., 2020).
Currently, there is not a standard way to calculate TMB. Some
studies excluded synonymous mutations (Zehir et al, 2017),
while some studies include synonymous mutations (Xu et al.,

2019). In this study, we defined aTMB which includes
synonymous mutations and fTMB which excludes
synonymous mutations. The average value of aTMB was 4.30
in the 1145 ESCC patients, and the median value of aTMB was
3.58 in the 1145 ESCC patients. The average value of fTMB was
3.27 in the 1145 ESCC patients, and the median value of aTMB
was 2.75 in the 1145 ESCC patients. The consistency between
aTMB and fTMB in ESCC was significant (Figure 3A,R=1,p =
0), but the values calculated by the two methods are significantly
different (Figure 3B, p = 4.13e-13). Thus, we speculated that the
calculation method needed to be considered when using a specific
threshold.

We compared different group OS rates using different TMB
values. If grouping patients with the TMB value 10 (Cui et al.,
2020), there was no significant difference between the high TMB
group and the low TMB group regardless of using aTMB
(Figure 3C, p = 0.14) or f{TMB (Figure 3D, p = 0.43) method.
However, using survminer (Kassambara et al., 2017), the optimal
grouping point was automatically selected by the surv_cutpoint
method. Using the aTMB value 8.0 as the threshold, we found
that there was a significant difference OS rates between the high
and low TMB groups (Figure 3E, p = 0.014). There was also
significant difference between the high and low fTMB groups
(fTMB >5.7, Figure 3F, p = 0.04). Therefore, different analysis
methods require the corresponding TMB threshold values. In
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FIGURE 2 | Mutation signature of coding region in ESCC. (A) SBS signatures of WES, (B) DBS signatures of WES, (C) ID signatures of WES, (D) WGS-DBS-S1
survival analysis, (E) WES signature correlation with clinical characteristics, (F) WES-SBS-S6 survival analysis, (G) WES-ID-S1 survival analysis. In the survival analysis,
red line represents the ESCC patients enrichment in the signature, the green line represents ESCC patients without enrichment in the signature.

addition, the commonly defined high-TMB threshold value
should not be applied in different cancer types. For ESCC, we
thought the aTMB as 8.0 was better than 10. And fTMB as 5.7 was
recommended for the similar study. However, the accurate value
of the high TMB threshold suitable for clinical grouping requires
further validation.

High Heterogeneity of Neoantigen in ESCC

Neoantigens play an important role in tumor immunotherapy.
We analyzed the neoantigens of 90 WES samples (Zhang et al.,
2015) with pvactools (Hundal et al., 2020) for obtaining fastq
data. 2 new neoantigen indicators were defined as follows. One
was the tumor neoantigen burden (TNB), which was the number
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of neoantigen in the sample. The other was the tumor neoantigen The correlation between TNS and TMB was very high
score (TNS), which was the score of neoantigen in the sample (See (Figure 4A, R = 0.85, p = 6.35e-26), and the correlation
methods). between TNB and fTMB was also high (Figure 4B, R = 0.81,
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p = 1.84e-22). Since there were no mutation hotspots in ESCC, the ~ frequency of the neoantigen peptides can only be found in 3
highest mutation frequency was TP53:p.R282W (2.41%), so the  patients. Only 2 of this neoantigen accounted for 0.6% of all
neoantigens produced by patients are different. The highest  neoantigens. 60 neoantigens appeared in 2 patients accounted for
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1.8%. The proportion of neoantigens that appeared in one patient
was 97.6%. Therefore, we thought that the effective cancer vaccine
is hard to be developed for ESCC based on our results.

The 90 patients were divided into 2 groups based on the TNB
or the TNS, by the surv_cutpoint method in survminer. There
were significant differences between the high and low groups
(TNS>2.2, p = 0.027, Figure 4C; TNB>2.5, p = 0.022, Figure 4D).
Compared with the TNB high group, the high group of TNS had
more patients, the ratio of the high-low group is to 34:35, and the
ratio is 15:54 in the TNB.

Compared with neoantigen, 90 patients were divided into 2
groups based on the fTMB (high fTMB>1.6) or aTMB (high
aTMB>1.8), by the surv_cutpoint method in survminer. There
was no significant difference between the high and low groups
(Figure 4E, p = 0.14, Figure 4F, p = 0.09). Compared with the OS,
neoantigen was a better biomarker than TMB. And the TNS was a
suitable factor for neoantigen calculation compared with
the TNB.

Potential Targeted Therapy Drugs in ESCC
At present, limited targeted drugs have been approved for ESCC.
In order to find potential targeted drugs for ESCC, we searched
the targeted drug databases OncoKB (Chakravarty et al., 2017)
and Civic (Griffith et al., 2017). Currently, there were no special
targeted drugs for ESCC in the OncoKB database. In the Civic
database, the targeted drugs for ECA and ESCC were different,
but the highest evidence level was only B for ESCC. Recently,
some studies have begun to treat different cancer patients with
specific targeted drugs based on the same gene mutation position
(Gambacorti-Passerini et al., 2018). Our study uses the OncoKB
and Civic databases for analysis of targeted drugs for particular
gene mutation in ESCC. We found that there are only drugs
targeting only TP53 and PIK3CA gene mutations
(Supplementary Figure S$4). Among them, 135 patients,
accounting for 11.8%, can benefit from the drug AMGMDS3
targeting TP53 gene (Supplementary Figure S4). From the data
of the two databases, patients with ESCC can benefit little from
the existing targeted drugs. More research is required to find new
targeted drugs in the future.

Significant Mutated Genes in ESCC

We re-analyzed more than 20 sequencing datasets (Liu et al.,
2017; Yu et al, 2019; Dutta et al, 2020; He et al, 2020;
Mangalaparthi et al., 2020; Song et al., 2014; Cao et al., 2015;
Zhang et al., 2015; Hu et al., 2016; Qin et al., 2016; Sawada et al.,
2016; Chang et al., 2017; Chen et al., 2017; Dai et al., 2017; Du
et al, 2017; Dai et al., 2018; Yan et al., 2019; Cui et al., 2020; Liu
et al., 2020; Nature, 2017; Lin et al., 2014) of ESCC and found that
only 11 studies included the driver gene analyses (Supplementary
Table S1). Seven of them used MutSigCV for analysis (Lawrence
et al,, 2013), dNdScv was used in one study (Martincorena et al.,
2017), and MutSigCV and oncodriveFML were applied together
in another study (Mularoni et al., 2016). A total of 47 driver
genes were found in 11 published studies. Among them, 7 genes
(TP53 (11), NOTCH1 (9), CDKN2A (8), ZNF750 (8), NFE2L2
(7), PIK3CA (7), RB1 (6)) were considered driver genes in more
than 5 studies and 26 genes were considered driver genes in only
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one study (Figure 5A). Previous studies were limited because of
using fewer analysis tools or the relatively small sample size.
Therefore, the reported driver genes identified by previous
studies is limited.

To identify the driver genes of ESCC in a more accurate and
comprehensive way, four software were applied in our study:
MutSigCV, driverml (Han et al, 2019), OncodriveFML, and
OncodriveCLUSTL (Arnedo-Pac et al., 2019). A total of 20
driver candidate genes were identified (Figure 5B, Figure 5C).
Among them, TP53 was a driver gene recognized by all software.
EP300, FAT1, FBXW7, PIK3CA, ZNF750, and AP3S1 were
identified as driver genes in three software. Among the 20
driver genes, 14 genes were reported in three or more studies,
FAT2 and PTEN were reported as driver genes in only 2 studies,
and CUL3 was reported as driver gene in only 1 study. AP3SI,
MUCI16, RPSI5 had not been reported as a driver gene
(Figure 5C). AP3S1, MUCI6, and RPSI5 were three newly
discovered driver genes. The MUCI16 had been considered as a
driver gene in the pan-cancer driver gene research (Martinez-
Jiménez et al., 2020), the mutation frequency of MUCI6 in ESCC
was high (17%, Figure 5D), and there was not hotspot mutation
in the MUC16 (Figure 5E). while AP3SI and RPS15 had not been
reported as driver genes before, and there were hotspot mutations
in the AP3SI (Figure 5F) and RPS15 (Figure 5G) in the ESCC,
the mutation frequency of AP3S1 and RPSI5 were low in the
TCGA, and there was not hotspot mutation in the TCGA
(Supplementary Figures S2, S3).

Next, we analyzed the correlation between driver gene and
clinical characteristics (Figure 5H). The results showed that some
genes were related to multiple clinical characteristics, such as
ZNF750 related to lymph node metastasis and TNM stage.
NOTCHI mutated were related lymph node metastasis (p =
0.005, Figure 5I) and related to age (p = 0.002, Figure 5J).
Moreover, we found that NOTCH1 mutated was related to young
(p = 0.005, Figure 5K), not to old (p = 0.190, Figure 5L).

We analyzed the mutual exclusion and co-mutation of all
mutant genes (Supplementary Figure S5), and found that
ZNF750 and CDKN2A was mutually exclusive (p =
0.004809937). A total of 52 pairs of genes have been found to
have co-mutations, the most significant of which are TTN and
IESIP2 (p = 2.94E-05).

Correlation Between Gene Mutation and
Lymph Node Metastasis

Most cancer death was originally caused by metastasis. Tumor
metastasis was mainly included lymph node metastasis and blood
metastasis. In our study, there were 52% ESCC patients with
lymph node metastasis (Figure 6A). And the survival time of
ESCC patients with lymph node metastasis was lower than that of
ESCC patients without lymph node metastasis (p < 0.0001,
Figure 6B). We found that the drinking history, smoking
history, T stage, tumor location and tumor grade were related
to lymph node metastasis (p < 0.05). It was worth noting that
among these clinical characteristics, tobacco consumption largely
promoted the increase in the frequency of lymph node metastasis.
Compared with non-smoking patients, the frequency of lymph
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node metastasis was 43%, rising to 63% (p = 9.58E-11,
Figure 6C).

There were 237 mutated genes related with lymph node
metastasis (p < 0.05). Among them, 188 genes showed higher
mutation rate of lymph node metastasis than no lymph node
metastasis group, called “higher mutated genes (HMG)”. These

gene mutations may promote lymph node metastasis. While 49
genes showed lower mutation rate in lymph node metastasis
group than that in no lymph node metastasis group, called “lower
mutated gene (LMG)” (Figure 6D). And these gene mutations
may prevent lymph node metastasis. We used kobas (Xie et al,,
2011) respectively to do KEGG pathway enrichment analysis of
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these two types of genes. We found that the Pathways in cancer,
Herpes simplex virus 1 infection, Human papillomavirus
infection were the top 3 pathways in enrichment of those
LHG (Figure 6E). And pathways in cancer, MicroRNAs in
cancer, Breast cancer were the top 3 pathways of those LWG
(Figure 6F).

KMT2D Plays a Tumor Suppressor Role in

ESCC

The frequency of KMT2D mutation was 15.02% (top 3 of all
mutated gene), and there was no hotspot mutation in this gene
mutation in ESCC (Figure 7A) and other cancer (Figure 7B). The
KMT2D mutation frequency was highest in BLCA closed to 30%
(Figure 7C). The expression of KMT2D in tumor was lower than
that in normal tissues in the GSE53625 (Figure 7D). The different
expression pattern between normal and tumor tissues existed in
many cancer types in the TCGA data (Figure 7E). We analyzed the
correlation between gene mutation and clinical characteristics
(Figure 7F). KMT2D mutation was related to multiple clinical
characteristics (drinking, location, lymph, gender, and smoking,
topl of the number with gene-related clinical characteristics). To
verify the biological role of KMT2D in ESCC, we compared the
expression levels of KMT2D in several cell lines including normal
esophageal epithelial cells such as NE3, HET-1A and ESCC cell
lines such as KYSE150, KYSE180, KYSE450, TE-5, and TE-9. The
expression levels of KMD2T in different cell lines were shown in
Figure 8A. We selected KYSE150 cell line with a relatively high
endogenous level expression for perform knockdown experiments.
Knockdown of KMD2T in KYSE150 cell line showed a significant
decrease (Figure 8B). The results of CCK8 and the colony
formation assays showed that the cell proliferation, colony
formation ability was significantly improved in KMT2D
knockdown group compared with the control group (Figures
8C,D). Besides that, the knockdown of KMT2D can markedly
promote cell invasion and migration of KYSE150 (Figures 8E,F).

DISCUSSION

Mutation signature has always been an important part of cancer
research. The analysis of mutation signature has also evolved from
SBS to DBS, ID and other complex mutations (Alexandrov et al,
2020). In this study, for the first time, the SBS and ID of ESCC were
analyzed. We identified 8 SBS, 9 DBS and 9 ID signatures in the
whole genome region. And We also found 6 SBS,2 DBS, and 3 ID
signatures the coding region. Most signatures in WGS and WES
were similar in ESCC, for example WES-SBS-S1, WGS-SBS-S1 and
WGS-SBS-S5 were correlation with APOBEC. However, in the
whole genome region, there were more signatures and new
signatures identified. For example, WGS-DBS-S1 correlation with
prior chemotherapy treatment with platinum drugs, which cannot
be identified in the coding region. The mutation signatures in whole
genome region can provide more valuable information compared
with coding region. This not only deepens our understanding of the
mutational signature of ESCC, but also enriches the number of
mutational signatures of ESCC. And we also found two new
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mutation signatures. These mutation signatures can not only be
used for the identification of ESCC, but also can be used as new
factors for related machine learning or deep learning.

Using a larger size of samples and various driver gene identify
software will be helpful in determining the accurate driver genes
of ESCC. In our study, we identified 20 drivers using the mutation
data of 1,145 samples by using 4 software and 3 (AP3S1, MUCIS,
RPS15) of them were discovered for the first time. The mutation
frequency of MUCI6 in ESCC was high. MUCI6was recognized
as a driver gene in the pan-cancer driver gene research (Martinez-
Jiménez et al, 2020). MUCI16 was reported as an important
biomarker for cancer (Felder et al., 2014a; Aithal et al., 2018).
According to studies in other cancers (Felder et al., 2014b; Aithal
etal,, 2018; Yeku et al., 2020; Yu et al., 2020), MUC16 may also be
an important immunotherapy target for ESCC. The mutation
frequency of AP3Sland RPS15 were low both in ESCC and
TCGA, but hotspot mutation was found in the ESCC. Even
with hotspot mutations in the two gene but too low mutation
frequency limits their value in clinical applications.

We tried to find better immunotherapy and targeted therapy
targets for ESCC according to the results obtained from mutations
of multiple cohorts. From the OncoKB and Civic databases, there
was no targeted therapy drug for ESCC. Both TMB and
neoantigen were new immunotherapy markers (Schumacher
and Schreiber, 2015; Lu and Robbins, 2016; Luksza et al., 2017;
Boumber, 2018b; Samstein et al., 2019; Zhou et al., 2020; Yin et al.,
2021). In the 7 cohorts, the TMB was analysis in only one cohort
(508 ESCC patients, published in 2020 years on Cell Research). In
this cohort more than 10 mutations per Mb was as TMB-H. TMB
was attracted more and more attention by researchers. In recent
years, researchers have carried out some systematic research on
related immunotherapy on TMB. As a continuous variable, TMB
has no recognized cutoff suitable for all cancers. TMB cutoff
values is supposed to be different in various cancer types. For
ESCC, there is no relevant research to determine the appropriate
TMB cutoff. For ESCC, the conventional value for TMB was
slightly higher. It may be more appropriate to use the aTMB as 8,
and it was more appropriate to use the fTMB as 5.7. The threshold
of fTMB and aTMB were caculated by the surv_cutpoint method
of “survminer” R package (Kassambara et al., 2017). This method
was widely used in various cancers survival analysis for
continuous variable (Zhou et al., 2019; Wang et al., 2020b; Lai
et al, 2020; Wu et al., 2020). But we need more research to
determine the true suitable threshold of TMB. Only a few somatic
mutations will produce peptides that have been properly
processed and loaded onto the MHC complex. Generally, the
more somatic mutations a tumor has, the more likely it is to form
a neoantigen (Coulie et al., 2014; Snyder and Chan, 2015). In the
90 WES ESCC cohort, we found that compared with TMB,
neoantigen was related to the OS. In ESCC, compared with
TMB, neoantigen may be a better marker, however, due to the
limitation of sample size, further research is needed. In the
relationship between TMB and prognosis, we observed the
opposite phenomenon. High TMB had a poor prognosis in
1,145 samples, but in 90 WES samples, high TMB had a good
prognosis. This may be due to the number of samples. Similar
phenomena have also been found in lung cancer research
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(Greillier et al., 2018; Alborelli et al., 2020; Nie et al., 2020).
Neoantigen therapy is a highly individualized tumor
immunotherapy, different patients often have different
neoantigens for immunotherapy (Tireci et al, 2018; Blass
and Ott, 2021; Jou et al, 2021). For ESCC, neoantigen
presents  high  heterogeneity. = Thus,  personalized
immunotherapy targeting to neoantigens may be a promising
treatment for ESCC patients.

Lymph node metastasis is an essential cause of death in cancer
(Chaffer and Weinberg, 2011). We analyzed the gene mutation
with different clinical characteristics and focused on analyzing the
gene mutations with or without lymph node metastasis.
Therefore, the identification of biomarkers in ESCC lymph
node metastasis will greatly help ESCC treatment and
prognosis. Some gene mutations promoted lymph node
metastasis, while other gene mutations inhibited lymph node
metastasis. We have identified these two types of genes and
performed an enrichment pathway analysis, which could help
us to understand the mechanism of lymph node metastasis in
ESCC. We found that NOTCHI mutations were only associated
with lymph node metastasis in young ESCC patients, which may
be used for the diagnosis of early lymph node metastasis in ESCC.

We found that KMT2D (Lysine methyltransferase 2D) was
related to multiple clinical characteristics and this gene had a
relatively high mutation frequency. KMT2D was a gene of histone
methyltransferase that methylates the Lys-4 position of histone
H3, and there some research in other cancers (Guo et al., 2013;
Toska et al., 2017; Xiong et al., 2018; Li et al., 2019; Sun et al,,
2019; Alam et al., 2020; Zheng et al., 2021), but there was still a
lack of reports in ESCC (Abudureheman et al, 2018).
Knockdown of this gene in ESCC cell lines increased invasion
and migration ability. The results indicated that KMT2D may
plays an important role in ESCC. This gene can be used as a
potential target for ESCC treatment.
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