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Cell cycle is a biological process underlying the existence and propagation of life in time and
space. It has been an object for mathematical modeling for long, with several alternative
mechanistic modeling principles suggested, describing in more or less details the known
molecular mechanisms. Recently, cell cycle has been investigated at single cell level in
snapshots of unsynchronized cell populations, exploiting the new methods for
transcriptomic and proteomic molecular profiling. This raises a need for simplified semi-
phenomenological cell cycle models, in order to formalize the processes underlying the cell
cycle, at a higher abstracted level. Herewe suggest amodeling framework, recapitulating the
most important properties of the cell cycle as a limit trajectory of a dynamical process
characterized by several internal states with switches between them. In the simplest form,
this leads to a limit cycle trajectory, composed by linear segments in logarithmic coordinates
describing some extensive (depending on system size) cell properties. We prove a theorem
connecting the effective embedding dimensionality of the cell cycle trajectory with the
number of its linear segments. We also develop a simplified kinetic model with piecewise-
constant kinetic rates describing the dynamics of lumps of genes involved in S-phase and
G2/M phases. We show how the developed cell cycle models can be applied to analyze the
available single cell datasets and simulate certain properties of the observed cell cycle
trajectories. Based on our model, we can predict with good accuracy the cell line doubling
time from the length of cell cycle trajectory.
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1 INTRODUCTION

Progression through the cell cycle represents a complex dynamical process, regulated at multiple
levels including transcriptome and proteome. The major components of it have been characterized
(Hunt, 1991; Hunt et al., 2011), and a complex molecular machinery has been revealed (Tyson,
1991). Nevertheless, many aspects of cell cycle functioning remain to be elucidated (Giotti et al.,
2019).

Edited by:
Alberto Jesus Martin,

Universidad Mayor, Chile

Reviewed by:
Anand Banerjee,

Virginia Tech, United States
Paola Lecca,

Free University of Bozen-Bolzano, Italy

*Correspondence:
Andrei Zinovyev

andrei.zinovyev@curie.fr

Specialty section:
This article was submitted to

Biological Modeling and Simulation,
a section of the journal

Frontiers in Molecular Biosciences

Received: 12 October 2021
Accepted: 15 December 2021
Published: 01 February 2022

Citation:
Zinovyev A, Sadovsky M, Calzone L,

Fouché A, Groeneveld CS, Chervov A,
Barillot E and Gorban AN (2022)

Modeling Progression of Single Cell
Populations Through the Cell Cycle as

a Sequence of Switches.
Front. Mol. Biosci. 8:793912.

doi: 10.3389/fmolb.2021.793912

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 8 | Article 7939121

ORIGINAL RESEARCH
published: 01 February 2022

doi: 10.3389/fmolb.2021.793912

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.793912&domain=pdf&date_stamp=2022-02-01
https://www.frontiersin.org/articles/10.3389/fmolb.2021.793912/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.793912/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.793912/full
http://creativecommons.org/licenses/by/4.0/
mailto:andrei.zinovyev@curie.fr
https://doi.org/10.3389/fmolb.2021.793912
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.793912


Progression through the cell cycle can be seen as a trajectory in
multidimensional space of all possible cellular states, similar to
other processes such as differentiation or ageing. However, this
trajectory is characterized by special properties because it
represents a periodic process. From an oversimplified
perspective, at the end of this trajectory, a cell splits into two
daughter cells twice as small, where each daughter cell has a state
identical to the initial state of its parent. This requirement
imposes certain constraints on the geometry and underlying
mechanisms of the cell cycle trajectory (CCT), which could be
reproduced with a mathematical model.

Cell cycle process has been a subject of mathematical modeling
for many decades (Chen et al., 2004a; Ingolia and Murray, 2004;
Sible and Tyson, 2007). Most of the existing models focused on
reproducing the regulatory logics at the level of protein expression,
protein-protein interactions and post-translational modifications.
Multiple modeling formalisms have been used such as chemical
kinetics (Tyson, 1991; Chen et al., 2004b), logical modeling (Fauré
et al., 2006; Deritei et al., 2019), Petri nets (Kotani, 2002), or
approaches based on tropical algebra (Noel et al., 2012; Radulescu
et al., 2012). A hybrid approach, combining discrete, governed by
Boolean dynamics, and continuous, governed by chemical kinetics,
variables was suggested to model cell cycle (Singhania et al., 2011;
Noël et al., 2013). The mathematical description of the cell cycle
transcriptional dynamics has not yet been thoroughly addressed,
though.

High-throughput omics measurements gave rise to a number
of molecular studies with the objective to characterize each cell
cycle phase in terms of their associated molecular changes,
i.e., sets of specifically expressed genes (Dominguez et al.,
2016; Giotti et al., 2019). The appearance of single cell
technologies reinforced the interest towards the description of
the molecular organization of the cell cycle for several reasons.
First, it allows the visualization of the cell cycle trajectory
explicitly without synchronizing individual cells, which can be
problematic, especially in vivo. Then, recent single cell
transcriptomic and proteomic studies provide molecular
description of progression through the cell cycle in a
continuous fashion. Such representation attempts to delineate
the cell cycle phase borders and also characterizes each cell for its
precise progression position within each phase (Leng et al., 2015;
Liu et al., 2017; Hsiao et al., 2020; Mahdessian et al., 2021).

A thorough understanding of cell cycle functioning is of
utmost importance for cancer research, where the deviation
from the normal cell cycle progression is expected. A number
of questions can be raised: What is the normal pattern of the
events comprising a cell cycle, and to what extent does it vary in
normal physiology? What deviations from a normal cell cycle are
characteristic for a tumor cell? What processes trigger these
changes and are they specific to a cancer type? and many others.

Some mathematical models of the cell cycle try to tackle these
questions. For example, agent-based or cellular automaton cell cycle
models focus on the optimization of cancer drug delivery (Altinok
et al., 2007), competition of fast and slow cell cycles within a tumor
under treatment (Tzamali et al., 2020), or cell confluence and
elongation of the G1 phase (Bernard et al., 2019). However, most
of the existing models remain limited to describe the behavior of cell

cycle during tumorigenesis at full complexity because of the existing
discrepancy between the nature of the available molecular data and
the level of the details of these models. Thus, the most
comprehensive data source currently available is at the level of
transcriptomic changes in single cells, while the existing modeling
efforts focus on protein players. The data reveal the role of hundreds
of genes and proteins in cell cycle dynamics, while the models
include a tiny fraction of this number. Therefore, we believe that the
development of mathematical models matching the scale and the
nature of the abundant available data is still highly needed. In
particular, even a simple mechanistic model of cell cycle
transcriptome dynamics, capturing its main features, is lacking in
the field. It appears that using dynamical variables representing
relatively large lumps of genes (e.g., all genes involved in DNA
replication) might be a useful coarse-grained approach to model
cellular transcriptomes, which is one motivation of this study.

Single cell studies of cell cycle trajectories in snapshots of actively
proliferating cells represent a unique opportunity to formulate the
most general principles of cell cycle functioning. A recent study has
introduced the principle of minimizing transcriptomic acceleration
(Schwabe et al., 2020), which suggests that the transcriptomic cell
cycle trajectory represents a spiral, or, after neglecting the relatively
slow drift unrelated to cell cycle progression, a shape close to “a flat
circle”. This type of trajectories was indeed phenomenologically
observed in the HeLa cell line profiled with scRNASeq technology,
after deconvoluting the transcriptomic dynamics connected to the
cell cycle from other sources of transcriptional heterogeneity. In
particular, the absence of cell cycle-related transcriptional epochs
was deduced from this model.

In the current study, we suggest an extended and different point
of view on the properties of transcriptomic cell cycle trajectory
which, in our opinion, in some cases better matches its observed
properties in various cellular systems, when sufficiently good quality
data can be collected. We propose a formal model of CCT as a
sequence of epochs of growth during each of which the trajectory is
approximately linear in the space of logarithmic coordinates.
Therefore, CCT can be modeled as a piecewise linear trajectory
in the space of logarithms of some extensive cell properties, followed
by a shift at the vector with coordinates −log 2 which represents the
cell division event. This model explicitly assumes existence of well-
defined transcriptional epochs in CCT.

Movement along linear trajectory in the space of logarithms of
the values of some cellular properties means that along the
trajectory any two such properties xi, xj are connected through
a power law dependence xi � αxβ

j , α, β � const. Such dependencies
are known as allometric in many fields of biology (Holford and
Anderson, 2017; Packard, 2017; White et al., 2019; Pretzsch, 2020;
Zhou et al., 2021). Some approaches in mathematical chemistry
and theoretical biology, dealing with systems in stable non-
equilibrium, exploit the linear relations between chemical
potentials which can be expressed as logarithms of species
concentrations (Bauer, 1935; Gorban, 2018).

Particular cases of allometric dependencies are when all the
quantities grow linearly with physical time, or when all the
quantities follow exponential growth or decay xi � bi exp(ait).
The model of movement along piecewise linear trajectories with
an event of cell division represents the simplest scenario, easy to
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simulate and analyse theoretically. Nevertheless, the most
important conclusions derived from this analysis will stay valid
for the trajectories that do not deviate too much from linearity.

Using the model of piecewise linear growth with division, we
formulate a fundamental statement about correspondence
between the number of linear segments in the cell cycle
trajectory m, which corresponds to a number of the most
important states of the cell cycle-related transcriptional
machinery, and its effective embedding dimension n. The first
part of the statement, m ≥ n, can be described as a strict theorem
with formal proof, whereas the second part, m ≤ n, can be
formulated as a feasible hypothesis, that can be validated using
available data. The correspondence m � n suggests that the
embedding dimensionality of the transcriptomic cell cycle
trajectory is larger than 2, since the number of segments we
can observe can be as high as four or five. This allows us to state
that the shape of the cell cycle trajectory is essentially not flat.

The type of models discussed here was partly introduced by
Shkolnik (a pseudonym for a collective authorship), including
authors of this manuscript (Shkolnik, 1989). Here, we
significantly extend the previous effort and adapt it to the
description of the cell cycle trajectory in single cell datasets.

In order to connect the geometric properties of cell cycle
trajectory to interpretable mechanistic parameters, we extended
the model of piecewise linear growth in logarithmic coordinates, to
a simple kinetic model with rates depending on time as piecewise
constant functions. In this case, some of the segments of the
trajectory become nonlinear but remain smooth and do not
deviate from linearity too far. Therefore, the suggested model is
conceptually similar to previously suggested hybrid discrete-
continuous models, but conceptualizes them, addresses the
transcriptional dynamics and can be fit to multiple available
scRNASeq datasets (Singhania et al., 2011; Noël et al., 2013).

The suggested cell cycle modeling framework and the
representation of the cell cycle progression as a system of
switches allows us to 1) determine which genes play the most
important role in each transcriptional epoch, in a concrete system
under study, 2) compare the genes related to the same
transcriptional epoch between two biological systems or
conditions, 3) predict the ratios between physical time
durations of the transcriptional epochs, 4) predict the effect of
shortening of certain transcriptional epochs on the shape of the
cell cycle trajectory and transcriptional dynamics of the related
groups of genes, and 5) predict the doubling time of proliferating
cell populations from the length of the cell cycle trajectory
observed in single cell scRNASeq data. The suggested
framework can be exploited to study the cell cycle in various
systems, from cell lines to tumors.

2 METHODS AND MATERIALS

2.1 Single Cell Data Used in This Study
We made a screening of available single cell sequencing of cancer
cell lines in order to identify datasets with sufficient number of
good quality single cell transcriptomic profiles and in which the
principal source of transcriptomic heterogeneity would be

progression through the cell cycle. We identified publicly
available scRNASeq data on CHLA9 Ewing sarcoma cell line,
produced with 10x Genomics sequencing technology (Miller
et al., 2020), which contained more than 4,000 cells with total
number of unique molecular identifiers (UMIs) varying from
10 ,000 to 50 ,000 per cell, after applying the standard quality
criteria and filtering cells containing a large fraction (>20%) of
reads in mitochondrial genes. For this dataset, we reanalyzed the
raw sequencing data using Kallisto mapper (Bray et al., 2016)
resulting in a loom file that could be used for obtaining the gene
expression levels and for quantifying RNA velocity vectors (La
Manno et al., 2018).

In addition, we used a recently published collection of 200
scRNASeq profiles of cancer cell lines from Cancer Cell Line
Encyclopedia (CCLE) collection (Kinker et al., 2020). We also
analyzed several scRNASeq datasets by downloading them
directly from Gene Expression Omnibus (GEO).

The estimation of cell line doubling times, when available were
obtained from Cellosaurus database (Bairoch, 2018).

2.2 Definition of Cell Cycle Genes
We systematically tested several existing definitions of cell cycle
gene sets and verified that our results remain qualitatively
invariant even if the choice of cell cycle gene set can vary. In
our experiments, we used the following cell cycle gene set
definitions:

• Standard “Regev’s set”: markers of S- and G2/M cell cycle
phases used in scanpy tutorials (Tirosh et al., 2016)

• Set of cell cycle genes annotated in Reactome pathway
database (Jassal et al., 2020)

• Set of top-contributing genes, extracted from application of
independent component analysis (ICA) to the dataset under
study, from those components whose top-contributing
genes were strongly associated with the cell cycle. In
particular, similar to our previous work (Aynaud et al.,
2020), two independent components were significantly
enriched with the markers of S- and G2/M cell cycle
phases in all single cell cell line datasets we analyzed.

Cell cycle phase scores were computed as an average
expression of marker genes for the corresponding cell cycle
phase in log scale, which roughly corresponds to the geometric
mean of the raw count measures.

2.3 Pooling Reads From Neighbouring Cells
for Compensating the Technical Drop-Out
We found out that the cell cycle trajectories appear less noisy and
more tractable by trajectory inference methods when standard
pooling approach was applied to the raw count data, using an
initial estimate of cell-to-cell proximity. More precisely, we used
the initial standard data normalization and dimensionality
reduction in order to compute the distances between cells and
construct the initial kNN graph, which was used to pool row reads
from a cell and all its k nearest neighbours. In our experiments, we
used k � 10 and n � 30 components for reducing the data
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dimensionality during normalization. Pooled read counts were
used for final normalization, but the initial total read counts per
cell measure were kept for visualization and further analysis.

2.4 Cell Cycle Trajectory-Based Single Cell
Data Normalization
Total number of reads in a cell represents a strong signal in
proliferating cell populations. By itself, it is an extensive value
such that it should be divided (approximately) by half in the
process of cell division. In our modeling approach, we needed a
description of the cell state in terms of extensive values of gene
expression levels measured such that they would be also divided
approximately by two on average after the moment of cell
division. Therefore, the widely used global library size
normalization did not suit our purposes, since after global
library size normalization, cell division does not lead to
halving the total number of reads.

At the same time we observed that without any library size
normalization, the cells presumably located at similar stages of
cell cycle progression could be characterized by a wide range of
total number of reads, probably caused by technical variability
factors. Therefore, library size normalization was required but not
at the global cell population level. We hypothesized that the total
number of reads should increase in the course of cell cycle
progression on average such that the cells characterized by
similar value of pseudotime along the cell cycle trajectory
could be normalized to the same local library size. As usual,
this poses a chicken-or-egg problem because for reconstructing
the cell cycle trajectory one needs normalized data, and for
normalization of the library size one needs a reconstructed
trajectory. This problem is similar to those approaches which
use normalization locally conditioned on clusters in single cell
datasets (Azizi et al., 2018).

We used a simplified two-stage approach for library size
normalization which preserved both the geometric structure of
CCT and the trend of increasing the total number of reads
along CCT.

1. The row count data have been normalized to the global
median number of counts and ln(x+1)-transformed, using
standard functions of scanpy. 10,000 most variable genes have
been selected, the dimensionality was reduced to 30 by PCA.
In the reduced space, a kNN graph has been computed using
the standard Euclidean distance for k � 10. This graph was
used for pooling reads from neighbor cells as described above.

2. For such initially normalized dataset, we computed closed cell
cycle trajectory in the subspace of cell cycle genes, by fitting a
principal closed curve, using the Python implementation of
ElPiGraph (Albergante et al., 2020). The data points were
partitioned according to the proximity to the nodes of the
elastic principal curve.

3. In each partition, we analyzed the distribution of the total
number of reads across cells. We performed correction of cell-
to-node assignment by splitting an anomalously wide partition
between two neighboring partitions. The anomalously wide
partition corresponded to the moment of cell division since it

contained both cells at the very end of cell cycle progression
with the largest number of reads and cells just after cell
division event containing the minimal number of reads.
Splitting this distribution allowed us to distinguish cells just
before and just after the cell division into distinct partitions.

4. The median total number of counts in each resulting corrected
partition was computed. The median values of the total
number of reads in the cells of each partition have been
smoothed by univariate spline or a piecewise-linear
function of pseudotime, taking into account the cyclic
boundaries of the trajectory.

5. Each cell’s library size was normalized to the smoothed local
median value of the total number of reads.

6. The newly normalized pseudocount data matrix passed
through the same pre-processing as described in 1), namely
a) Pooling reads from neighbour cells using the kNN graph
obtained with trajectory-based normalized data, b) ln(x+1)
transformation, selecting most variable 10 ,000 genes.

The cell cycle trajectory-based normalization procedure is
illustrated in the Jupyter notebook at https://github.com/
auranic/CellCycleTrajectory_SegmentModel, which can be
easily reused for other cell lines.

2.5 Computing the Cell Cycle Trajectory and
Quantifying Pseudotime
We used the ElPiGraph Python package to fit elastic principal
curves or closed elastic principal curves (principal circles) to
single cell data distributions (Albergante et al., 2020). ElPiGraph
was applied in the data space defined by the set of 10 ,000 most
variable genes or by the cell cycle-related genes, after
dimensionality reduction by PCA (first 30 principal
components were retained). In order to compute open elastic
principal curve with q nodes, first a closed curve was fit with q/2
nodes, then a node with the least number of data points projected
onto it was removed from the principal graph, and this
configuration was used as an initialization to compute the
elastic principal graph without branching and having q nodes.

The pseudotime si for a data point xi was computed as a
continuous geodesic distance measured from the root node to the
projection of xi onto the principal curve, quantified in the units of
the number of edges. Therefore, the value of the pseudotime was
in the range [0, q − 1], where q is the number of nodes. The root of
the principal curve was chosen as one of its ends, such that the
value of the initial total number of reads would increase as a
function of pseudotime.

2.6 Curvature Analysis of the Cell Cycle
Trajectory
In order to compute the Riemannian curvature of the principal
curve defined by the position of its nodes in the multi-
dimensional space yi ∈ Rn, i � 1, . . . , q, the node coordinates
were first represented as n functions of the natural parameter
(pseudotime) s, yk

i � yk
i (si), i � 1, . . . , q, k � 1, . . . , n. The value si

for each node was taken as a number of edges of the elastic
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principal curve connecting the node i to the root node. Each set of
numbers yk

i (si), i � 1, . . . , q was interpolated by a cubic
univariate spline yk(s). In each node i of the curve the
curvature was evaluated as Ri � ∑n

k�1(d
2yk(s)
ds2 |s�si)2.

2.7 Estimating the Effective Dimensionality
of a Set of Vectors
In order to estimate the effective dimensionality of CCT, we used
scikit-dimension Python package (Bac et al., 2021). We used
linear estimators of global intrinsic dimensionality, based on
application of PCA and various approaches to select the
significant number of eigenvalues from the scree plot.

In order to compute the effective rank of a rectangular matrix,
we looked at the distribution of its singular values, and selected
such a number of them that the ratio between the largest and the
smallest number would not exceed 10, such that the reduced
matrix is well-conditioned.

3 RESULTS

3.1 Example of a Cell Cycle Trajectory
Extracted From Single Cell Data
The current study is motivated by the observation that after
appropriate pre-processing of single cell RNA-Seq data (see
Methods), one can observe the cell cycle trajectory (Figure 1)
which can be approximated by a piecewise linear curve, with a gap
between the beginning and the end of the trajectory
corresponding to the cell division moment.

Here we use the example of Ewing sarcoma cell line CHLA9
sequenced at single cell level using the Chromium 10x technology
(Miller et al., 2020). The distinguishing feature of this dataset was
that it contained a significant number of proliferating cells with
single cell transcriptomes of good quality (more than 4,000 cells
with the total number of Unique Molecular Identifiers (UMIs)
between 10 ,000 and 50 ,000). Also, the proliferation signal in this
dataset seems to explain the largest fraction of transcriptomic
heterogeneity, since in the plane of the first two principal
components one can clearly observe the cyclic trajectory. In
other cell line single cell datasets, the proliferative signal can
be masked by other sources of transcriptomic heterogeneity,
requiring special procedures of data treatment to reveal it
(Aynaud et al., 2020; Liang et al., 2020; Schwabe et al., 2020).

The scRNA-Seq data have been normalized in order to
preserve the pattern of dynamics of the total number of
counts (UMIs) along the CCT, see Methods section. The
normalized gene expression levels are represented at the
logarithmic scale, following the standard practice. The multi-
dimensional distribution of single cell transcriptomic profiles
projected into the space of the first 30 principal components
has been approximated by a principal curve (see Methods). The
curvature of the principal curve has been estimated using the
standard formulas of differential geometry, which revealed the
existence of curvature peaks, and reflecting the rapid turning
points of the trajectory. We hypothesized that these turning
points correspond to the large-scale changes in the

transcriptional programs of the cell cycle process. The pattern
of momentary velocities of the transcriptomic changes, estimated
with RNA velocity, was compatible with this hypothesis
(Figure 1A).

The pseudo-temporal dynamics of the known cell cycle-
related genes confirmed that the trajectory curvature peaks
delineate biologically meaningful transcriptional epochs. The
epoch 0-A-B can be understood as an early G1 phase of the
cell cycle, B-C as significantly overlapping with late G1-and
S-phases, and C-D as overlapping with S- and G2-phases. The
epoch D-E can presumably reflect the relatively short M phase
(mitosis). Analysis of pseudotemporal gene expression dynamics
inferred for this cell cycle trajectory shows that known cell cycle
genes such as different cyclin types or E2F transcription factors
have behaviour compatible with our interpretation (Figure 1C).
We denote the identified transcriptional epochs as T1, T1s, T2s
and Tm.

The switches between transcriptional epochs should not be
confused with the action of cell cycle checkpoints that delineate
cell cycle phases. The connection between the known molecular
checkpoint mechanisms involving mainly protein-protein
interactions and post-translational protein modifications and
the transcriptional epochs might not be trivial or direct: partly,
due to the delay between the gene and protein expression, and
partly due to different parameters and constraints on the
transcriptional and protein-protein interaction dynamics.

We can clearly observe the existence of the restriction point at
the level of single cell transcriptome. In our notations, it belongs
to the A-B segment of the cell cycle trajectory shown in
Figure 1A,right. This transcriptional epoch separates post-
mitotic (denoted as T1) and pre-replication parts of G1 phase,
which corresponds to the classical definition of the R-point (e.g.,
from (Zetterberg et al., 1995)). Interestingly, in Figure 1A,right,
one can observe that RNA velocity vectors reflect cells exiting
from cell cycle and re-entering the cell cycle in the epoch between
A and B turning points. Just after this transcriptional epoch, the
expression of E2F transcription factors and Cyclin E start to
increase as expected (Figure 1C).

We can also observe how, during each particular epoch, the
components of a specific checkpoint mechanism are
transcriptionally produced “just in time”. For example,
components of the G1 DNA damage checkpoint (e.g.,
CDC25A, CDKN1A) are produced during the T1s epoch of
the cell cycle trajectory where the S phase starts, the
components of G2 DNA damage checkpoints (e.g., CDC25B,
CDC25C, CHEK2) are produced in the late part of the C-D epoch
(T2s), and spindle checkpoint components (e.g., CDC20) are
transcriptionally abundant during the mitosis-related epoch D-E
(Tm) and after the cell division in T1 (Figure 1C). In this sense,
the transcriptional dynamics prepare the correct ground for a
proper succession of post-transcriptional events but the exact
borders of the transcriptional epochs do not have to match the
precise checkpoint timing.

Remarkably, within each of the identified transcriptional cell
cycle epochs, the global dynamics of the transcriptome remain
close to linear in the logarithmic scale. This allows us to suggest a
simple model which can, for example, represent the collective
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dynamics of the genes related to the S-phase and G2/M phases
(see below).

3.2 Model of Cell Cycle as a Trajectory of
Allometric Growth With Switches and
Divisions
Based on the observations of the properties of the cell cycle
trajectory in several scRNASeq datasets, we hypothesized that it

can be recapitulated by a formal model of linear growth in
logarithmic coordinates with switches and a cell division event.
The suggestedmodel is hybrid in nature, similar to some previously
published models (Singhania et al., 2011; Noël et al., 2013).
Namely, we distinguish the extrinsic observable cell state,
characterized by continuous variables, and the intrinsic hidden
cell state, characterized by discrete variables. The intrinsic state of a
cell determines the parameters of the extrinsic dynamic process as
in (Singhania et al., 2011).

FIGURE 1 | Cell cycle trajectory (CCT) of CHLA9Ewing sarcoma cell line in the single cell transcriptomic space. (A)Each cell is represented by an arrow reflecting themomentary
direction and the speedof transcriptomic changes, estimatedwithRNAvelocity. Twoprojections are shown, in the first twoprincipal components and in theplaneofS-phase andG2-M
scores. The color of the arrows signifies either the total amount of RNA counts in the single cell profile (blue to yellow scale) or the cells in non-proliferative state (shown in grey). Red line
shows an approximation of the cell cycle trajectory with a principal curve computed with ElPiGraph, directly in the 30-dimensional space of the first principal components of the
dataset. Several particular positionsalong the trajectory (A,B,C,D)mark either thepeaksof theRiemanniancurvatureof theprincipal curve (alsoshown inB)panel) or thebeginning (0) and
the end (E) of the trajectory. (B) Pseudotemporal transcriptomic dynamics of several cell cycle-related genes along CCT, shown relatively to themaximum value units. The pseudotime
range is from 0 to 49, corresponding to the number of nodes in the approximation of the principal curve (50 nodes). In black, an estimation of the Riemannian curvature of the principal
curve is shown, with peaks indicated by letters (A,B,C,D). (C) Pseudotemporal dynamics of genes whose expression is relatively high in one of the transcriptional epochs (trajectory
segment) compared to other epochs. For each epoch the genes are ranked accordingly to the fold changeof themean expressionof the gene in the epochandoutside the epoch.Only
the genes having relatively large total variance across all cells are shown, and only top 20 genes maximum are shown per epoch for readability.
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Let the extrinsic state of a proliferating cell be determined by n
substances quantified by their amounts, not their concentrations.
Instead of their natural units (such as RNA counts), let us use the
logarithms of these amounts. The cell is represented as an n-
dimensional vector, and all possible combinations of these vector
components define the cell configuration space. For our model, it
is important that the considered n quantities are extensive
measures, not intensive ones. Extensiveness here means that
the total amount of a substance is a sum of the amounts
found in different parts of a cell. A division (for two almost
equal) daughter cells is formalized as a shift by the vector with all
components equal −log 2 in this space. A relevant example of
extensive quantity is the total amount of RNA molecules present
in a cell, or the amount of any specific subset of RNA molecules,
i.e., representing mRNAs of the genes involved in a particular
process (such as mitosis or S-phase).

We assume that there exists a finite discrete set of intrinsic cell
states. In each of these states, the cell follows a linear trajectory in
the extrinsic and continuous cell state space. This trajectory
extends until the cell meets a condition, where a switch into
another intrinsic state of the cell happens, which changes the
direction of the trajectory. For simplicity, we assume that the
conditions of a switch can be described by a linear function. The
cell movement continues until a particular condition is met in
which the cell division event is triggered leading to the
aforementioned translation of the vector representing the
extrinsic cell state.

Let us introduce some mathematical notations and consider a
deterministic automaton A whose complete state is represented
by a pair (x, s), where x ∈ Rn is a vector in n-dimensional
continuous space (extrinsic state), and s ∈ S is an integer
number from a finite set S � {S1, ‥, Sm} (intrinsic state). In
the rest of the study, we will call x a position ofA and s an intrinsic
state of A. We will denote the automaton A in position x and in
the intrinsic state s as A(x|s).

Each intrinsic state Sk is parameterized by a vector ak ∈ Rn, k �
1‥m and by a linear manifold Dk of dimensionality n − 1
embedded in Rn (hyperplane), which we will call “the cell
division hyperplane”. Dk can be undefined, in this case, we
denote Dk � null.

Let us also introduce a set of p functions G � {g1, . . . , gp}, gi:
S→ S, which we will call switches. Each switch gi is a map which
converts an intrinsic state sj ∈ S into another intrinsic state sr ∈ S.
Each switch gi is parametrized by a hyperplane Li existing in Rn

and inducing the switch function gi each time the trajectory of the
automaton intersects Li (see Figure 2A).

Finally, we introduce the cell division event ϕ which is a map
between two states ofA, such that ϕ((x, s))→ (x + d, sd), where d ∈
Rn− is a vector with negative components, and sd ∈ S is one of the
possible intrinsic states of A.

We will characterize any hyperplane here by a linear
functional f (x|b, c) � b + < c, x >, b ∈ R, c ∈ Rn, where < , >
denotes the standard scalar product between two vectors. Using
such a functional, for any pair of vectors xi, xj ∈ Rn we can
determine if the linear segment connecting xi and xj intersects the
hyperplane or not. If the segment intersects the hyperplane then
f (xi)f (xj)< 0, and if it does not intersect then f (xi)f (xj)>0. f (xi)f (xj)� 0

is satisfied only in a non-general position when either xi or xj is
located exactly on the hyperplane.

The update rules for the automaton A are described as follows.
The automaton is in some initial position x0 and the intrinsic state
s0. It starts to move along the linear trajectory described by the
equation x � x0 + a0t, where a0 is the vector of movement
associated with the state s0. This movement continues unless
one of the two events happens. In the first case, A reaches the
corresponding cell division planeD0 (in caseD0 is not null). Then,
the cell division event is triggered, A (x|s) → A (x + d|sd). In the
second case, x reaches a switch hyperplane Lj and then a switch of
the intrinsic state of A happens without changing its position,
A(x|s0) → A(x|gj(s0)). The movement continues along a new
trajectory, corresponding to the new cell state, following the same
rules: either the trajectory hits the cell division hyperplane or any
of the switch planes.

To summarize, the automaton A is characterized by its
position and the intrinsic state, see Figure 2A. The asymptotic
(in the infinite time limit) temporal dynamics of A is
parameterized by a set of cell division planes D � Di, i � 1,...,k, a
set of switch functions G � {gi}, i � 1, . . . , p, the corresponding
switch hyperplanes L � {Li}, i � 1, . . . , p, and the parameters
of the cell division event (namely, the translation vector d and
the state after cell division sd).

It is convenient to encode the state s as a binary sequence of
length r representing the on-off states of r triggers. In this case, a
switch can be thought of as changing only one particular trigger
from on to off or vice versa. In many situations, this makes the
description of switch functions g: S→ S quite natural as explained
below. Also, the state of the trigger might not be strictly binary but
characterized by several discrete positions, for example {0, 1, 2},
just as it is the case in modeling multi-level discrete dynamics,
where each discrete variable can take a value from a pre-defined
finite set of levels.

The exact asymptotic trajectory of the automaton A can, in
principle, depend on the initial position x0 and the initial intrinsic
state s0 of A.

3.3 Simple Example of Dynamics With
Switches and Cell Division Events
In the above-described switch-like dynamics, one can find
examples of relatively complex behaviors even for simple
model settings (Figure 2,B-E). As an illustration, we
modeled a simple dividing automaton characterized by a
position vector x with only two coordinates x1, x2. The
automaton intrinsic state s encoded by only one binary
trigger, so the automaton can be in two states s � 0 and s �
1, characterized by two vectors of movement a0 and a1,
respectively. In order to be able to modify the trigger in
both directions, we have to introduce two switch
hyperplanes L(+) and L(−) with corresponding switch
functions g(+) � 1 (switch trigger on) and g(−) � 0 (switch trigger
off). Note that in this case the switch functions are constant, i.e., they
map any state (which can be either 0 or 1) to a particular state. Let us
also assume that the division event changes the automaton position
but does not change its intrinsic state.
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In this simple toy example, by slightly varying parameters of
the switching hyperplanes and the movement vectors, one can
observe several interesting scenarios. Firstly, we observe that the
automaton can approach and stay on a limit cycle trajectory, or
it can diverge, meaning that one of the coordinates of the vector
x goes to infinity or zero (Figure 2,B-C). Convergence or
divergence to a limit cycle depends on the initial intrinsic
state and the initial position of the automaton on the birth
hyperplane.

In a more complex scenario, the switching dynamics
trajectory can be characterized by two limit cycles that can
be achieved from different initial intrinsic states and positions
(Figure 2D).

By varying the positions of the switching hyperplanes in this
toy example, one can observe the effect of non-trivial sensitivity to
the initial conditions (Figure 2E). In this case, the birth
hyperplane can be split into a sequence of alternating intervals
of equal length such that starting from one interval, the dynamics

finally converges to the limit cycle, and starting from another
interval, the dynamics diverges to infinity.

3.4 Two-Dimensional Model of Cell Cycle
Progression, Fitted to the Single Cell
Transcriptomic Data
Let us denote the aggregate signal related to the activation of
genes associated with the S-phase of the cell cycle program as S,
and the signal related to the activity of genes in G2 and M phases
as M. Therefore, we will characterize the position of the
automaton by a vector (xS, xM), just as it is presented in
Figure 1A, right panel. Let us denote the position of the
turning points in the trajectory as (x(i)

S , x(i)
M ), where i ∈ {0, A,

B, C, D, E}.
We will encode the state of the system by the levels of two

triggers, one associated with the S signal and another associated
with the M signal. The three levels are denoted as a set

FIGURE 2 | General schema of switch-like dynamics and application to a toy model with a single trigger. (A) Schematic two-dimensional example of a limiting
trajectory with division. The division hyperplane D is shown in purple, solid line. The birth hyperplane B is obtained from D by translation at vector d, shown in cyan (the
most natural is to assume all the components of d to be –log 2). Two switch hyperplanes L1 and L2 are shown by dotted grey lines. The limiting cycling trajectory is
represented by blue arrows. (B,C) Example of single limiting cycle in the switching dynamics. Depending on the initial state of the automaton and the initial position,
the trajectory enters into the limit cycle or degenerates (goes to infinity). For the same parameters, four initial conditions are shown. The trajectory is plotted with semi-
transparent blue color such that the intense blue line designates the trajectory cycling multiple times on top of itself. (D) Example of existence of two limit cycles.
Depending on the initial state and position, the automaton ends up in one of the two possible limit cycles. (E) Example of non-trivial dependence of the switching
dynamics on the initial position of the automaton. The trajectories drawn by different colors from three closely located initial positions are shown, with two leading to
degenerated dynamics and one located in between the first two, leading to the limit cycle. In (B–E) panels, the initial position of the automaton is always shown at the birth
hyperplane B (shown by dashed purple line), therefore, it is characterized by a single number.
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{2 � synthesis, 1 � decay, 0 � degradation}. Intuitively, these levels
correspond to the state of active transcription of the
corresponding set of transcripts (“synthesis”), absence of active
transcription in which the transcripts are passively degraded
according to some base rate (“decay”), and the process of
active degradation when the transcripts are degraded more
rapidly than the base rate (“degradation”). The state of the
system is thus encoded by a pair of 3-level variables i, j ∈ {0,
1, 2}. The 2D vectors of linear movement aij are encoded by six
rates kvj, i ∈ {0, 1, 2}, v ∈ {s, m}, such that aij � (ksi , kmj ). Following
the intuition behind the introduced trigger levels, we assume
constraints kv2 > 0, kv1 < 0, kv0 < 0, kv0 < kv1 < kv2.

Let us introduce three switches. The first switch g1 turns on the
synthesis of both variables, i.e., g1 (•, •) → (2, 2), where •
designates any level of the trigger. The second switch turns off
the synthesis of genes in S-phase: g2 (2, •) → (1, •). The third
switch turns off all the transcription, g2 (•, •)→ (1, 1). We assume
that the division is possible only in the state (1, 1) with
transcription switched off, and that after the division event,
the cell enters into the state of active degradation of the cell
cycle genes (0, 0).

The three introduced switches will be characterized by the
corresponding switching hyperplanes. The first switch is
triggered when the sum of the collective aggregated levels
of expression of the genes involved in S and G2/M phases
reaches some minimum cmin, therefore, the linear functional
associated with the first switch hyperplane is f1 (xs, xm) � xm +
xs − cmin. The second switch is triggered whenever the
collective aggregated level of expression of S phase-
associated genes reaches some maximum value Smax,
therefore, the linear functional associated with the second
switch hyperplane is f2 (xS, xM) � xS − Smax. Finally, the third
switch is triggered when the collective aggregated level of
expression of G2/M phase-associated genes reaches some
maximum value Mmax, therefore, the linear functional
associated with the third switch hyperplane is f3 (xS, xM) �
xM − Mmax.

In the end, the cell division event is triggered when the
collective aggregated level of expression of G2/M phase-
associated genes crosses some threshold Me, therefore, the
linear functional associated with the division event is fd (xS,
xM) � Me − xM.

Let us define the number of parameters in this simple
switching model. Three introduced switches are characterized
by 4 parameters cmin, Smax, Mmax, Me. There exist six rates kvi
characterizing the movement vectors in the 9 � 32 possible states,
corresponding to all possible combinations of trigger levels.
However, qualitatively, the dynamics in each automaton state
is determined only by the direction of the corresponding vector
and not its amplitude: therefore, one parameter per state visited is
needed during the progression through the cell cycle. Under
certain constraints on the rates formulated above, and also on the
switch parameters (namely, cmin < Smax, Mmax, Me < Mmax), the
suggested model is constructed such that along the cell cycle
trajectory only four states will be visited in a predefined order (0,
0) → (2, 2) → (1, 2) → (1, 1). Therefore, the total number of
parameters equals 8.

Knowing the position of four characteristic points along
the cell cycle trajectory, namely
(x(B)

S , x(B)
M ), (x(C)

S , x(C)
M ), (x(D)

S , x(D)
M ), (x(E)

S , x(E)
M ), it is possible

to completely parameterize the automaton. The starting and
the ending point of the cell cycle trajectory must be connected
by the relation (x(0)

S , x(0)
M ) � (x(E)

S , x(E)
M ) + d, where d is the vector

with components (−log 2 102, −log 2 102).
Therefore, we put Smax � x(C)

S ,Mmax � x(D)
M ,Me � x(E)M .

Instead of using directly the B point, we will use the position
of the non-proliferating cell with the maximum sum of the
coordinates in the S, M plane, and we designate it as xB′

S , x
B′
M

(other choices are also possible). Then cmin � x(B′)S + x(B′)
M . Then

we define rates:

kv2 �
x C( )
v − x

B′( )
v

‖xC − xB′‖ , k
S
1 �

x C( )
S − x D( )

S

‖xC − xD‖ , k
M
1 � x E( )

M − x D( )
M

‖x E( ) − x D( )‖, k
v
0

� x
B′( )

v − x 0( )
v

‖x 0( ) − xB′‖
The resulting steady state cell cycle trajectory is shown in

Figure 3.
We denote the linear segments of the trajectory shown in

Figure 3 as T1, Ts, T2, Tm, assuming that they have significant
overlap with G1, S, G2 and M phases correspondingly.

The suggested model describes 2D dynamics of the signals S,
M which are empirically shown to explain most of the variance of
all cell cycle genes in scRNASeq data (see below). However,
higher-dimensional generalization of the suggested model is
always possible. Also, in the model, we simplified the observed
dynamics in Figure 1A, left which seems to contain five segments,
with an additional curvature peak in point A. The segment A-B
seems to contain non-proliferating cells, and might correspond to
the transcriptional epoch most similar to the quiescent cell state,
when the active degradation of the mitotic transcripts is
completely finalized. The existence of this epoch is less
pronounced in the S, M projection (Figure 1A,right), therefore
we merged segments 0-A and A-B’ as the first order
approximation.

3.5 Connection Between the Effective
Embedding Dimensionality of Cell Cycle
Trajectory and the Number of Intrinsic
States
The introduced cell cycle modeling framework is a simple and
empirical model, lacking mechanistic details. Its main advantage
is the possibility of analytical treatment of the most general
geometrical cell cycle trajectory properties. In this section, we
use this framework to prove a theorem connecting the number of
the intrinsic states of the cell cycle trajectory and its intrinsic
dimensionality.

This geometry is embedded into a space of omics
measurements, whose dimensionality might be very high (e.g.,
expression of thousands of genes). However, we can assume that
the intrinsic dimensionality (ID) of CCT is much smaller and that
the extrinsic state of the cell progressing through the cell cycle can
be characterized by n extensive variables, where n is relatively
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small. We will refer to n as CCT embedding dimensionality.
Empirically, it can be estimated by studying the snapshot of
dividing single cells profiled with a particular technology, and
computing its global intrinsic dimensionality (ID), provided that
other non cell cycle-related sources of heterogeneity could be
dismissed in measurements. Estimating ID can be done using one
of the many existing methods for ID estimation (Albergante et al.,
2019; Bac and Zinovyev, 2020; Bac et al., 2021).

Let us establish the expected relation between n and the
number of intrinsic states m of the automaton approximating
CCT. We intend to claim that theoretically n should match m
under some natural assumptions.

We first state thatm cannot be smaller than n. In the theory of
allometric growth with switches this statement has a character of
strict theorem (see below), m ≥ n. Secondly, we state that n is
expected to be at least equal to m. Both statements are based on
argumentation using “general position” statements. However, the
former one is strictly necessary, while the latter one represents a
feasible hypothesis.

Theorem on the number of intrinsic cell cycle states. The
number of segments m in the cell cycle trajectory modeled by the
automaton with switches and linear growth in logarithmic
coordinates is not less than the cell cycle trajectory intrinsic
dimensionality n, or m ≥ n.

Proof. Let us consider the CCT dynamics in its n coordinates
each of which represents an extensive variable. The variable
extensiveness means, in particular, that its value, after the cell
division moment, is divided by two. In logarithmic scale the cell
division corresponds to the shift by vector d ∈ Rn with n
coordinates each of which equals −log 2. Each intrinsic state
is associated with a growth vector ai ∈ Rn, i � 1‥m. All non-
negative linear combinations of ai form a convex cone
Q � {∑m

i�1λiai}, λi ≥ 0. If m < n then the set of vectors {d, {ai,

i � 1‥m}} is almost always linear independent and −d∉Q. Hence,
−d is linearly separable from Q, according to the standard
separability theorems. Linear separability of a point from a
convex cone can be expressed as that for any non-zero x ∈ Q
we can find a linear function l () such that l(d) � 0 and l(x) > 0.
This makes the periodic cell cycle model impossible, because the
function l(x) increases along any growth direction, since for any i
and λ > 0 we have l (x + λai) � l(x) + λl(ai) > l(x), and after cell
division l() does not change since l(x + d) � l(x) + l(d) � l(x).
Therefore, the necessary condition of existence of stable cell cycle
trajectory is m ≥ n, when the set of vectors {d, {ai, i � 1‥m}} is
linearly dependent, and also such choice of ai that −d ∈Q. Only in
this case one can satisfy the cyclic condition ∑m

i λiai + d � 0 in
general position of vectors {d, {ai, i � 1‥m}}.□

In simple words, this means that if m < n then in a general
position, each cell division (shift by d) moves a cell state out of the
subspace defined by the growth vectors. The only way to make the
trajectory stay in this subspace is to make the cell division vector d
belong to this subspace that can be guaranteed only if m ≥ n (see
Figure 4). The conditionm ≥ n is necessary but not sufficient for a
model to converge to a limit cycle. For example, in Figure 7, m �
n � 2 (the theorem condition is satisfied) but the limit cycle in the
model can be achieved only from some initial conditions and for
some choice of vectors a0, a1.

Note that the proven Theorem is more general than the model
of allometric growth with switches itself since it does not assume
any particular shape of the switching surfaces Lk: they can be
linear or nonlinear. Another generality consists in that the
vector d can have any non-zero coordinates, not necessarily equal
to −log 2.

Examples in Figures 2, 3 shows the case n � 2,m > n. The cell
cycle trajectory modeled in Figure 3 contains m � 4 segments in
2D, which makes the vectors ai ∈ R2, i � 1, . . . 4 linearly

FIGURE 3 |Modeling transcriptomic cell cycle trajectory by an allometric growth with switches. (A) Piecewise linear cell cycle trajectory fit to the single cell RNASeq
data (cell cycle trajectory, shown in Figure 1A,right). The model contains three switching planes L1, L2, L3, and is characterized by four states. The states are encoded
with two triggers, each possessing three possible levels 0,1,2, the biological meaning of which is specified in B). (B) The growth vectors associated with each state are
encoded by rates kSi , k

M
j , such that the components of the growth vectors equal (kSi , kSj ), where i and j are the levels of the corresponding triggers.
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dependent, and, of course, d ∈ R2. The cell cycle model based on
allometric growth is not contradictory in this case.

Now let us formulate our second statement. We can recall that
vectors ai are confined to the n-dimensional intrinsic subspace of
CCT by projection from the multi-dimensional ambient space of
all elementary measurements. The choice of n depends on our
estimate of the CCT intrinsic dimensionality. However,
movement along vectors ai can be also seen in the complete
space with thousands of coordinates. In this space, for sufficiently
small m, any m vectors will almost always be linearly
independent. Only projection into smaller than m-dimensional
space will guarantee that these vectors are linearly dependent.
This makes us hypothesize: if m segments are observed in CCT
piecewise linear approximation in any linear projection then the
most natural choice for n is at least m, i.e., n ≥ m. Combining the
two statements (m ≥ n and n ≥ m) allows us to state that the
correspondence m � n is the most natural expectation for a cell
cycle trajectory.

We explicitly verified this correspondence for the trajectory
shown in Figure 1. The curvature analysis suggests the existence
of five segments for the cell cycle trajectory reconstructed in the
subspace of 30 first principal components of the complete dataset.
However, some of these components might correspond to the
variance not related to the progression through the cell cycle. In
order to diminish the possible role of this variance, we considered
a reduced version of the dataset confined to cell cycle-related
genes only. We estimated the global intrinsic dimensionality,
using six different linear ID estimators from scikit-dimension
Python package (Bac et al., 2021), and it varied from 2 to 7, with
average value 4.0. The scree plot shows existence of two dominant
eigenvalues explaining 83% of total variance, indicating that the
trajectory is relatively flat and located close to a 2D linear
manifold. However, the residual variance demonstrated visible
patterns related to transcriptional epochs in at least the first four
principal components (Figure 5). The distribution of projections
on the first four principal components well separated some
transcriptional epochs (Figure 5,diagonal). Also, projections in

higher dimensions highlighted the existence of sharp turning
points between the segments which were less clear in the 2D
projection on the first two principal components.

In addition, we split the data points into five classes according
to projection on five segments of the principal curve (0-A, A-B,
B-C, C-D, D-E), each of which is approximately linear. For each
of this class, we computed the unity vector corresponding to the
direction of the first principal component in the space of cell cycle
genes with 198 dimensions. Afterwards, we estimated the effective
rank of the matrix composed of five vectors representing the
directions of the transcriptional epochs in the multi-dimensional
space (see Methods), and it appeared to be 4, which indicates to
that at least four out of five vectors determining the trajectory
segments can be considered linearly independent.

As a result, we concluded that the embedding dimensionality
for the transcriptomic cell cycle trajectory can be estimated as
close to four. Therefore, restricting the trajectory to the plane of
aggregate collective expressions of genes associated with S phase
and G2/M phase (which roughly corresponds to the first two
principal components) is a useful but incomplete approximation
of CCT dynamics. Our reasoning suggests searching for
additional biologically meaningful and statistically independent
scores describing the progression through the cell cycle. The
concrete gene expression dynamics shown in Figure 1B provides
a hint in this direction, but a careful and complete investigation of
this question should be a subject of a separate study. As an
additional argument, we can mention that some mathematical
cell cycle models based on a fit to real data are four-dimensional
(Singhania et al., 2011).

3.6 Extending the Modeling Formalism to
Piecewise Smooth Trajectories: Simple
Kinetic Model of Cell Cycle at
Transcriptomic Level
The piecewise-linear model of automaton with switches
described in the previous sections is phenomenological

FIGURE 4 | Condition of existence of stable cell cycle trajectory in the model of allometric growth with switches. For illustration, only two growth vectors a1, a2 are
considered, and 2D or 3D embedding space. Stable piecewise linear trajectory is possible only if the negative of the cell division vector −d belongs to the convex cone
Q � ∑m

i λi ai , λi ≥ 0. Only in this case, the cyclic equality ∑m
i λi ai + d � 0 is possible. In general position, the condition can be met only when m ≥ n, where n is the

dimensionality of the trajectory space (see text for the formal proof).
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and lacks any notion of physical time and connection to the
underlying kinetics of the lumped expression of genes
involved in S phase and G2/M phases. A simple way to
make it more concrete but still analytically tractable
consists in introducing explicit processes of synthesis and
degradation of the corresponding quantities, with kinetic
rates changing in time. The simplest form of such

dependence is piecewise-constant, with changes in the value of
kinetic rates corresponding to the observed switches between
transcriptional epochs of cell cycle progression.

Assuming the same epochs of cell cycle progression as above,
and the same notations for variables (S,M, lumped expression of
genes involved in S and G2/M phases correspondingly), their
dynamics can be expressed as:

FIGURE 5 | Visualizing the transcriptomic cell cycle trajectory of CHLA9 cell line in projections on the first eight principal components, computed in the subspace of
known cell cycle genes. The data points are partitioned according to the segmentation of the CCT into five transcriptomic epochs, also shown in Figure 1, 0-A (blue), A-B
(orange), B-C (green), C-D (red), D-E (purple).
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dS

dt
� kSt t( ) − kSd t( )S

dM

dt
� kMt t( ) − kMd t( )M

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (1)

These equations must be accompanied by circular boundary
conditions

S T( ) � SfS 0( )
M T( ) � MfM 0( ){ , (2)

where Sf, Mf > 1 are some numbers describing the drop of the
lumped cell cycle variables after the moment of cell division. The
most natural choice for them is Sf,Mf � 2, as before: however, here
we prefer not to fix these parameters and rather fit them from the
actually observed trajectory.

There exist several reasons for which Sf and Mf might
appear in the range 1 ≤ Sf, Mf ≤ 2 and not be equal. The
most important of them is the technical biases introduced by
sampling a limited amount of RNA, in the process of single cell
transcriptome sequencing. It can lead to the situation when
after cell division, the amount of RNA decreases non-
uniformly between molecular processes. In particular, in all
our experiments, we do observe the total amount of RNA reads
does not decrease exactly by 2.0 and is rather close to 1.7-1.8.
The decrease of the individual gene expression after cell
division in terms of the number of reads, forms a bell-
shaped distribution around this value with standard
deviation close to 0.2.

Equation 1 with piecewise-constant in time kinetic rates and
the boundary conditions 2) can be solved analytically for arbitrary
number of levels in the piecewise-constant functions kt(t), kd(t).
The resulting dynamics in the plane log S(t), log M(t) represents
a cell cycle trajectory parameterized by physical time, which
consists of piecewise-smooth segments of three types. If a
segment is characterized by kSt(t) � kMt (t) � 0 then the
corresponding segment is linear in the logarithmic coordinates
(since the underlying dynamics is exponentially decaying). If a
segment is characterized by kSd(t) � kMd (t) � 0 then the
corresponding segment is also linear in both logarithmic and
initial coordinates. For a segment where at least one degradation
kpd and one production kinetic rate kpt are positive, the dynamics
follows a nonlinear curve in the logarithmic space, which remains
monotonous (each of the coordinates does not change the
derivative sign). The nonlinearity of the segment becomes
important when one of the variables is in a stage exponentially
increasing or decreasing, while the other is in a linear or close to
saturation stage. Otherwise, the segment remains close to a line in
logarithmic coordinates.

In order to choose the number of constant levels of the
kinetic rates, we studied the averaged RNA velocity values
along the cell cycle as a function of pseudotime (see Figures
6A,B). For the S variable, we decided to keep only one non-
zero level of kSt(t) during the transcriptional epoch Ts, and two
levels of kSd(t), one for the exit from mitosis epoch and one for
the rest of the dynamics. The choice was similar forM variable,
but we took into account that a boost of expression of the

lumped G2/M genes is visible in the beginning of the
transcriptional epoch T2s, just after switching off the S
phase genes. During mitosis we assumed that all production
rates are zero, corresponding to the lack of transcription in the
M phase. The resulting choice of levels for the kinetic rates is
shown in Figure 6C.

The advantage of the proposed simple model of cell cycle
trajectory is that it is fully analytically tractable and its
parameters can be uniquely fit to the cell cycle trajectory
observed in single cell data, given some biologically
meaningful constraints. Thus, assuming that the duration of
mitosis is by order of magnitude faster than the T1s epoch, for
CHLA9 cell line one estimates the ratio between transcriptional
epochs T2s and T1s close to 1.0 and the value of transcriptional
boost of G2/M genes in T2s epoch close to 2.5-fold (Figure 6C).
The determined values of all other parameters can be found in
the Jupyter notebook at https://github.com/auranic/
CellCycleTrajectory_SegmentModel.

3.7 Fitting Parameters of the Simple Kinetic
Cell Cycle Model
Using the choice of levels for piecewise constant kinetic rates
shown in Figure 6C, we could derive the dependence of the initial
state of the cell cycle from the kinetic rates and the durations of
four transcriptional epochs T1, T1s, T2s, Tm:

S 0( ) � kSt
kS,2d

ek
S,2
d
T1s − 1

Sfe
kS,2
d

T1s+T2s+Tm( ) − e−k
S
dT1

M 0( ) � kMt
kM,2
d

p · ekM,2
d

T1s+T2s( ) − p − 1( )ekM,2
d

T1s − 1

Mfe
kM,2
d

T1s+T2s+Tm( ) − e−k
M
d T1

.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(3)

Starting from the initial point of the trajectory S (0), F (0) it is
possible to analytically write down the coordinates of all other
borders of the transcriptional epochs:

S T1( ) � S 0( )e−kSdT1

M T1( ) � M 0( )e−kMd T1

S T1 + T1s( ) � kSt
kS,2d

1 − 1 − kS,2d
kSt

S T1( )( )e−kS,2d T1s( )
M T1 + T1s( ) � kMt

kM,2
d

1 − 1 − kM,2
d

kMt
*M T1( )( )e−kM,s

d
T1s( )

S T1 + T1s + T2s( ) � S T1 + T1s( )e−kS,2d T2s

M T1 + T1s + T2s( ) � p · kMt
kM,2
d

1 − 1 − kM,2
d

p · kMt
*M T1 + T1s( )( )e−kM,2

d
T2s( )

S T( ) � S T1 + T1s + T2s( )e−kS,2d Tm

M T( ) � M T1 + T1s + T2s( )e−kM,2
d

Tm ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where T � T1 + T1s + T2s + Tm is the full duration of the cell cycle.
One can estimate the position of these points from the analysis of
observed cell cycle trajectory curvature ((s0, m0), (s1, m1), (smax,
ms), (sm, mmax), (st, mt), shown by red points in Figure 6D)) by
requiring that the model trajectory should pass as close as
possible to them. This defines an optimization problem which
can be easily solved numerically by iterations, using the simplest
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FIGURE 6 | Simple kinetic model of cell cycle transcriptome dynamics. (A)Mean RNA velocity values for S-phase and G2/M genes. (B) Pseudotemporal dynamics
of S-phase and G2/M scores (shown with more intense color) and mean RNA velocity values (shown with semi-transparent color). (C) Description of the simple kinetic
model of cell cycle transcriptome. Model equations are shown on the left and the changes in the values of kinetic rates (degradation, in red, and synthesis, in green). (D)
Result of fitting the model dynamics to cell cycle transcriptome dynamics observed in CHLA9 cell line. (E,F) Inferred physical time and pseudotemporal dynamics of
cell cycle transcriptome in CHLA9 cell line.
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fixed-point algorithm. The details of parameter fitting are
provided in the Jupyter notebook at https://github.com/
auranic/CellCycleTrajectory_SegmentModel.

We note that this optimization does not allow us to determine
all the model parameters uniquely, since they enter in the
aforementioned optimization functional as certain

combinations (as simple rational functions), namely, kSt
kS,2
d

, kMt
kM,2
d

,

kSdT1, k
M
d T1, k

S,2
d T1s, k

M,2
d T1s, k

S,2
d T2s, k

M,2
d T2s, k

S,2
d Tm, k

M,2
d Tm.

Two other parameters M
f
, S

f
define the observed cell division

vector in (2). One extra parameter p denotes transcriptional
production acceleration of G2/M genes during the
transcriptional epoch T2s compared to the transcriptional
epoch T1s (Figure 6C). Not all these quantities are
independent, some of them are connected through nonlinear
relations:

kS,2d · T2s

kS,2d · T1s

� kM,2
d · T2s

kM,2
d · T1s

,
kS,2d · Tm

kS,2d · T1s

� kM,2
d · Tm

kM,2
d · T1s

, (5)

which overall gives 11 independent combinations of parameters
provided 10 measurable coordinates of cell trajectory turning
points in Figure 6D.

Altogether, this means that 1) one needs to introduce at least
one additional constraint in order to make the trajectory
reconstruction unique and 2) physical time of the epochs T1,
T1s, T2s, Tm can not be uniquely computed from the cell cycle
trajectory observed in the plane of S-, G2/M-phase scores. From
the analysis of Eq. 5 it follows that the model can be uniquely
parameterized if one will constrain one of the three quantities
p, T2s

T1s
, Tm
T1s
. Finally, it is convenient to fix the durations T1, T1s to

some arbitrary values which allows to determine parameters
kSd, k

M
d and the ratios T2s

T1s
, Tm
T1s
.

In our numerical experiments, we fixed the values of T1 and
T1s to their corresponding pseudotemporal durations (as the
corresponding fractions of the total length of the cell cycle
trajectory). We also fixed the ratio Tm

T1s
� 10, assuming that the

mitosis must be fast in physical time compared to the
transcriptional epoch including activating the expression of the
genes involved in the S-phase.

3.8 Simulating Cell Cycle Trajectories With
Various Durations of Temporal
Transcriptional Epochs
After fitting the kinetic parameters for an observable in the
S-phase vs G2/M score plane cell cycle trajectory, one can
perturb the parameters and investigate how the trajectory
geometry depends on them.

In real life scRNASeq datasets, we observe that CCT geometry
can appear very different in various biological systems. When
projecting onto the plane of standard scores of S-phase and G2/M
phase genes, scRNASeq datasets might not always reveal the
circular nature of CCT. In some cases, the circular structure is not
at all detectable via this projection, (Figure 7), and the two scores
might be connected via a strong positive or negative correlation.
Also, in some systems we observed co-existence of several CCT
shapes, like it is the case in the U2OS cell line dataset

(GSE146773). The univariate histograms of two score
distributions might be characterized by bi- or uni-modal
character.

Quite strikingly, we were able to reproduce these patterns
qualitatively by fitting the kinetic parameters to the CHLA9
scRNASeq dataset, and then by manipulating the durations of
T1, T1s and T2s transcriptional epochs and producing computer-
simulated trajectory examples. Thus, significant reduction in the
duration of both T1 and T1s epochs led to the negative correlation
pattern between S-phase and G2/M scores. This could be
interpreted as drastic reduction of the G1 cell cycle phase. In
real life datasets, such pattern has been observed in human
embryonic stem cells (dataset GSE85917).

If both T1 and T2s were shortened then this led to the increase
of the positive correlation between two scores, (Figure 7). This
pattern was indeed observed in human bone marrow and human
neural epithelial stem cell-related single cell datasets (GSE99095
and GSE81475).

3.9 Predicting Cell Line Doubling Time From
the Geometrical Properties of Cell Cycle
Trajectory
The developed simple kinetic model leads to a simple prediction
which can be validated: the total length of the transcriptomic cell
cycle trajectory must diminish in rapidly dividing cells. This can
be interpreted as a consequence of the fact that in a rapid
proliferation process, during the post-mitotic G1 phase (T1
transcriptional epoch), there is not enough time to degrade all
mitotic transcripts produced before the cell division moment, so
they are reused in the consequent cell cycle phases, shortening the
subsequent G1 phase.

We verified this prediction in a relatively large collection of cell
line scRNASeq datasets. Using the data from Cellosaurus
database, we identified those few ones for which the cell line
doubling time has been estimated, and for which the number of
available good quality single cell profiles exceeded 300.

We used the total length of the principal circle fit in the 2D
plane of the scaled tomaximum equals 1 cell cycle phase scores, as
a proxy to quantify the level of CCT contraction (see Methods).
This measure was correlated with cell line doubling time in hours.
Two cell lines CHLA10 and SCC25 appeared to be strong outliers
from otherwise significant positive regression line (Pearson
correlation 0.931, p-value � 10–5) (Figure 8). When this
regression line was used as a predictor, CHLA10 cell line was
predicted to have doubling time around 64 h (instead of
determined by database search of around 32 h) and for SCC25
around 78 instead of 50 h. It is known that cell line doubling time
can vary depending on the growth conditions, so we hypothezised
that this variability could explain the appearance of two outliers.
If two of them were kept in the regression calculation, it remained
significant but less strong (Pearson correlation 0.67,
p-value � 0.01).

3.10 Code Availability
The Python notebooks allowing the reader to reproduce all the
computations presented in this manuscript are freely available
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from https://github.com/auranic/CellCycleTrajectory_
SegmentModel.

4 DISCUSSION

This paper provides a framework for analyzing the cell cycle
trajectories using single cell omics measurements such as
scRNASeq data. Unlike the previously suggested model of the
trajectory as a flat circle, we provide arguments that at least in
some conditions the piecewise-linear in logarithmic coordinates
approximation appears to fit the single cell transcriptomic data
and to be biologically tractable. In particular, it allows us to
delineate transcriptional epochs of cell cycle at which the
corresponding segment of the trajectory remains close to
linear in logarithmic coordinates which corresponds to locally
allometric changes of the transcriptome.

We suggest two modeling formalisms to recapitulate the cell
cycle transcriptomic dynamics as a sequence of switches. The first
one is purely phenomenological and describes the dynamics as a
change of states of a hidden automaton, leading to the switches of
parameters of allometric growth, followed by a shift representing
the cell division event. The advantage of this formalism is that it
allows us to treat most general properties of cell cycle trajectory
geometry.

In particular, we could prove a fundamental theorem on the
number of intrinsic cell cycle states, which connects the number
of linear segments in the trajectory and the embedding
dimensionality of the cell cycle trajectory. The nature of this
theorem, relying on “general position”-type arguments, is
reminiscent of the well-known results imposing constraints on
the number of the system’s internal states and the effective
dimensionality of its environment, in several fields of science.
For example, the Gause’s law of competitive exclusion and its

FIGURE 7 | Studying the effect of shortening the durations of transcriptional epochs T1 and T1s or T1 and T2s on the geometry of cell cycle trajectory projected
onto the S-phase and G2/M-phase scores plane. The simulated trajectories (in the lower part of the figure) are produced by taking the parameters of the CHLA9 fit of
model dynamics (red plot) and changing the durations of T1 and T1s epochs (violet plot) or the durations of T1 and T2s epochs (blue plot). Each simulation shows the
trajectory (black line) sampled with Laplacian noise added, with score distribution histograms shown at the plot margins. The upper part of the plot shows six real-
life cell cycle trajectories observed in different systems, with GEO identifiers indicated. In each plot title either cell line name is provided, or hNPC means human neural
precursor cells, hESC - human embryonic stem cell, hBM - human bone marrow, hNESC - human neural epithelial stem cell.
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generalizations states that the number of competing species is
limited by the effective number of resources, characterizing the
environment (Gauze, 1934; Gorban, 2007). The famous Gibbs’
phase rule in thermodynamics connects the effective number of
the intensive variables with the number of components and
phases in a system at thermodynamic equilibrium (Gibbs,
1961; Alper, 1999). All these results are also similar in terms
of practical difficulties related to determining the effective
system’s dimensionality.

From the physico-chemical point of view, the effective
dimensionality is the number of the substances “lumps” in the
cell cycle kinetics. Lumping-analysis produces a partition of all
chemical species into a few groups and then considers these
groups (“lumps”) as independent entities (Wei and Kuo, 1969).
“Amounts” of these lumps are the combinations of the amounts
of the chemical species (Li and Rabitz, 1989; Li and Rabitz, 1990).
The theorem on the number of intrinsic cell cycle states that the
number of lumps n does not exceed the number of the internal
states of the cell cycle transcription machinery. This means that
kinetics allows reduction of the huge-dimensional space of all
components to n ≤ m number of aggregated lumps.

The second modeling formalism that we suggested connects
the geometric properties of the cell cycle trajectory to the
underlying transcriptional kinetics and physical time. It uses
the simplest chemical kinetics equations with kinetic rates
represented as piecewise-constant functions of time. We show

that the suggested model is fully analytically tractable and, under
some biologically transparent assumptions, allows unique
determination of its independent parameter combinations.
This type of modeling allowed us to explicitly study the
relation between pseudotime and physical time.

The precise connection between physical time and pseudotime
(geometric time) in the cell cycle is worth studying in more detail
since this is the central question in the dynamic phenotyping
approach in general (Golovenkin et al., 2020). Some of these
relations can be potentially quantified from exploring the
variations of point density along the inferred trajectories
(Chen et al., 2019). Related to this, one can expect non-trivial
phenomena in studying the cell cycle trajectory, such as effects of
partial cell population synchronization under assumption of
equal cell cycle durations in individual cells. This effect can
lead to the appearance of density peaks in the reconstructed
cell cycle trajectories that cannot be explained by nonlinear
relation between physical time and pseudotime (Gorban, 2007).

As one of the applications of the suggested modeling formalism,
we performed several numerical experiments on changing the
durations of the transcriptional epochs overlapping with G1 or
G2 cell cycle phases.We observed that these parametersmight have
a drastic effect on the shape of the CCT geometry and the form of
the univariate variable distributions. This model prediction can be
qualitatively confirmed by observing CCT properties of several
in vitro and in vivo systems. The effect of CCT shrinkage might be

FIGURE 8 | Dependence of cell line doubling time (DT) on the length of the principal circle (LP) approximating the cell cycle trajectory in the 2D plane of scaled
(divided by the maximum value) S-phase and G2M scores. On the left two examples of principal circles are shown in red, and cells in green. On the right the linear
regression line with confidence intervals is shown connecting the length of the principal circle with cell line doubling time (Pearson correlation 0.931, p-value � 10–5). The
regression formula is shown on the plot in top left corner. Two cell lines indicated by red crosses were eliminated from the regression as evident outliers.
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relevant in characterizing the cell cycle properties in various
conditions: for example, when one can manipulate the activity
of an oncogene (Aynaud et al., 2020). We show that the CCT
geometry can be predictive to estimate the cell line doubling time
which can be a proxy of cell cycle duration.

The relation between transcriptomic dynamics and the
established definitions of cell cycle phases and cell cycle
checkpoints has been discussed and even quantified using
standard molecular biology techniques (Giotti et al., 2019; Hsiao
et al., 2020). In this study, we deliberately leave open the question
on defining the exact cell cycle phase borders from the
transcriptomic CCT geometry. We found that this relation can
not be the exact match: one of the reasons for this is delayed
production of proteins, and dependence of the cell cycle
progression from post-translational protein modifications. The
transcriptomic dynamics is relatively slow, and activation of
protein synthesis is switched on in advance, leaving time for
producing enough proteins needed at a certain stage of the cell
cycle molecular program. Same is true for the process of
degradation of RNAs involved in cell cycle: a cell needs enough
time after mitosis to degrade all cell cycle-related transcripts.

The suggested formalism is not limited to transcriptomic data.
It looks promising to analyze the geometrical properties of cell
cycle trajectory measured in unsynchronized cell populations
profiled at various levels of molecular description, including
epigenetics and protein expression, when the datasets of
sufficient volume and quality will become available.

A more mechanistic description of the cell cycle has been
already proposed in the context of yeast or mammalian cells
(Tyson, 1991; Novák and Tyson, 2004). The mathematical
models can be based on chemical kinetics or on discrete or
hybrid frameworks but in all cases, the difficulty when
constructing these models is to select the genes that can
capture the main features of the cell cycle and the different

events that allow the switch from one phase to another. We
anticipate that the type of analyses presented here could orient the
choice of these genes and inform on their dynamics.
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