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Extracellular vesicles (EVs) are nanosized particles released by numerous kinds of cells,
which are now increasingly considered as essential vehicles of cell-to-cell communication
and biomarkers in disease diagnosis and treatment. They contain a variety of biomolecular
components, including lipids, proteins and nucleic acids. These functional molecules can
be transmitted between tumor cells and other stromal cells such as endothelial cells,
fibroblasts and immune cells utilizing EVs. As a result, tumor-derived EVs can deliver
molecules to remodel the tumor microenvironment, thereby influencing cancer
progression. On the one hand, tumor-derived EVs reprogram functions of endothelial
cells, promote cancer-associated fibroblasts transformation, induce resistance to therapy
and inhibit the immune response to form a pro-tumorigenic environment. On the other
hand, tumor-derived EVs stimulate the immune response to create an anti-tumoral
environment. This article focuses on presenting a comprehensive and critical overview
of the potential role of tumor-derived EVs-mediated communication in the tumor
microenvironment.
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INTRODUCTION

Extracellular vesicles (EVs), including exosomes and ectosomes, are nanoscale particles released by
nearly all types of cells (Théry et al., 2018). Relying on transferring microRNA (miRNA), long
noncoding RNA (lncRNA), messenger RNA (mRNA) and proteins, EVs modulate the functions and
phenotypes of target cells (Bayraktar et al., 2017; Choi et al., 2017; Gon et al., 2017). For instance, the
delivery of miR-330-3p from plasma cells to ovarian cancer cells by EVs induces a mesenchymal
phenotype of ovarian cancers (Yang et al., 2021). In addition, EVs isolated from human vascular
endothelial cells contain some cardioprotective proteins, which contribute to promoting human
myocardium survival after ischemia-reperfusion injury (Yadid et al., 2020). Vesicular miR-21
derived from tubular epithelial cells stimulates fibroblast and subsequently causes renal fibrosis
in vivo (Zhao S. et al., 2021). Vesicular lncRNA-SOX2OT from non-small cell lung cancer (NSCLC)
cells induces osteoclast differentiation and promotes bone metastasis (Ni et al., 2021).

EVs are closely related to the physical and pathological processes of diseases, especially cancer
(Wu et al., 2017; Burnouf et al., 2019; Gamage and Fraser, 2021). Tumor growth requires constant
nutrients and oxygen delivered from the vascular network, as they cannot grow above 2 mm2 with an
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inadequate vascular supply (Small et al., 2014). Thereby,
angiogenesis, the growth of new blood vessels from the
posterior capillary veins and existing capillaries, is vital for
tumor progression. EVs mediate communication between
tumor cells and endothelial cells, thereby inducing
angiogenesis and promoting tumor growth (Wan et al., 2018;
Xu et al., 2018). Besides inducing angiogenesis, tumor-derived
EVs can also regulate cancer-associated fibroblasts (CAFs)
transformation. Since CAFs can remodel the stromal
extracellular matrix (ECM) to facilitate tumor cell migration
and invasion, CAFs transformation may promote cancer
progression. In addition, EVs released from resistant tumor
cells have the ability to induce resistance to cancer therapy,
which further facilitates tumor progression. Immune cells such
as natural killer (NK) cells, macrophages, T cells and B cells can
interact with tumor cells via EVs, thereby causing their functions
and phenotypes change. Furthermore, crosstalk between tumor-
derived EVs and host immune system regulates immune
response, thereby influencing cancer progression. Of note,
tumor-derived EVs can be isolated from the conditioned
medium of cancer cells but also from various body fluids like
blood and ascites of cancer patients (Larrea et al., 2016). Due to
their cargo diversity and specificity, tumor-derived EVs are
promising biomarkers for cancer diagnosis and treatment to
reflect the status of parental cancer cells.

THE BIOGENESIS OF EVS

The term EVs is used to describe almost all types of membrane
particles secreted from cells. Based on their size and biogenesis,
EV subpopulations can be divided into exosomes and ectosomes
(Théry et al., 2018). Exosomes are secreted by inward
invagination of the plasma membrane (Wolf, 1967; Johnstone
et al., 1987). The first invagination of the plasma membrane leads
to the generation of an early-sorting endosome that contains
fluids, extracellular components and cell surface proteins. The
early-sorting endosome undergoes a series of transformations to
mature into the late-sorting endosome. The second invagination
of the late-sorting endosome results in the formation of
multivesicular bodies (MVBs) that contains intraluminal
vesicles (ILVs). The MVBs can fuse with the plasma
membrane to release exosomes with a size range of 30–150 nm
in diameter. The basic mechanisms responsible for exosomes
biogenesis have been reported. The endosomal sorting complex
required for transport (ESCRT) machinery, containing four
protein complexes (ESCRT-0, -I, -II, and -III) along with
associated proteins (VTA-1, Alix and VPS4), is closely related
to the biogenesis of MVBs and ILVs (Henne et al., 2011). The
specific functional components of ESCRT have also been
investigated. While the silence of ESCRT-0 and ESCRT-I
(HRS) decreases the biogenesis of exosomes, depletion of other
ESCRT components exerts no effects or even increases the
biogenesis of exosomes (Colombo et al., 2013). ESCRT
proteins also play an essential role in specifying the loading of
functional cargoes into exosomes. They mediate the sorting of
cargo at endosomal plasma and subsequently induce the late-

sorting endosomes to release ILVs (later exosomes) with the
sorted cargoes. Exosomes biogenesis can operate in an ESCRT-
independent manner in some cancer cells, which has been
demonstrated by silencing multiple ESCRTs (Stuffers et al.,
2009). In addition, some RAB GTPases (RAB27, RAB11, and
RAB31) have been found to drive MVBs transport and ILVs
biogenesis (Savina et al., 2002; Ostrowski et al., 2010; Wei et al.,
2020). For instance, RAB31 can enhance the formation of ILVs
and inhibit the degradation of MVBs in an ESCRT-independent
manner (Wei et al., 2020). Mechanically, the high level of RAB31
can drive epidermal growth factor receptor into MVBs to
generate ILVs and recruit TBC1D2B to prevent MVBs
degradation (Wei et al., 2020). However, the upstream of RAB
GTPases is not well clarified. Song et al. (2019) found that KIBRA
could inhibit the ubiquitination and degradation of RAB27a,
thereby contributing to exosomes biogenesis (Song et al.,
2019). Phospholipase D2 and its product phosphatidic acid are
involved in ILVs biogenesis and exosomes release (Egea-Jimenez
and Zimmermann, 2018). Notably, ESCRT-dependent pathways
and ESCRT-independent pathways can also jointly drive
exosomes biogenesis. Syndecan-syntenin complexes bind
ESCRT-I and ESCRT-III via Alix, leading to enhanced ILVs
biogenesis (Baietti et al., 2012). Moreover, tyrosine
phosphatase Shp2 has been found to inhibit exosomes
biogenesis via dephosphorylating syntenin (Zhang Y. et al.,
2021). CD63, belonging to tetraspanin family, is associated
with sorting cargoes into exosomes (Theos et al., 2006; van
Niel et al., 2011).

Ectosomes with a size range of 50–1,000 nm in diameter are
released by shedding or outward budding of the plasma
membrane. This process is driven by translocating
phosphatidylserine to the outer-membrane leaflet (Zwaal and
Schroit, 1997). The mechanisms involved in the biogenesis of
ectosomes have been studied. Inhibiting VPS4 is shown to impair
ectosomes release, suggesting that ESCRT-III is also required for
ectosomes biogenesis (Mathieu et al., 2019). Small GTPase RhoA,
an essential regulator of actin cytoskeletal remodeling, is closely
related to ectosomes biogenesis in different tumor cells (Li et al.,
2012). Moreover, RHO-associated protein kinase (ROCK) has
been revealed to mediate the function of RhoA in ectosomes
biogenesis. Thus, inhibition of ROCK-1 and ROCK-2 by the
small molecule Y-27632 can decrease ectosomes biogenesis (Li
et al., 2012). Ectosomes are rich in cholesterol, and knockdown of
cholesterol can inhibit ectosomes biogenesis (Del Conde et al.,
2005). In addition, nSMAse participates in shedding budding of
the plasma membrane, and hence controls ectosomes biogenesis
(Menck et al., 2017).

TUMOR MICROENVIRONMENT AND
TUMOR-DERIVED EVS

The TME (tumor microenvironment) comprises tumor cells,
endothelial cells, fibroblasts, and immune cells as well as
extracellular components such as ECM, cytokines and growth
factors (Lv et al., 2012; Jin and Jin., 2020) (Figure 1). The ECM is
a highly dynamic three-dimensional network composed of plenty
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of fibrous proteins and glycoproteins (Mouw et al., 2014).
Tumors often exhibit ECM deposition and degradation, and
this dysregulation state supports tumorigenesis and metastasis
and induces angiogenesis (Sükei et al., 2021). Cytokines are small
molecular polypeptides or proteins that serve as
immunomodulatory effectors. Overproduction of IL-6 by
tumor cells activates STAT-3, a key transcription factor central
to immune escape and it is an important regulator in the crosstalk
between tumor cells and TME (Lokau et al., 2019). IL-10 is an
anti-inflammatory cytokine and its serum levels are negatively
related to the tumor prognosis (Pasvenskaite et al., 2021). On the
other hand, IL-10 exerts anti-tumor activity by enhancing the
immune-stimulatory effect of CD8+ T cell (Naing et al., 2018).
Some growth factors in the TME inhibit normal stromal cells
proliferation and promote tumor cells metastasis. Transforming
growth factor-β (TGF-β), fibroblast growth factor (FGF) and
vascular endothelial growth factor (VEGF) form a pro-
tumorigenic environment that fosters tumor cell survival,
progression and metastasis and directs abnormal vessel growth
(Zhou X. et al., 2018; Shang et al., 2020; Zheng et al., 2021).
However, TGF-β also shows anti-oncogenic properties in
carcinogenesis. TGF-β has been reported to inhibit tumor cell
proliferation and induce apoptosis in the early stages of
carcinogenesis (Inman, 2011).

As a means of communication between tumor cells and the
microenvironment, EVs play an essential role in remodeling the
local microenvironment (Milane et al., 2015). Numerous studies
have revealed that EVs released by tumor cells contain a variety of
biomolecular components, including lipids, proteins and nucleic
acids (Taylor et al., 2011; Mathivanan et al., 2012; Agudiez et al.,
2020). Especially, those nucleic acids components such as
miRNAs and lncRNAs may mediate the formation of a
protumoral or an anti-tumoral soil in the microenvironment,
thereby influencing tumor progression. Interestingly, hypoxic or

metastatic status of tumors appears to a strong force in sorting the
loading of composition into EVs, which affects functions of
tumor-derived EVs in the TME (Kucharzewska et al., 2013;
Yokoi et al., 2017; Chen et al., 2018). Hypoxia is a common
feature in most malignant tumors. In hypoxic microenvironment,
tumor cells drive glucose mainly into lactate to meet the energy
requirements. This phenomenon, called the Warburg effect, is
one of the cellular mechanisms by which cancer cells adapt to
hypoxic microenvironment and enhance survival (Parks et al.,
2017). PKM2, which plays a key role in the Warburg effect, is the
enhancer of anaerobic glycolysis. Hypoxic NSCLC cell derived-
EVs promote PKM2-dependent glycolysis and subsequently
produce metabolites to eliminate ROS, thereby inhibiting
tumor apoptosis and promoting tumor growth (Wang et al.,
2021). EVs derived from breast cancer enhance the ability of
CAFs in response to different metabolic environment by
activating MYC signaling pathway in stromal cells resulting in
rapid tumor growth (Yan et al., 2018). Moreover, EVs released
from Lewis lung carcinoma can induce immunosuppressive
macrophages by NF-κB-mediated metabolism reprogramming,
leading to tumor metastasis (Morrissey et al., 2021).

REGULATION OF PROTUMORAL
FUNCTIONS OF ENDOTHELIAL CELLS BY
TUMOR-DERIVED EVS
Tumor-derived EVs are thought to regulate protumoral functions
of endothelial cells in numerous types of cancers including
hepatocellular carcinoma (HCC) (Lin et al., 2018), colorectal
cancer (Huang and Feng, 2017; Zeng et al., 2018; He et al.,
2021), cervical cancer (Wu et al., 2019), nasopharyngeal
carcinoma (Bao et al., 2018; Tian et al., 2021; Zhang K. et al.,
2021), glioma (Ma et al., 2017; Wang Z.-F. et al., 2019), and lung

FIGURE 1 | Scheme of tumor microenvironment.
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cancer (Hsu et al., 2017). As EVs can be internalized by an
endocytic-like process, they may deliver regulatory biomolecules
into vascular endothelial cells. Thus, tumor cells can participate in
the regulation of endothelial cell proliferation, migration,
sprouting, branching, as well as tubular-like structure formation
by secreting EVs (Zhuang et al., 2012; French et al., 2017).

Some miRNAs, lncRNAs and proteins delivered by EVs have
been reported to participate in regulating protumoral functions of
endothelial cells (Table 1). miR-210 enriched in EVs of malignant
tumors may promote tubular-like structure formation of
endothelial cells, leading to pro-angiogenic activities and rapid
tumor growth. In HCC, abundant miR-210 can be packed into EVs
and transferred to endothelial cells (Lin et al., 2015; Lin et al., 2018).
After taking up by human umbilical vein endothelial cells
(HUVECs), miR-210 stimulates angiogenesis via down-
regulating the expression of SMAD4 and STAT6 (Lin et al.,
2018). Vesicular miR-21-5p from colorectal cancer decreases
Krev interaction trapped protein 1 expression to activate
β-catenin signaling pathway and promote the expression of
angiogenesis-related factors like VEGFA, thereby stimulating
vascular permeability and angiogenesis (He et al., 2021). In
addition, cervical cancer-derived vesicular miR-221-3P promotes
angiogenesis by inhibiting the expression of thrombospondin-2 in
HUVECs, which consequently enhances tumor growth in vivo
(Wu et al., 2019). miR-144 is a key angiogenesis inducer for neo-
angiogenesis in nasopharyngeal carcinoma (Tian et al., 2021).
Vesicular miR-144 suppresses FBXW7 and increases hypoxia-
inducible factor-1α (HIF-1α) and VEGFA in recipient cells,
which consequently promotes endothelial cells migration and
invasion (Tian et al., 2021). Moreover, the transfer of high
mobility group box 3 (HMGB3) from nasopharyngeal
carcinoma cells to endothelial cells via EVs induces angiogenesis
(Zhang K. et al., 2021). Interestingly, neo-angiogenesis in
nasopharyngeal carcinoma facilitates the formation of pre-
metastatic niches, which further causes tumor metastasis (Zhang
K. et al., 2021). Vesicular miR-26a from glioma down-regulates
phosphatase and tensin homolog (PTEN) expression to stimulate

PI3k/AKT signaling, thereby contributing to the proliferation of
human brain microvascular endothelial cells (HBMECs) (Wang
Z.-F. et al., 2019). Ma et al. (2017) believe that the delivery of
lncRNA HOTAIR from glioma cancer cells to HBMECs via EVs
up-regulates the level of pro-angiogenic factor VEGFA.

It is well-known that disordered vascular distribution and
abnormal vascular structure lead to specific hypoxia in many
solid tumors. In turn, tumor-derived EVs secreted under hypoxic
conditions induce proliferation andmigration of endothelial cells,
thereby enhancing angiogenesis and tumor growth. For example,
EVs isolated from colorectal cancer cells under hypoxia
conditions show a more potent pro-angiogenic effect as
compared with that from colorectal cancer cells under
normoxia conditions (Huang and Feng, 2017). The reason for
this phenomenonmay be thatWnt4 is highly enriched in hypoxic
colorectal cancer-derived EVs, and the increasedWnt4 stimulates
the β-catenin signaling pathway in endothelial cells (Yamada,
2017). Similarly, lung cancer-derived vesicular miR-23a under
hypoxia conditions enhances the production of HIF-1α in
endothelial cells via inhibiting the expression of prolyl
hydroxylase 1/2, thereby directly promoting angiogenesis and
tumor growth (Hsu et al., 2017).

On the other hand, the emerging evidence has shown that the
contents of tumor-derived EVs may be enriched at the metastatic
stage during cancer development, and those increased contents can
be delivered to endothelial cells to exert biological roles. For
example, miR-23a is shown to be significantly higher in
nasopharyngeal carcinoma tissues with metastasis than those
without metastasis, and its level is associated with angiogenesis
(Bao et al., 2018). Furthermore, the molecular mechanism for
vesicular miR-23a-mediated angiogenesis may be related to testis-
specific gene antigen (Bao et al., 2018). Metastasis-induced
vesicular miR-25-3p promotes vascular permeability and
angiogenesis, leading to the formation of pre-metastatic niches
(Zeng et al., 2018). Mechanically, vesicular miR-25-3p in colorectal
cancer can silence Krüppel-like factor 2 and krüppel-like factor 4,
thereby enhancing the expression of vascular endothelial growth

TABLE 1 | Role of tumor-derived EVs in angiogenesis.

Cargoes Cancer types Mechanisms References

miR-210 HCC SMAD4 and STAT6↓ Lin et al. (2015), Lin et al. (2018)
miR-21-5P Colorectal cancer Krev interaction trapped protein 1↓; β-catenin signaling pathway, VEGFA and Ccnd1↑ He et al. (2021)
miR-221-3p Cervical cancer Thrombospondin-2↓ Wu et al. (2019)
miR-144 Nasopharyngeal

carcinoma
FBXW7↓; HIF-1α and VEGFA↑ Tian et al. (2021)

HMGB3 Nasopharyngeal
carcinoma

Unknown Zhang et al. (2021a)

miR-26a Glioma PTEN↓; PI3k/Akt signaling pathway↑ Wang et al. (2019c)
LncRNA
HOTAIR

Glioma VEGFA↑ Ma et al. (2017)

Wnt4 Colorectal cancer Wnt/β-catenin signaling pathway↑ Huang and Feng (2017), Yamada
(2017)

miR-23a Lung cancer Prolyl hydroxylase 1/2↓; HIF-1α↑ Hsu et al. (2017)
miR-23a Nasopharyngeal

carcinoma
Testis-specific gene antigen↓ Bao et al. (2018)

miR-25-3p Colorectal cancer Krüppel-like factor 2, Krüppel-like factor 4, occludin, zonula occludens-1 and
Claudin5↓; VEGFR2↑

Zeng et al. (2018)

Symbols: ↑, up-regulation; ↓, down-regulation.
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factor receptor 2 (VEGFR2) and inhibiting the expression of
occludin, zonula occludens-1 and Claudin5 (Zeng et al., 2018).

Tumor-derived EVs play an important role in inducing
angiogenesis. Similarly, EVs derived from endothelial cell and
perivascular cell are also a key player in tumor progression. Anti-
angiogenic therapies are thought to improve the prognosis of
tumor patients by inhibiting tumor vascularization. However, the
outcomes of anti-angiogenic therapies are not ideal for most
patients. EVs released from endothelial cells treated with
vandetanib enrich VEGF, thus promoting angiogenesis and
tumor growth in vivo (Zeng et al., 2019). In addition, EVs
released from perivascular cell trigger endothelial progenitor
cells recruitment after anti-angiogenic therapy cessation, which
contributes to blood vessel regrowth and rapid tumor growth
(Huang et al., 2021). Mechanically, Gas6-containing perivascular
cell-derived EVs activate Axl signaling and subsequently promote
tumor revascularization (Huang et al., 2021).

REGULATION OF PROTUMORAL
FUNCTIONS OF CAFS BY
TUMOR-DERIVED EVS
As the main contributor to remodel tumor stroma, CAFs are often
transformed from resident fibroblasts, mesenchymal stem cells
(MSCs) and epithelial-to-mesenchymal transition (EMT) cells
after taking up tumor-derived EVs (Figure 2). The active CAFs
may enhance angiogenesis and metastasis, thereby contributing to
establishing a tumor-promoting environment. Hodgkin
lymphoma-derived EVs transform normal fibroblasts into
pathological CAFs utilizing the NF-κB signaling pathway, which
leads to the release of neo-angiogenesis factors (Dörsam et al.,
2018). Notably, many studies have shown that the delivery of
functional biomolecules plays a vital role in regulating CAFs

transformation (Paggetti et al., 2015; Fang et al., 2018; Giusti
et al., 2018; Yang et al., 2018; Wang J. et al., 2018; Zhou Y.
et al., 2018). For instance, EVs released from chronic
lymphocytic leukemia cells induce fibroblasts transformed to
CAFs by the enrichment of some regulatory proteins and
miRNAs from parental cells, which consequently causes rapid
tumor growth (Paggetti et al., 2015). In addition to regulating
the transformation of fibroblasts into a CAF phenotype, tumor-
derived EVs have also been demonstrated to play an important role
in inducing the transition of MSCs into CAFs. EVs isolated from
breast cancer stimulate SMAD-mediated pathway and subsequently
increase CAFs marker expression in MSCs, which consequently
enhances angiogenesis and metastasis (Cho et al., 2012). Moreover,
tumor cells-derived EVs are capable of regulating the
transformation of pericytes into a pathological CAFs phenotype.
Relying on releasing EVs, gastric cancer cells promote pericytes
proliferation and migration, and induce pericytes transformed into
CAFs (Ning et al., 2018). Mechanically, gastric cancer cells-derived
EVs stimulate PI3k/AKT and MEK/ERK pathways, leading to the
up-regulated expression of CAFs markers (Ning et al., 2018).

Due to the emerging evidence indicates EVs isolated from
tumor cells response to hypoxia, many researchers have
investigated the potential of tumor-derived EVs under hypoxia
conditions in CAFs transformation (Kucharzewska et al., 2013;
Wang et al., 2014; Ramteke et al., 2015). It has been reported that
EVs secreted from prostate cancer cells under hypoxia conditions
promote CAFs transformation and tumor aggressiveness
(Ramteke et al., 2015). Interestingly, EVs derived from tumor
cells can not only enrich some proteins, but also load some
specific proteins that may induce tumor-promoting
microenvironment under hypoxia conditions (Ramteke et al.,
2015). This finding suggests that unique components loaded in
hypoxia tumor-derived EVs may be helpful to CAFs
transformation and tumor progression.

FIGURE 2 | Tumor-derived EVs regulate CAFs transformation. The delivery of functional signaling factors from tumor cells to fibroblasts, MSCs or EMT contributes
to CAFs transformation, which consequently promotes tumor growth and aggressiveness and induces angiogenesis.
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On the other hand, tumor-derived EVs appear to be enriched
during fibroblasts reprogramming may be a reaction to the high-
metastatic tumor state. Additionally, the functional contents of
EVs can also be related to the metastatic status of HCC cells (Fang
et al., 2018). The amount of EVs is much higher in high-
metastatic cancer cells than that in low-metastatic cancer cells
(Fang et al., 2018). This further enhances the regulatory effect of
high-metastatic tumor cell-derived EVs on CAFs transformation.
Mechanically, elevated miR-1247-3p in EVs isolated from high-
metastatic tumor cells that promotes CAFs transformation via
inhibiting B4GALT3 expression (Fang et al., 2018).

Tumor-derived EVs play an important role in CAFs
transformation, in turn, CAF-derived EVs participate in
tumorigenesis. For instance, vesicular miR-92a-3p from CAFs
induce EMT, chemoresistance and cancer stemness in colorectal
cancer by activating Wnt/β-catenin signaling pathway (Hu et al.,
2019). EVs released from CAFs enrich miR-196a by activating
heterogeneous nuclear ribonucleoprotein A1, leading to
decreased CDKN1B and ING5 in recipient head and neck
cancer cancer cells, and ultimately result in enhanced cisplatin
resistance and metastasis (Qin et al., 2019). Moreover, ubiquitin-
specific protease 7 has been found to inhibit heterogeneous
nuclear ribonucleoprotein A1 ubiquitination in CAFs (Zhang
et al., 2020). miR-522-bearing EVs released from CAFs inhibit
arachidonate lipoxygenase 15 expression and lipid peroxides
accumulation, leading to enhanced chemoresistance in gastric
cancer (Zhang et al., 2020). Thus, depletion of CAF-derived EVs
causes improved chemosensitivity.

REGULATION OF RESISTANT PHENOTYPE
OF SENSITIVE CANCER CELLS BY
TUMOR-DERIVED EVS
Emerging studies have confirmed that tumor-derived EVs play a
vital role in the resistance of tumor cells to cancer therapy,
including chemotherapy and radiotherapy (Table 2). Some

drug-resistant tumor cells have the ability to confer a drug-
resistant phenotype upon sensitive cells in an EVs-dependent
manner. This may be due to EVs’ ability to mediate the transfer of
miRNA, lncRNA and proteins associated with drug resistance to
recipient cells (Corrado et al., 2013). For instance, paclitaxel-
resistant gastric cancer cells have been reported to be rich in miR-
155-5p (WangM. et al., 2019). miR-155-5p can be delivered from
resistant cancer cells to sensitive cells by EVs, thereby increasing
the expression level of miR-155-5p in recipient cells. The
increased miR-155-5p confers paclitaxel resistance and induces
EMT in gastric cancer cells via inhibiting the expression of
GATA3 and TP53INP1 (Wang M. et al., 2019). Similarly,
miR-423-5p-bearing EVs induce the transformation of breast
cancer cells from sensitive cells to cisplatin-resistant cells (Wang
B. et al., 2019). While the above examples show that drug-
resistant tumor-derived EVs can disseminate drug resistance
via transferring increased miRNAs to recipient cells, it appears
that EVs can also induce drug-resistance by decreased miRNAs.
EVs released from cisplatin-resistant lung cancer cells down-
regulate a total of 11 miRNAs, in which miR-100-5p is the most
significantly down-regulated miRNA (Qin et al., 2017). The
down-regulated miR-100-5p modulates the expression of the
mammalian target of rapamycin in recipient cells, which
induces a chemo-resistant phenotype upon NSCLC cells (Qin
et al., 2017).

The expression of lncRNAH19 is up-regulatedwithin EVs from
gefitinib-resistant NSCLC cells (Lei et al., 2018). Vesicular lncRNA
H19 can be transported to sensitive cells to induce gefitinib
resistance (Lei et al., 2018). EVs isolated from trastuzumab-
resistant HER2+ breast cancer increase the level of lncRNA-
SNHG14, which can induce a chemo-resistant phenotype upon
sensitive tumor cells (Dong et al., 2018). Besides mediating the
transfer of miRNA or lncRNA to induce drug resistance, EVs have
also been shown to deliver proteins to target cells to disseminate
resistance. For instance, EVs released from patients with a poor
response to chemotherapy up-regulate the expression of transient
receptor potential channel 5 (TrpC5) (Ma et al., 2014). Relying on

TABLE 2 | Role of tumor-derived EVs in therapy resistance.

Cargoes Cancer types Functions Mechanisms References

miR-155-5p Gastric cancer Paclitaxel resistance and EMT↑ GATA3 and TP53INP1↓ Wang et al. (2019b)
miR-423-5p Breast cancer Cisplatin resistance, breast cancer cells proliferation and

migration↑
P-glycoprotein↑ Wang et al. (2019a)

miR-100-5p Lung cancer Cisplatin resistance↑ Mammalian target of rapamycin↑ Qin et al. (2017)
LncRNA H19 NSCLC Gefitinib resistance↑ Unknown Lei et al. (2018)
LncRNA-SNHG14 Breast cancer Trastuzumab resistance↑ Bcl-2/Bax apoptosis signaling

pathway↑
Dong et al. (2018)

TrpC5 Breast cancer Adriamycin resistance↑ P-glycoprotein↑ Ma et al. (2014)
PKM2 NSCLC Cisplatin resistance and NSCLC cells proliferation↑ CAFs transformation↑ Wang et al. (2021)
Annexin A6 Triple-negative breast

cancer
Gemcitabine resistance↑ Epidermal growth factor

receptor↓
Li et al. (2021)

Unknown Squamous head and
neck cancer

Radio-resistance and Squamous head and neck cancer
cells proliferation↑

Repair of damaged DNA
content↑

Mutschelknaus et al.
(2016)

miR-301a Glioma Radio-resistance↑ TCEAL7↓; Wnt/β-catenin
signaling pathway↑

Yue et al. (2019)

Anaplastic
lymphoma kinase

NSCLC Anaplastic lymphoma kinase inhibitors resistance,
Ceritinib resistance and tumor growth↑

AKT, STAT3 and ERK signaling
pathways↑

Wu et al. (2018)

Symbols: ↑, up-regulation; ↓, down-regulation.

Frontiers in Molecular Biosciences | www.frontiersin.org January 2022 | Volume 8 | Article 7963856

Bao et al. Tumor-Derived Extracellular Vesicles

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


EVs, the increased TrpC5 can enter sensitive breast cancer cells to
disseminate resistance. In addition, PKM2-bearing EVs from
cisplatin-resistant tumor cells induce a chemo-resistant
phenotype upon NSCLC cells by reprogramming CAFs
transformation (Wang et al., 2021). Recently, vesicular transfer
of annexin A6 has been found to confer gemcitabine-resistance in
sensitive triple-negative breast cancer cells via suppressing and
degrading of epidermal growth factor receptor (Li et al., 2021).

Additionally, the involvement of EVs in the resistance of
tumor cells to radiotherapy has been reported. Early data
demonstrated that the protein composition of tumor-derived
EVs might be changed when exposed to radiation (Jelonek
et al., 2015). Apart from affecting the composition of EVs,
radiation has also been shown to affect the functions of EVs
on target cells. EVs isolated from irradiated squamous head and
neck cancer cells can confer radio-resistance in recipient cells via
repairing damaged DNA content (Mutschelknaus et al., 2016).
EVs isolated from hypoxic glioma are rich in miR-301a, which is
associated with the resistance of tumor cells to radiotherapy (Yue
et al., 2019). Mechanically, miR-301a-bearing EVs directly target
TCEAL7 gene to induce radio-resistance in glioma cells and this
effect can be reversed by inhibiting the Wnt/β-catenin pathway
(Yue et al., 2019). Similarly, EVs released from irradiated cells can
also reduce the sensitivity of recipient cells to the drug (Wu et al.,
2018). Mechanically, EVs released from NSCLC cells can induce
anaplastic lymphoma kinase inhibitors-resistant or Ceritinib-
resistant phenotype upon target tumor cells via stimulating
AKT, STAT3 and ERK pathways (Wu et al., 2018).

TUMOR-DERIVED EVS MODULATE THE
IMMUNE SYSTEM

Immune cells such as NK cells, macrophages, T cells and B cells
can interact with tumor cells, resulting in their functions and

phenotypes changes. The emerging report reveals that tumor-
derived EVs are involved in remodeling the tumor immune
microenvironment (Figure 3). Through releasing EVs, tumor
cells can deliver immune-inhibitory and immune-stimulatory
signaling biomolecular components to the tumor immune
microenvironment, thus creating a protumoral or an anti-
tumoral soil to influence cancer progression (Whiteside, 2016).

NK Cells
NK cells, which play a key role in cancer immunotherapy, are the
important subset of innate immune cells. Early research
demonstrated that NK cell activity could be inhibited by
breast cancer-derived EVs, which resulted in the accelerated
growth of xenograft tumors (Liu et al., 2006). Researchers
isolated NK cells from the spleens of BALB/c mice that had
been pretreated with purified breast cancer-derived EVs and
determined NK cell activity by the chromium release assays
(Liu et al., 2006). Trials have shown that NK cell cytolytic
activity was inhibited in mice by EVs released from TS/A
tumor cells (Liu et al., 2006). Further study has demonstrated
that pretreated mice with TS/A tumor cells-derived EVs would
lead to a significant decrease in the total number and percentages
of NK cells (Liu et al., 2006). Given the accumulating evidence for
the role of EVs isolated from tumor cells in response to hypoxia,
some researchers have investigated the potential of tumor-
derived EVs under hypoxia conditions in reprogramming
functions of NK cells. For instance, EVs secreted from tumor
cells under hypoxia conditions show a more potent ability to
impair the cytotoxicity of NK cells as compared with that from
tumor cells under normoxia conditions (Berchem et al., 2016). In
addition, the expression levels of functional activity markers such
as CD107a and IFN-γ in NK cells pretreated with hypoxic tumor-
derived EVs are significantly lower than those in NK cells
pretreated with normoxic tumor-derived EVs (Berchem et al.,
2016). This could be in part explained by the abundance of miR-

FIGURE 3 | Tumor-derived EVs modulate the immune system. Tumor-derived EVs can suppress NK cells functional activity, induce M2 macrophage polarization,
recruit Tregs and proliferate Bregs, thus inhibiting immune response. On the other hand, tumor-derived EVs can also enhance NK cells cytotoxicity and induce M1
macrophage polarization, thereby stimulating immune response.

Frontiers in Molecular Biosciences | www.frontiersin.org January 2022 | Volume 8 | Article 7963857

Bao et al. Tumor-Derived Extracellular Vesicles

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


23a in hypoxic tumor cells-derived EVs that could function as an
additional immunosuppressive activator by directly targeting
CD107a in NK cells (Berchem et al., 2016). On the other
hand, EVs secreted from pancreatic cancer cells at the high-
metastatic state also appear to down-regulate the expression of
CD107a and IFN-γ in NK cells (Zhao et al., 2019). Furthermore,
EVs isolated from pancreatic cancer patients contain abundant
TGF-β1, which can attenuate CD107a and IFN-γ expression in
NK cells (Zhao et al., 2019). Mechanically, TGF-β1-bearing EVs
activate the TGF β-Smad2/3 pathway in NK cells to impair NK
cell-mediated cytotoxicity (Zhao et al., 2019). Apart from
inhibiting the cytotoxic activity of NK cells, tumor-derived
EVs have also been shown to act as an inducer to stimulate
effective NK cell anti-tumor response. For example, EVs isolated
from resistant anti-cancer drug-treated HCC cells are able to
stimulate the suppressive effects of NK cells on tumor cell
proliferation (Lv et al., 2012). The reason for this
phenomenon may be that EVs released from HCC cells
treated with resistant anti-cancer drugs contain abundant heat
shock proteins (HSPs), including HSP60, HSP70 and HSP90 (Lv
et al., 2012). Notably, those resistant anti-cancer drugs promote
HSP-bearing EVs release, thereby contributing to activating the
cytotoxic response of NK cells (Lv et al., 2012).

Macrophages
Macrophages, as one part of innate immune systems, can be
affected by many factors to switch their phenotype. Activated
macrophages are commonly classified into two phenotypes,
classical activation (M1) macrophages and alternative
activation (M2) macrophages. M1 macrophages secrete pro-
inflammatory cytokines to induce tumoricidal activity, while
M2 macrophages secrete anti-inflammatory cytokines to
promote tumorigenesis. Tumor-associated macrophages
(TAMs) are the main immune cell population in TME, which
can be educated by various tumor cells and display an M2-like
phenotype to promote the development and progression of
tumors. Nowadays, tumor-derived EVs are described as
containing a variety of functional components and are now
emerging as a key regulator of macrophage polarization. Those
components, such as miRNA, lncRNAs and proteins, can be
transferred to macrophages via EVs to switch their phenotype.

Epithelial ovarian cancer-derived EVs can induce
macrophages to secrete anti-inflammatory cytokine IL-10,
leading to enhanced tumor growth and metastasis (Ying et al.,
2016). The expression level of vesicular miR-222-3p in epithelial
ovarian cancer patients is markedly higher than that in healthy
people (Ying et al., 2016). Increased miR-222-3p has the ability to
inhibit SOCS3 expression and stimulate the SOCS3/STAT3
pathway in macrophages, thereby inducing TAM-like
phenotype macrophages production in vitro and in vivo (Ying
et al., 2016). In addition, hypoxic EVs isolated from tumor cells,
including pancreatic cancer and glioma, can generate the M2-like
phenotype macrophages (Wang et al., 2018b; Qian et al., 2020).
miR-301a-3p is highly enriched in EVs isolated from PANC-1
and BxCP-3 pancreatic cancer cells cultured in hypoxia
conditions (Wang et al., 2018b). Mechanically, vesicular miR-
301a-3p down-regulates PTEN expression and subsequently

activates the PI3Kγ pathway, resulting in increased expression
of M2 macrophage marker like CD163 (Wang et al., 2018b).
Furthermore, the knockdown of HIF-1a and HIF-2a in pancreatic
cancer cells revealed that miR-301a-3p expression level under
hypoxia conditions relied on HIF-1a and HIF-2a (Wang et al.,
2018b). In glioma, miR-1246 is the most prominently increased
content in hypoxic tumor-derived EVs as compared with that in
normoxic tumor-derived EVs (Qian et al., 2020). The increased
miR-1246 is considered as a key regulator in inducing M2
macrophage polarization, since it can activate the STA3T
signaling pathway and suppress the NF-κB signaling pathway
(Qian et al., 2020). Notably, the M2 macrophage is a pro-tumor
phenotype that promotes tumor cells migration and invasion via
facilitating the formation of the immunosuppressive
microenvironment. Vesicular lncRNA BCRT1 from breast
cancer cells enhances tumor cells migration and invasion
(Liang et al., 2020). Injection of breast cancer cells into
lncRNA BCRT1-overexpressing mice causes more and larger
metastatic lung foci (Liang et al., 2020). In addition, M2
markers (CD206 and MRC-2) expression are shown to up-
regulate when macrophages stimulated by EVs derived from
lncRNA BCRT1-overexpressing breast cancer cells (Liang
et al., 2020). Furthermore, the transfer of Rab22a-NeoF1
fusion protein from osteosarcoma cells to negative tumor cells
via EVs contributes to the formation of pre-metastatic niche in
osteosarcoma (Zhong et al., 2021). Rab22a-NeoF1 fusion protein
recruits bone marrow-derived macrophages and subsequently
induces M2 macrophage polarization via its binding partner
PYK2 (Zhong et al., 2021). Quantitative real-time PCR (RT-
qPCR) analysis showed lncRNA TUC339 was significantly
enriched in tumor-derived EVs (Li et al., 2018). Knocking out
TUC339 in macrophages resulted in elevated pro-inflammatory
cytokines IL-1β and TNF-α (Li et al., 2018). In turn, pro-
inflammatory cytokine production decreased in TUC339-
overexpressing macrophages (Li et al., 2018). This reveals that
the lncRNA TUC339 can serve as a regulator to modulate M2
polarization macrophages.

In addition to mediating transmit miRNA or lncRNA to
induce M2 polarization macrophages, EVs have also been
shown to deliver miRNA or protein to target cells, thus
inducing M1 polarization macrophages. For instance, miR-21
is selectively enriched in EVs isolated from colorectal cancer,
which correlates with the increased M1/M2 ratio (Shao et al.,
2018). In addition, miR-21 mimic causes increased pro-
inflammatory cytokine production in macrophage (Shao et al.,
2018). Mechanically, vesicular miR-21 up-regulates IL-6
expression level in macrophages by directly binding to toll-like
receptor (TLR) 7, thereby contributing to creating an
inflammatory TME (Shao et al., 2018). miR-9 has been found
to be markedly enriched in HPV + head and neck squamous cell
carcinoma (Tong et al., 2020). In addition, vesicular miR-9 down-
regulates PPARδ and subsequently induces M1 polarization
macrophages, which consequently leads to enhanced tumor
radiosensitivity (Tong et al., 2020). Moreover, EVs isolated
from oral squamous cell carcinoma significantly up-regulate
the expression levels of pro-inflammatory cytokines (IL-6, IL-
1β and TNF-α), while exerting no effect on the expression levels
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of anti-inflammatory cytokines (IL-10, MRC1 and CCL18) (Xiao
et al., 2018). This suggests THBS1 expression is closely correlated
with the expression levels of M1 related cytokines. Mechanically,
EVs isolated from oral squamous cell carcinoma induce M1
polarization macrophages via stimulating p38, AKT and
SAPK/JNK signaling pathways (Xiao et al., 2018).

T Cells
T cells, including unactivated naive T cells and effector T cells
activated by antigen, are the key regulators in the tumor
immunity. Helper T cells and cytotoxic T cells are mainly
involved in the tumor immunity, while regulatory T cells
(Tregs) are mainly involved in tumor immune escape.
Nowadays, tumor-derived EVs have been found to act as an
immune suppressor to promote recruitment and activation of
Tregs in the TME, thereby creating a pro-tumorigenesis
environment for tumor progression. For instance, HCC cells-
derived EVs have been demonstrated to mediate the delivery of
14-3-3ζ to tumor-infiltrating T cells, which suppresses the anti-
tumor effects of T cells (Wang et al., 2018c). Vesicular 14-3-3ζ
inhibits the activity and proliferation of peripheral blood T cells,
which consequently contributes to deviating the transformation
of naive T cells from effector T cells to Tregs (Wang et al., 2018c).
In addition, vesicular miR-208b suppresses programmed cell
death factor 4 in recipient CD4+ T cells and subsequently
promotes Tregs proliferation, which consequently accelerates
tumor growth in colorectal cancer (Ning et al., 2021).
Nasopharyngeal carcinoma cells selectively up-regulate the
transcription of CCL20, which serves as a Treg attractor
(Mrizak et al., 2015). In addition, nasopharyngeal carcinoma-
derived EVs have the ability to recruit Tregs into the TME and
induce the transformation of T cells into Tregs, resulting in an
enhanced immunosuppression effect in a dose-dependent
manner (Mrizak et al., 2015). In addition to mediating Tregs
recruitment in TME, tumor-derived EVs have also been shown to
regulate the expression of the immune-related genes in Tregs. For
example, mRNA profiles analysis revealed that EVs isolated from
head and neck squamous cell carcinoma could up-regulate the
expression of CD25, CD39, CD73 and CD26 in activated Tregs
(Muller et al., 2016). Heat map analysis further found that tumor-
derived EVs co-cultured with Tregs would lead to higher
expression levels of adenosine-pathway genes and lower
expression levels of immunoregulatory genes (Muller et al.,
2016). Previous studies revealed that the adenosine pathway
was one of the key mechanisms utilized by Tregs to function
as an immunosuppressor (Whiteside et al., 2012; Whiteside and
Jackson, 2013). This suggests tumor-derived EVs promote the
suppression functions of Tregs via regulating the expression of
adenosine-pathway genes. CD73+ γδT cells, serve as the main
Tregs subset in breast cancer, are able to mediate
immunosuppressive effect in an adenosine-dependent manner
(Ni et al., 2020). In the context of breast cancer, the release of
lncRNA SNHG16 from EVs is shown to regulate CD73
expression on γδT cells (Ni et al., 2020). Mechanically,
vesicular lncRNA SNHG16 stimulates the TGF-β/SMAD5
pathway by targeting the SMAD5 gene, which up-regulates
CD73 expression on γδT cells (Ni et al., 2020).

B Cells
B cells play a key role in humoral immunity on account of their
abilities to produce immunoglobulin and present antigens. The
regulatory B cells (Bregs) as a subset of B cells are correlated with
immunosuppressive response. Similar to T cells, B cells can be
induced into Bregs by tumor-derived EVs. For instance, HCC
cells-derived EVs can induce TIM-1+ Breg with a high expression
level of IL-10 (Ye et al., 2018). T cell co-culture with EVs-induced
B cell results in decreased TNF-α and IFN-γ production (Ye et al.,
2018). Notably, vesicular HMGB1 can activate the TLR-MAPK
signaling pathway, which has been found to play a crucial role in
inducing the transition of B cells into Bregs (Ye et al., 2018).
Further study has demonstrated that blocking TLR or inhibiting
MAPK can significantly suppress the Bregs expansion and up-
regulate the production of pro-inflammatory cytokines (Ye et al.,
2018). In addition, EVs isolated from esophageal squamous cell
carcinoma patients significantly enhance the IL-10+ Breg
production (Mao et al., 2019). Correspondingly, flow
cytometry analysis showed that the expression levels of IL-10
and PD-1 in B cells were higher when B cells were co-cultured
with tumor-derived EVs (Mao et al., 2019). As EVs commonly
function via delivering biomolecular components to target cells,
researchers further analyzed the mRNAs and lncRNAs
composition in EVs. Results revealed that a total of 947
mRNAs and 175 lncRNAs were down-regulated, while a total
of 407 mRNAs and 1,331 lncRNAs were up-regulated in EVs
released from esophageal squamous cell carcinoma (Mao et al.,
2019). Furthermore, EVs derived from head and neck squamous
cell carcinoma directly suppress B cell proliferation and activity
(Schroeder et al., 2020). Flow cytometry analysis showed that
tumor-derived EVs could inhibit the expression of checkpoint
receptors (GITR and BTLA) and CD39 on B cells (Schroeder
et al., 2020). Notably, as a B cell activation marker, CD39
regulates adenosine production in many immune cells, thus
influencing the immunosuppressive effect of B cells (Saze
et al., 2013).

Immune Cell-Derived EVs
NK cell-derived EVs significantly enhance the apoptosis of
aggressive melanoma (Zhu et al., 2017). Meanwhile, the
transfer of miR-186 from NK cell to neuroblastoma cell via
EVs inhibits tumor growth and reverses immune escape
(Neviani et al., 2018). Most TAMs display an M2-like
phenotype, and thus M2 macrophages are the predominant
macrophage phenotype in the TME. M2 macrophage derive-
EVs (M2-EVs) stimulate PI3k/AKT signaling pathway via
enriched apolipoprotein E, leading to cytoskeleton remodeling
in gastric cancer cells, and ultimately result in enhanced
migration (Zheng et al., 2018). M2-EVs also enrich miR-233
under hypoxia conditions. Vesicular miR-233 affords drug
resistance to cDDP in epithelial ovarian cancer cells by
activating PTEN-PI3k/AKT signaling pathway (Zhu et al.,
2019). Moreover, the transfer of miR-21-5p and miR-155-5p
via EVs from M2 macrophages to colon cancer cells down-
regulates BRG1 and consequently promotes tumor metastasis
(Lan et al., 2018). By contrast, M1 macrophage-derived EVs
potentiate therapeutic efficacy of gemcitabine by improving
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chemosensitivity of resistant pancreatic cancer cells (Zhao Y.
et al., 2021). T cell-derived EVs containing programmed cell
death 1 inhibit tumor cell immune escape by triggering
programmed death-ligand1internalization (Qiu et al., 2021). In
addition, CD4+ T cell-derived EVs potentiate vaccine-mediated
immune responses by enhancing B cell proliferation and
antibodies production (Lu et al., 2019). By contrast, B cell-
derived EVs compromise chemotherapeutic effect by
attenuating CD8+ T cell response (Zhang F. et al., 2019).
Thus, inhibition of B cell-derived EVs release contributes to
enhanced post-chemotherapeutic T cell responses (Zhang F.
et al., 2019).

TUMOR-DERIVEDEVSASBIOMARKERS IN
CANCER DIAGNOSIS AND TREATMENT

Due to the lack of ideal biomarkers in the clinic, most cancer
patients once diagnosed have been at the advanced stage. Tumor-
derived EVs can be released into various body fluids like blood
and ascites, which are able to reflect the status of the parental
cancer cell. Therefore, tumor-derived EVs are considered as ideal
candidates for non-invasive biomarkers in cancer diagnosis. The
diversity and specificity of tumor-derived EVs, including miRNA,
lncRNA and protein, enable their application in diagnosis
(Table 3). For instance, EVs released from acute myeloid
leukemia cell selectively enrich let-7a, miR-99b, miR-146a,
miR-155, miR-191 and miR-1246 (Hornick et al., 2015).
Moreover, RT-qPCR analysis showed that the concentrations
of those increased miRNAs were 1000-fold above the cellular
level, which may better distinguish acute myeloid leukemia from
healthy volunteers with high sensitivity and specificity (Hornick
et al., 2015). High levels of circular RNA SETDB1 and miR-31-5P
are observed in lung adenocarcinoma patients (Xu et al., 2021; Yu
et al., 2021). Serum vesicular circular RNA SETDB1 level is
closely correlated with the T stage and lymph node metastasis
(Xu et al., 2021). In addition, zinc finger antisense 1 (ZFAS1),
belonging to competing endogenous lncRNA, is enriched in the
serum EVs of gastric cancer patients (Pan et al., 2017). Highly

expressed vesicular ZFAS1 may be related to a higher risk of
lymphatic metastasis in gastric cancer patients (Pan et al., 2017).
Glypican-1 (GPC1) is specifically up-regulated in tumor-derived
EVs, thus detection of serum-derived EVs from pancreatic cancer
patients distinguishes healthy individuals and patients with a
benign pancreatic cancer from patients with early- and late-stage
pancreatic cancer in a GPC1-dependent manner with specificity
and sensitivity (Melo et al., 2015). In addition, contactin-1 is
selectively elevated in plasma EVs of melanoma cancer patients
when compared with EVs of normal volunteers (Pietrowska et al.,
2021). This indicates that the detection of these differentially
expressed proteins of melanoma cancer-derived EVs may play an
essential role in the diagnosis and monitoring of tumors. The
expression levels of let-7p-3b, miR-150-3p, miR-145-3p andmiR-
139-3p in plasma-derived EVs from colon cancer patients are
much higher than those in plasma-derived EVs from healthy
controls (Min et al., 2019). Moreover, EVs derived miRNAs show
a more potent diagnosis efficacy than plasma total miRNAs.
Recently, Xia et al. (2020) believe that miR-301a-3p is correlated
to gastric cancer development and metastasis. In addition, miR-
301a-3p is selectively enriched in serum EVs isolated from gastric
cancer with peritoneal metastasis (Xia et al., 2020). Similarly,
elevated miR-92a-3p expression level in plasma-derived EVs is
related to metastasis of HCC patients (Yang et al., 2020). Also,
vesicular lncHILAR expression is markedly higher in renal cancer
patients with metastasis than those without metastasis (Hu et al.,
2021). Yuan et al. (2021) believe that breast cancer patients with
high vesicular miR-21 in serum also have bone metastasis.
Furthermore, high vesicular HMGB3 level is observed in
nasopharyngeal carcinoma patients, especially those with
metastasis (Zhang K. et al., 2021).

In addition to acting as non-invasive biomarkers in cancer
diagnosis, EVs have also been shown to serve as “real time”
biomarkers during cancer treatment (Table 3). For instance,
TrpC5 is a regulator of multidrug transporter P-glycoprotein,
which promotes the generation of EVs. The expression level of
vesicular TrpC5 in breast cancer patients with low drug sensitivity
is significantly higher than that in healthy volunteers (Ma et al.,
2014). As a result, detection of TrpC5-bearing EVs in peripheral

TABLE 3 | Tumor-derived EVs as biomarkers in cancer diagnosis and treatment.

Cargoes Cancer types Source of EVs Applications References

Let-7a, miR-99b, miR-146a, miR-155, miR-191, miR-1246 Acute myeloid leukemia Serum Diagnosis Hornick et al. (2015)
Circular RNA SETDB1, miR-31-5p Lung adenocarcinoma Serum/plasma Diagnosis Xu et al. (2021), Yu et al. (2021)
ZFAS1, miR-301a-3p Gastric cancer Serum Diagnosis Pan et al. (2017), Xia et al. (2020)
GPC1 Pancreatic cancer Serum Diagnosis Melo et al. (2015)
Contactin-1 Melanoma cancer Plasma Diagnosis Pietrowska et al. (2021)
Let-7p-3b, miR-150-3p, miR-145-3p, miR-139-3p Colon cancer Plasma Diagnosis Min et al. (2019)
miR-92a-3p HCC Plasma Diagnosis Xia et al. (2020)
LncHILAR Renal cancer Plasma Diagnosis Hu et al. (2021)
miR-21 Breast cancer Serum Diagnosis Yuan et al. (2021)
HMGB3 Nasopharyngeal carcinoma Serum Diagnosis Zhang et al. (2021a)
TrpC5 Breast cancer Peripheral blood Therapy monitoring Ma et al. (2014)
Annexin A6 Triple-negative breast cancer Serum Therapy monitoring Li et al. (2021)
miR-208b, miR-21-5p Colorectal cancer Serum Therapy monitoring Ning et al. (2021), He et al. (2021)
S100A4, osteopontin HCC Plasma Prognosis Sun et al. (2021)
LncRNA-SOX2OT NSCLC Peripheral blood Prognosis Ni et al. (2021)
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blood of patients may predict the clinical treatment effect of
chemotherapy. Similarly, annexin A6 overexpression relates to
poor response to gemcitabine-based chemotherapy (Li et al.,
2021). Ning et al. (2021) believe that the elevated miR-208b
expression level is associated with oxaliplatin resistance in
colorectal cancer patients. In addition, the expression level of
vesicular miR-21-5p decreases in colorectal cancer patients after
surgical resection (He et al., 2021). Recent studies have found that
tumor-derived EVs may be a potential biomarker for cancer
prognosis (Table 3). For instance, highly expressed vesicular
S100A4 and osteopontin are related to short overall survival
rates and disease free survival rates in HCC patients (Sun et al.,
2021). Similarly, highly expressed vesicular lncRNA-SOX2OT are
also related to short overall survival rates in NSCLC patients (Ni
et al., 2021).

To better utilize these biomarkers in clinic, progress in EVs
detection should be discussed. The conventional EVs detection
methods conclude ultracentrifugation pretreatment and
downstream western blotting, ELISA or PCR analysis.
However, these techniques are time-consuming and insensitive
(Lane et al., 2019). To overcome these limitations, plenty of micro
and nano-devices have been exploited for detecting EVs. For
example, Lewis et al. (2018) developed an Alternating Current
Electrokinetic chip, which could capture and quantify vesicular
GPC1 and CD63 within 30 min. Zhang P. et al. (2019) designed a
fluorescence-based integrated platform called ExoProfile, which
could elucidate the differences between the EVs of ovarian cancer
patients and healthy people. Pang et al. (2020) used a surface
enhanced Raman scattering method to elucidate the expression
level of vesicular PD-L1 between NSCLC patients and healthy
people. Recently, Marchisio et al. (2021) used a polychromatic
flow cytometry technique to perform the detection of EVs
captured by the lipophilic cationic dye. Thakur et al. (2021)
presented a localized surface plasmon resonance (LSPR)
technique to detect tumor-derived EVs using designed TiN-
NH-LSPR biosensor and demonstrated that the label-free
LSPR technique can be used for glioblastoma monitoring. Park
et al. (2021) proposed a high-throughput electrochemical
detection platform called HiMEX, which could distinguish
colorectal cancer patients from healthy volunteers with high
sensitivity and specificity.

CONCLUSION

In recent years, numerous studies of EVs have reported their
participation in different stages during cancer progression. The
delivery of intercellular information from tumor cells to stromal
cells via EVs affects the functions and phenotypes of recipient cells,
thereby regulating tumor progression. Herein we describe the key
findings on how tumor-derived EVs remodel TME to influence
tumor progression. In this regard, it is the multiple activators in
EVs to create a protumoral or an anti-tumoral soil in the
microenvironment. Moreover, such properties also enable their
application in cancer diagnosis and treatment as an ideal candidate
for non-invasive biomarkers. However, despite significant progress
has been made in exploring the role of tumor-derived EVs in TME,
many questions remain. Firstly, current studies on tumor-derived
EVs use highly heterogeneous cells composed of multiple clones.
Therefore, the functions of EVs released from single-cell have yet to
be unveiled. Secondly, the enhanced techniques for EVs detection
are sensitive and precise, but they also require expensive
modification. Thus, highly precise, low-cost and simple
techniques for clinical samples detection remain to be exploited.
Thirdly, it remains unclear what the main components are at work.
This field is in urgent need of more precise characterization of EVs
cargo and biology.
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