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Background: HIV-infected immunological non-responders (INRs) are characterized by
their inability to reconstitute CD4+ T cell pools after antiretroviral therapy. The risk of non-
AIDS-related diseases in INRs is increased, and the outcome and prognosis of INRs are
inferior to that of immunological responders (IRs). However, few markers can be used to
define INRs precisely. In this study, we aim to identify further potential diagnostic markers
associated with INRs through bioinformatic analyses of public datasets.

Methods: This study retrieved the microarray data sets of GSE106792 and GSE77939
from the Gene Expression Omnibus (GEO) database. After merging two microarray data
and adjusting the batch effect, differentially expressed genes (DEGs) were identified. Gene
Ontology (GO) resource and Kyoto Encyclopedia of Genes and Genomes (KEGG)
resource were conducted to analyze the biological process and functional enrichment.
We performed receiver operating characteristic (ROC) curves to filtrate potential diagnostic
markers for INRs. Gene Set Enrichment Analysis (GSEA) was conducted to perform the
pathway enrichment analysis of individual genes. Single sample GSEA (ssGSEA) was
performed to assess scores of immune cells within INRs and IRs. The correlations between
the diagnostic markers and differential immune cells were examined by conducting
Spearman’s rank correlation analysis. Subsequently, miRNA-mRNA-TF interaction
networks in accordance with the potential diagnostic markers were built with
Cytoscape. We finally verified the mRNA expression of the diagnostic markers in
clinical samples of INRs and IRs by performing RT-qPCR.

Results: We identified 52 DEGs in the samples of peripheral blood mononuclear cells
(PBMC) between INRs and IRs. A few inflammatory and immune-related pathways,
including chronic inflammatory response, T cell receptor signaling pathway, were
enriched. FAM120AOS, LTA, FAM179B, JUN, PTMA, and SH3YL1 were considered
as potential diagnostic markers. ssGSEA results showed that the IRs had significantly
higher enrichment scores of seven immune cells compared with IRs. The miRNA-mRNA-
TF network was constructed with 97 miRNAs, 6 diagnostic markers, and 26 TFs, which
implied a possible regulatory relationship.
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Conclusion: The six potential crucial genes, FAM120AOS, LTA, FAM179B, JUN, PTMA,
and SH3YL1, may be associated with clinical diagnosis in INRs. Our study provided new
insights into diagnostic and therapeutic targets.

Keywords: INRs, IRs, bioinformatic gene analysis, gene expression omnibus, diagnostic markers

INTRODUCTION

Acquired immunodeficiency syndrome (AIDS) refers to a serious
chronic infectious disease attributed to the human
immunodeficiency virus (HIV). Antiretroviral therapy (ART)
has been the most common method for treating AIDS. ART is
capable of inhibiting HIV replication, restoring the number of
CD4+ T cells, and reducing AIDS morbidity and mortality
effectively (Saksena et al., 2007; Sabin and Lundgren, 2013).

However, in nearly 15–30% of the infected patients, the number of
CD4+ T cells has been at a low level for a long time even after HIV is
overall suppressed after long-term ART. These patients are termed
immunological non-responders (INRs) (Gazzola et al., 2009; Corbeau
and Reynes, 2011). Compared with the immunological responders
(IRs), the INRs have elevated levels of immune activation,
inflammation, and autoantibodies. To be specific, the morbidity
and mortality of non-AIDS-related diseases (e.g., cardiovascular
disease, non-AIDS-related tumors, and HIV-related neurocognitive
disorders) significantly increased (Engsig et al., 2014; Takuva et al.,
2014; Pacheco et al., 2015). Therefore, the early diagnosis of INR is
imperative for the prevention and treatment of patients’ clinical
diseases. At present, the judgment of immune non-response
mainly depends on the count of CD4 while the indicator of CD4
count has some defects. If there is no uniform standard for the specific
definition of the CD4 count in immunologically non-responsive
patients, it is impossible to completely distinguish between INR
and IR. Therefore, it is urgent to explore the diagnostic biomarkers
of INR, so as to lay a foundation for elucidating the mechanism of
immune non-response and clinical diagnosis.

The occurrence of immune non-response in HIV infected persons
might be correlated with numerous factors (e.g., age, duration of HIV
infection (Baker, et al., 2008a), CD4+ T cell counts nadir (Moore and
Keruly, 2007), inflammation and adverse reaction to IL-7). As
reported in existing studies, INRs achieve high levels of T cell
activation, which is defined as the co-expression of CD38 and
HLA-DR on CD4+ and CD8+ T cells and the up-regulated
expression of inflammatory markers in plasma (Lederman et al.,
2011). However, INRs diagnostic markers have been rarely studied.

Hence, based on the samples of IRs and INRs obtained from the
GEOdatabase, several bioinformaticsmethods are employed to obtain
diagnostic markers that can assess immune response and immune
non-response. This can be considered an attempt to present novel
auxiliary targets for defining immune non-response.

MATERIALS AND METHODS

Data Source and Preprocessing
Raw files of two registered microarray data sets, i.e., GSE106792 and
GSE77939, originated from the NCBI GEO database (https://www.

ncbi.nlm.nih.gov/geo/). A total of 12 INRs and 12 IRs samples of
peripheral blood mononuclear cells (PBMC) were covered in
GSE106792 data sets. INR subjects were defined as having CD4+

T cell counts below 350 cells/μl, and IRs were defined as possessing
CD4+ T cell counts above 350/μL after at least 2 years of ART with
virologic control. GSE77939 data sets involved 7 INRs and 5 IRs
samples of PBMC. IR subjects were defined as undergoing ART for at
least one year or more and showing signs of response to the treatment
with an increase of over 150 cells/μL inCD4+T cell counts and current
CD4 counts above 250 cells/μL. Moreover, INRs included HIV-
positive individuals on ART for at least one year or more showing
undetectable viral load (<40 copies/mL) andCD4+T cell counts below
250 cells/μL. The combat function in the sva package was adopted to
remove the batch effects while normalizing and merging the
mentioned two data sets (Leek et al., 2012). Principal component
analysis (PCA) was conducted to visualize the spatial distribution of
the samples and examine the results of the treatment of the batch
effects (Jolliffe and Cadima, 2016).

Patients and Collection of Clinical Samples
The study subjects comprised two populations, i.e., 20 HIV-1-infected
patients on ART with undetectable viremia (HIV-RNA < 50 copies/
mL) more than 2 years, consisting of 10 HIV-IRs (with CD4+ T cell
counts above 350 cells/μL) and 10 HIV-INRs (with CD4+ T cell
counts below 250 cells/μL) in the sexually transmitted disease (STD)
and AIDS Clinic, Beijing Youan Hospital, Capital Medical University.
The exclusion criteria included the coinfection with HBV and HCV,
pregnancy, as well as moribund status. Specific information on the
patients is listed in Supplementary Table S1.

Identification of Differentially Expressed
Genes
The DEGs were determined between INRs and IRs samples with
the “limma” R package (Ritchie et al., 2015; Phipson et al., 2016).
The |log2 fold change (FC)| > 0.5 and adj. p-Value < 0.05 were
considered the cut-off criteria. The results of DEGs were
introduced to the heatmap and the volcano map. The location
of DEGs on chromosomes was illustrated with the “OmicCircos”
package from R software (Zhu et al., 2020).

Functional and Pathway Enrichment
Analyses of Differentially Expressed Genes
Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis were conducted with the DEGs by adopting the
“clusterProfiler” package (Yu et al., 2012). On the whole, GO
enrichment analysis expresses the biological processes (BP),
cellular components (CC), and molecular functions (MF)
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correlated with DEGs. The biological pathways correlated with
DEGs were revealed from KEGG pathway analysis. The threshold
for enrichment significance was p-value < 0.05.

Screening of the Diagnostic Markers
After the expression data of the DEGs were extracted from the
batch-processed data set, the receiver operating characteristic
(ROC) curves of the mentioned DEGs were plotted with the
pROC in R package Genes. To be specific, the AUC values over
0.9 showed diagnostic significance and could be considered the
diagnostic markers (Obuchowski and Bullen, 2018; Cao and
López-de-Ullibarri, 2019). The expression of the diagnostic
markers in the merged GEO series was drawn into a box plot
and the difference was compared by the Wilcoxon test. The
p-value < 0.05 was defined to be statistically significant.

Gene Set Enrichment Analysis
To identify the pathways and processes differently activated or
suppressed by the diagnostic markers, GSEA was performed for
the single diagnostic marker in GSEA software (v3.0). The
expression values of the respective diagnostic marker acted as
the phenotype files, and the correlation coefficients of the
respective diagnostic marker with each gene in the gene sets
were ranked. Furthermore, the “h.all.v7.4.symbols.gmt
(hallmarks)” and “c7.all.v7.4.symbols.gmt (Immunologic
signatures)” from Molecular Signatures Database (MSigDB)
(Xiao et al., 2021) were adopted as the reference gene sets.
The threshold for enrichment significance was NOM
p-value < 0.05.

Evaluation of Immune Cell Infiltration
The enrichment scores of 28 immune cells in the respective
sample were determined with single-sample gene set
enrichment analysis (ssGSEA) (Bindea et al., 2013). A box plot
was generated to visualize the differences in 28 immune cells
infiltration between the INRs and the IRs. By adopting
‘Spearman’ correlation analysis, the correlations between the
diagnostic markers and the differential immune cells were
analyzed. The correlation coefficient |cor| > 0.3 and p-value <
0.05 was considered with statistical significance.

Construction of miRNA-mRNA-TF
Regulatory Network
Target miRNAs of the diagnostic markers were estimated
according to miRWalk and miRDB databases. The miRNAs
identified in both two databases were considered the target
miRNAs. The target TFs of the diagnostic markers were
predicted by Network Analyst database. Subsequently, the
miRNA-mRNA, mRNA-TF, and miRNA-mRNA-TF
interaction networks were built with Cytoscape (Li et al., 2020).

RNA Extraction and Quantitative Real-Time
Polymerase Chain Reaction
Total RNA from the 10 INRs and 10 IRs samples was extracted by
adopting Nuclezol LS RNA Isolation Reagent following the

manufacturer’s instructions (ABP Biosciences Inc.).
Subsequently, total RNA was reversely transcribed into cDNA
with the SureScript-First-strand-cDNA-synthesis-kit
(GeneCopoeia) by complying with the manufacturers’
protocol. qPCR was subsequently performed with the
BlazeTaq™ SYBR® Green qPCR Mix 2.0 (GeneCopoeia). The
thermocycling conditions below were employed for qPCR, 1 cycle
at 95°C for 30 s (initial denaturation), followed by 40 cycles of 10 s
at 95°C (denaturation), 20 s at 60°C (annealing), and 30 s at 72°C
(extension). Table 1 lists the sequences of the primers. The
relative expression level was normalized to the endogenous
control GAPDH and then calculated by applying the 2−ΔΔCq

method (Livak and Schmittgen, 2001). The student’s t-test was
performed to compare the differences between the two groups.
The two-tailed p-value < 0.05 in the statistical analysis was
defined to be statistically significant.

RESULTS

Identification of Differentially Expressed
Genes
Gene expression levels of merged GEO series with batch effects
adjusted were standardized, and the results of PCA before and
after processing are presented in Supplementary Figures S1A–C.
Merged data sets covered 19 INRs and 17 IRs samples. In total 52
DEGs with |log2 FC|> 0.5 in the INRs samples compared with the
IRs samples were identified, i.e., 43 up-regulated genes and
9 down-regulated genes (Supplementary Table S2). Figures
1A,B presents the heatmap plot and volcano plot of 52 DEGs
recruited in subsequent analyses. Moreover, the chromosomal
locations and expression patterns of the mentioned DEGs are
presented in Figure 1C.

TABLE 1 | The relationship in the miRNA-mRNA-TF regulatory network.

Genes Sequence

FAM120AOS
Forword 5′-TGGGAAGGGGGATAGGGG-3’
Reverse 5′-GTCAAGCGGCAGGGCAAC-3’

LTA
Forword 5‘-CAGGTGGTCTTCTCTGGGAAA-3’
Reverse 5‘-GTGTGGGTGGATAGCTGGTCT-3’

FAM179B
Forword 5′-AGGCCGTCGAAGAACTAAA-3’
Reverse 5′-CTCCAAGGCGAATAACCAG-3’

JUN
Forword 5′-TGCCTCCAAGTGCCGAAA-3’
Reverse 5′-GCTGTGCCACCTGTTCCC-3’

PTMA
Forword 5′-CACCAGCTCCGAAATCAC-3’
Reverse 5′-TCCTCCTCCTCTTCCTCC-3’

SH3YL1
Forword 5′-GCACCAGTCCAGCTGAACTCT-3’
Reverse 5′-TTCCTTCCCACCAATCAAAAT-3’

GAPDH
Forword 5′-CGCTGAGTACGTCGTGGAGTC-3’
Reverse 5′-GCTGATGATCTTGAGGCTGTTGTC-3’
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Functional Enrichment Analyses of
Differentially Expressed Genes
To explore the biological functions of the 52 DEGs in-depth,
functional enrichment analyses were conducted, and the results
are listed in Supplementary Table S3. GO annotation of DEGs
consisted of three parts (i.e., BP, CC, and MF), and the top 10
significantly enriched pathways in accordance with the p-value of
the respective category are illustrated (Figures 2A–C).
Inflammatory and immune-related pathways were enriched in
the BP ontology (e.g., positive regulation of monocyte, regulation
of humoral immune response mediated by circulating
immunoglobulin, positive regulation of inflammatory response
to an antigenic stimulus, chronic inflammatory response, positive
regulation of humoral immune response, toll-like receptor three
signaling pathways). In the CC ontology, the DEGs were
significantly correlated with the endosome membrane,
transcription factor complex, trans-Golgi network, transport

vesicle membrane, etc. For MF, the DEGs were significantly
correlated with phospholipid binding, activating transcription
factor binding, electron transfer activity, etc. Next, KEGG analysis
was conducted to investigate the vital pathways involved, and the
results are displayed in Supplementary Table S4. Figure 2D lists
the top 10 enriched terms based on p-values. It was reported that
inflammatory and immune-related pathways were enriched (e.g.,
Th1 and Th2 cell differentiation, inflammatory mediator
regulation of TRP channels, NF-kappaB signaling pathway,
T cell receptor signaling pathway, Th17 cell differentiation,
and Th17 cell differentiation).

Identification of the Diagnostic Markers and
Gene Set Enrichment Analysis
ROC analysis was conducted on the 52 DEGs and excavated six
genes (FAM120AOS, LTA, FAM179B, JUN, PTMA, SH3YL1)
with AUC values over 0.9 (Figures 3A–F), thereby illustrating

FIGURE 1 | Identification of DEGs between INRs and 17 IRs. (A,B) Volcano plot (A) and Heatmap (B) presented the expression of DEGs. (C) The chromosomal
locations and expression patterns of DEGs.
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that the mentioned genes exhibited a powerful discrimination
ability to discriminate INRs samples from the IRs samples. GSEA
analysis is applicable to the pathway enrichment analysis of
individual genes. Subsequently, GSEA was conducted for a
single diagnostic marker in the expression data of merged data
set in accordance with hallmark gene sets and immunologic
signature gene sets (Xiao, et al., 2021). Supplementary Table
S5 presents the enrichment results of hallmark and immunologic
signature function terms for the respective diagnostic marker.
Given NOM p-value, inflammatory signaling pathway,
HALLMARK_TGF_BETA_SIGNALING was significantly
correlated with LTA expression (Figure 4A). Treg cell-related
terms: TREG_VS_TCONV_UP and TREG_VS_TCONV_DN
were significantly correlated with PTMA and LTA expressions,
respectively (Figures 4B,C). Thus, the genes involved in the
mentioned three gene
sets(HALLMARK_TGF_BETA_SIGNALING,
TREG_VS_TCONV_UP, TREG_VS_TCONV_DN) were
obtained, and their expression patterns in the INRs and IRs
groups were demonstrated with heatmaps (Younes et al., 2018)
(Figures 4D,E).

Comparison of the Immune
Microenvironment in INRs and IRs Samples
To assess the discrepancy of immune microenvironment between
the INRs and IRs samples, the enrichment scores of 28 immune
cells were estimated by employing the ssGSEA algorithm. As

indicated from the results, the IRs achieved significantly higher
enrich scores of activated dendritic cell, CD56dim natural killer
(NK) cell, effector memory CD8 T cell, immature B cell, natural
killer T cell, plasmacytoid dendritic cell, as well as T follicular
helper cell (Figure 5A). As revealed from the mentioned findings,
the difference of immune cells can be inferred that there are
significant differences in immune microenvironment between
INRs and IRs.

The spearman correlation between six diagnostic
markers and differential immune cells between INRs and
IRs was further analyzed (Supplementary Table S6).
According to Figure 5B, all six diagnostic markers were
negatively correlated with T follicular helper cell and
CD56dim NK cell. SH3YL1 and FAM179B were negatively
correlated with activated dendritic cell; FAM179B, LTA, and
FAM120AOS were negatively correlated with effector
memory CD8 T cell; PTMA, FAM179B, LTA, and
FAM120AOS were negatively correlated with immature
B cell; SH3YL1, PTMA, JUN, FAM179B and
FAM120AOS were negatively correlated with natural killer
T cell; FAM179B was negatively correlated with plasmacytoid
dendritic cell.

miRNA-mRNA-TF Regulatory Network
Analysis
The regulated networks have been recognized to critically help
understand the mechanisms of disease. To explore the

FIGURE 2 |Go annotation an KEGG enrichment analysis of DEGs. (A–C) The top 10 terms of BP (A), CC (B), andMF (C) of GO annotation were enriched by DEGs.
(D) The top 10 KEGG pathways enriched by DEGs.
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regulatory mechanisms involved in INRs in-depth, miRNAs
targeting the diagnostic markers were estimated by the
miRDB and miRWalk databases. On the whole, 97 putative
miRNAs and 106 miRNA-mRNA pairs were identified
(Supplementary Table S7). A miRNA-mRNA regulatory
network was built with 97 miRNAs, six diagnostic markers,
and 106 edges (Figure 6A). Likewise, mRNA and TF-
mediated regulatory networks were built as well. In general,
26 TFs were predicted by using the Network Analyst database,
and the mRNA-TF regulatory network consisted of
38 mRNA-TF pairs (Figure 6B, Supplementary Table S8).
Given the predicted miRNA-mRNA and mRNA-TF networks
above, the miRNA-mRNA-TF network was built by applying
Cytoscape software and displayed in Figure 6C. The detailed
information of Figure 6C was listed in Table 2. In such a
regulatory network, PTMA, SH3YL1, and JUN were targeted
by Sp1 transcription factor (SP1), SH3YL1 was targeted by
nuclear factor kappa B subunit 1 (NFKB1), and PTMA and
JUN were targeted by transcription factor AP-2 alpha
(TFAP2A). Furthermore, FAM179B was regulated by hsa-
miR-101-3p, and FAM179B was regulated by hsa-miR-24-1-
5p and hsa-miR-24-2-5p, probably correlated with HIV
progression.

Validation of the Expression of the
Diagnostic Markers Through RT-qPCR
The mRNA expression of the diagnostic markers in clinical 10
INRs and 10 IRs samples were detected by performing RT-qPCR.
As revealed in Figures 7A–F, the expressions of FAM120AOS,
LTA, FAM179B, JUN, PTMA, and SH3YL1 were significantly up-
regulated in INRs compared with IRs, thereby further verifying
the expression of the diagnostic markers in the merged data sets
from the public database (Figure 7G).

DISCUSSION

Although ART can effectively inhibit HIV replication (Bai et al.,
2020) and promote the recovery of immune function of infected
persons, there are still 20–30% of HIV-infected persons (Li et al.,
2011). Moreover, the number of CD4+ T cells remains at a low
level (<350 cells/μL) for a long time even after the virus is
completely suppressed (Yang et al., 2020). This phenomenon
is called poor immune reconstitution. Such patients are called
INRs. Compared with IRs, the incidence and mortality of INRs
non-AIDS-related diseases (such as cardiovascular diseases,

FIGURE 3 | Identification of diagnostic markers by ROC analysis. (A–F) ROC curves showed the AUC values of FAM120AOS (A), LTA (B), FAM179B (C), JUN (D),
PTMA (E), SH3YL1 (F).

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 8090856

Bai et al. Diagnostic Markers Related to HIV+ INR

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


tumors, and neurocognitive disorders) and AIDS-related diseases
(such as infections and tumors) have increased significantly,
resulting in an increase in the medical and economic burden
on the family and society (Baker, et al., 2008b; Liu et al., 2021;
Pacheco, et al., 2015; Young et al., 2012). However, there is still a
lack of biomarkers for early prediction or diagnosis of immune
non-response. Thus, early prediction or diagnostic biomarkers of
INR should be explored urgently to provide a foundation for
clinical diagnosis of INR, so as to improve the immune
reconstitution status of HIV-infected patients.

In the present study, we firstly identified 52 differentially
expressed genes in the samples of immune non-responders
and immune responders of HIV-infected individuals. As
revealed from the subsequent functional enrichment analysis,
the mentioned genes were largely involved in inflammatory and
immune response-related pathways. (Figures 2A,D). To be
specific, the higher level of inflammatory response and
immune activation of INRs primarily accounts for why they
are more likely to develop AIDS than IRs after ART treatment

(Lu et al., 2018). For instance, sCD14, a marker of acute phase
response, monocyte and macrophage activation, was reported to
be significantly elevated in INRs (Ruiz-Briseño et al., 2020). In
addition, sCD163 levels, another marker of monocyte activation
and inflammatory response, were noticeably regulated after the
treatment with ART (McKibben et al., 2015). More importantly,
higher immune activation and systemic inflammatory
biomarkers (sST2 and hsCRP) levels were found to be directly
correlated with the presence of arterial hypertension and diastolic
dysfunction in INRs (Scherzer et al., 2018). Besides, Hunt et al.
reported that for every 5% increase in the percentage of activated
CD4+ T cells, the number of CD4+ T cells decreased by 45 cells/µl
in the first 3 months of antiretroviral therapy. Likewise, for each
5% increase in the percentage of activated CD8+ T cells, CD4+

T cells decreased by 35 cells/µl (Hunt et al., 2003). Furthermore,
plasma levels of sCD14 and sCD163 and activated CD4+ and
CD8+ T ratio was significantly higher in HIV-infected individuals
on ART compared with the healthy controls (Cobos Jiménez
et al., 2016). Accordingly, the aforementioned differentially

FIGURE 4 | The results of enrichment analyses of diagnostic markers. (A) HALLMARK_TGF_BETA_SIGNALING pathway enriched by LTA. (B–C)
TREG_VS_TCONV_UP and TREG_VS_TCONV_DN pathway enriched by PTMA (B) and LTA (C). (D) The expression of genes in the
HALLMARK_TGF_BETA_SIGNALING pathway between INRs and IRs. (E) The expression of genes in TREG_VS_TCONV_UP and TREG_VS_TCONV_DN pathway
between INRs and IRs.
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expressed 52 genes might be vital molecules in the regulation of
immune activation and inflammatory response, probably acting
as markers of immune non-response after ART treatment.

Moreover, as demonstrated by ROC analysis, FAM120AOS,
LTA, FAM179B, JUN, PTMA, and SH3YL1 could act as the
markers for the diagnosis of INRs (Figures 3A–F). It is
gratifying that LTA in the mentioned six markers were
significantly enriched in the TGF-Beta signaling pathway and
immune signaling pathway (TREGVSTCONVUP,
TREGVSTCONVDN), and PTMA was involved in the
mentioned two immune-related signaling pathways as well
(Figures 4A–C). Interestingly, FAM120AOS was suggested to
be able to regulate the expression of ITGB1 (CD29) (Tao et al.,
2006), whereas ITGB1 has already been reported to be correlated
with HIV-1 infection (Diagbouga et al., 2001; Martin-Jaular et al.,

2021). In addition, ITGB1 has been found to be involved in T cell
apoptosis (Fukumori et al., 2003). LTA is capable of exhibiting
identical inflammatory properties to lipopolysaccharide by
interacting with toll-like receptors (TLRs) (Kengatharan et al.,
1998; Chang et al., 2010), i.e., eliciting different inflammatory
responses in resident cells via different signaling cascades (Akira
et al., 2006). More importantly, LTA was indicated to be able to
facilitate HIV infection of primary oral cells (Dai et al., 2014).
JUN could participate in the process of differentiation of naïve
T cells into Th1 and Th2, thereby bringing critical to T cell-
mediated diseases (Rincón et al., 1997; Zenz et al., 2008). Next,
JUN can stimulate HIV-1 transcription in precursor cells of
monocytes and primary macrophages (Varin et al., 2005).
Besides, JUN can regulate the inflammatory response by
activating antioxidant response elements (Jackson et al., 2011).

FIGURE 5 | Correlations between diagnostic markers and immune cells. (A) The discrepancy of enrichment scores for 28 immune cells between the INRs and IRs
samples. (B) The correlation heatmap of 6 diagnostic markers and 7 differential immune cells.
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According to existing studies, exogenous PTMA is capable of
effectively inhibiting HIV-1 replication in primary macrophages
by regulating some genes that inhibit HIV-1 replication when
applied to growth mediators of primary macrophages (Mosoian
et al., 2006; Mosoian et al., 2007). As proven by recent studies,
SH3YL1 expression can affect T cell activation in multiple
sclerosis patients (Fernandes et al., 2019). However, to the
extent of our knowledge, there are no studies on FAM179B in
relation to immunization or HIV. Thus, this study indicated
initially that FAM179B might influence ART treatment in HIV-
infected individuals. In brief, this study hypothesized that
FAM120AOS, LTA, FAM179B, JUN, PTMA, and SH3YL1
may affect ART treatment by regulating immune or
inflammatory responses.

Further, it was found that the mentioned diagnostic genes
were correlated with differential immune cells in ART-responsive
and non-responsive patients. Particularly, it was demonstrated

that CD56dimCD16+ NK cell subsets are the main subpopulation
of peripheral blood NK cells. They express FcγR IIIa (CD16),
which makes NK cells cytotoxic (Caligiuri, 2008). Notably,
CD56dimCD16+ subsets have been verified to play a role in
HIV pathogenesis. A study revealed that compared to IRs,
INRs exhibited more CD56dimCD16dim/− NK cells and higher
activity levels after ART treatment, suggesting that the increase in
CD56dimCD16dim/− NK cell subsets might be a negative factor in
immune reconstitution (Zhang et al., 2020). Besides, Giuliani
et al. discovered that the changes of NK cells in INRs may involve
disease progression and impaired CD4+ T cell recovery. It
indicated an increase in the proportion of regulatory
CD56bright NK cell subsets in INRs and a negative correlation
with CD4+ T cell counts (Giuliani et al., 2017). Furthermore, the
activity and functional markers of CD56dimCD16+ NK cells with
immune unresponsiveness increased compared to the healthy
control group. In the antiviral treatment of HIV, the activation

FIGURE 6 | The regulating mechanisms of diagnostic markers. (A) The miRNA mRNA regulatory network comprising 97 miRNAs, 6 diagnostic markers, and 106
edges. (B) The mRNA-TF regulatory network comprising 38 mRNA TF pairs. (C) The miRNA-mRNA-TF network of 6 diagnostic markers.
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level of CD56dimCD16+ NK cells and the increase of functional
markers were negatively associated with the CD4+ T cell counts
(Luo et al., 2017). Therefore, FAM120AOS, LTA, FAM179B,
JUN, PTMA, and SH3YL1 may significantly affect ART
therapy outcomes by regulating activated dendritic cells,
CD56dim NK cells, effector memory CD8 T cells, immature
B cells, natural killer T cells, plasmacytoid dendritic cells, and
T follicular helper cells. However, in-depth studies should be
conducted to determine the mechanism of action of the
mentioned genes.

Notably, in the miRNA-mRNA-TF networks, the
transcription factor SP1 could regulate the expressions of
PTMA, SH3YL1, and JUN. The transcription factor NFKB1
could regulate the expression of SH3YL1, and TFAP2A could
regulate the expressions of PTMA and JUN. Consistent with the

TABLE 2 | The relationship in the miRNA-mRNA-TF regulatory network.

mRNA TF miRNA

FAM120AOS HNF4A hsa-miR-3152-3p
FOXL1 hsa-miR-654-3p
TP53 hsa-miR-3145-3p
FOXC1 hsa-miR-5684

hsa-miR-4714-5p
hsa-miR-151a-3p
hsa-miR-4796-5p
hsa-miR-4766-5p

JUN E2F6 hsa-miR-513c-5p
TFAP2A hsa-miR-3925-5p
SP1 hsa-miR-429
SREBF1 hsa-miR-580-3p
FOXC1 hsa-miR-200b-3p
FAM120AOS hsa-miR-200c-3p
BRCA1 hsa-miR-203a

hsa-miR-4311
hsa-miR-4729
hsa-miR-633
hsa-miR-4504
hsa-miR-514b-5p
hsa-miR-5011-5p
hsa-miR-15a-3p
hsa-miR-1299
hsa-miR-4529-5p
hsa-miR-4533
hsa-miR-495-3p
hsa-miR-1277-5p
hsa-miR-4693-3p

LTA FOXL1 hsa-miR-593-3p
SRF hsa-miR-4775
TEAD1 hsa-miR-24-1-5p
SREBF1 hsa-miR-24-2-5p
FOXC1

PTMA NFIC hsa-miR-3120-3p
ESR1 hsa-miR-548p
RELA hsa-miR-3658
E2F1 hsa-miR-548av-5p
SP1 hsa-miR-7-2-3p
TFAP2A hsa-miR-1972
E2F6 hsa-miR-3613-3p
HINFP hsa-miR-624-3p
ZNF354C hsa-miR-3163

hsa-miR-377-3p
hsa-miR-512-5p
hsa-miR-3926
hsa-miR-4495
hsa-miR-513a-3p
hsa-miR-548k
hsa-miR-513c-3p
hsa-miR-7-1-3p
hsa-miR-129-5p
hsa-miR-545-3p
hsa-miR-3918
hsa-miR-367-5p
hsa-miR-659-3p
hsa-miR-3148

SH3YL1 TP53 hsa-miR-23a-3p
SP1 hsa-miR-23b-3p
E2F1 hsa-miR-1303
USF2 hsa-miR-23c
PRRX2 hsa-miR-595
RUNX2 hsa-miR-548l
HOXA5 hsa-miR-4282
NFKB1 hsa-miR-590-3p

(Continued in next column)

TABLE 2 | (Continued) The relationship in the miRNA-mRNA-TF regulatory
network.

mRNA TF miRNA

MAX hsa-miR-4775
NRF1 hsa-miR-4804-3p
GATA2 hsa-miR-4777-3p
SREBF1 hsa-miR-3973
FOXC1 hsa-miR-4521

hsa-miR-4474-3p
hsa-miR-4697-3p

FAM179B hsa-miR-4666a-5p
hsa-miR-3187-5p
hsa-miR-4282
hsa-miR-501-5p
hsa-miR-5692a
hsa-miR-30a-5p
hsa-miR-4719
hsa-miR-7-1-3p
hsa-miR-30b-5p
hsa-miR-513c-3p
hsa-miR-3143
hsa-miR-557
hsa-miR-30c-5p
hsa-miR-3935
hsa-miR-101-3p
hsa-miR-1285-3p
hsa-miR-30d-5p
hsa-miR-32-3p
hsa-miR-4307
hsa-miR-454-3p
hsa-miR-4262
hsa-miR-30e-5p
hsa-miR-4495
hsa-miR-3974
hsa-miR-3163
hsa-miR-7-2-3p
hsa-miR-181a-5p
hsa-miR-4501
hsa-miR-181b-5p
hsa-miR-4452
hsa-miR-4803
hsa-miR-580-3p
hsa-miR-181c-5p
hsa-miR-3591-5p
hsa-miR-513a-3p
hsa-miR-181d-5p
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results here, it was shown that SP1 could enhance JUN expression
(Yi et al., 2020). Since other regulatory mechanisms have not been
reported, in-depth experiments should be conducted to verify the
regulatory mechanisms of the mentioned genes.

Taken together, we have identified six genes associated with
immunological non-response in HIV-infected individuals. Single

or combination of these genes might be used as diagnostic
markers for INRs. Thus, our findings provide some clues for
exploring the mechanisms of incomplete immune reconstitution
in HIV-infected individuals and may help to guide ART
treatment in HIV-infected individuals. However, the
expression of these six genes should be verified in larger

FIGURE 7 | The mRNA expression of diagnostic markers in clinical 10 INRs and 10 IRs samples were detected by RT-PCR. The expression of FAM120AOS, LTA,
FAM179B, JUN, PTMA, and SH3YL1 (A–F) between the INRs and IRs samples (*p < 0.05, **p < 0.01, ***p < 0.001). (G) The expression of the diagnostic markers in
merged GEO series (****p < 0.0001).
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samples. In addition, to further elucidate the regulatory
mechanisms of the mentioned genes, considerable
experimental studies should be conducted.
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