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The early clinical symptoms of gastric cancer are not obvious, and metastasis may have
occurred at the time of treatment. Poor prognosis is one of the important reasons for the
highmortality of gastric cancer. Therefore, the identification of gastric cancer-related genes
can be used as relevant markers for diagnosis and treatment to improve diagnosis
precision and guide personalized treatment. In order to further reveal the pathogenesis
of gastric cancer at the gene level, we proposed a method based on Gradient Boosting
Decision Tree (GBDT) to identify the susceptible genes of gastric cancer through gene
interaction network. Based on the known genes related to gastric cancer, we collected
more genes which can interact with them and constructed a gene interaction network.
Random Walk was used to extract network association of each gene and we used GBDT
to identify the gastric cancer-related genes. To verify the AUC and AUPR of our algorithm,
we implemented 10-fold cross-validation. GBDT achieved AUC as 0.89 and AUPR as
0.81. We selected four other methods to compare with GBDT and found GBDT
performed best.

Keywords: gastric cancer, susceptibility gene, gradient boosting decision tree (GBDT), random walk (RW), gastric
cancer-related genes

INTRODUCTION

There are about 950,000 new cases of gastric cancer worldwide each year, and nearly 700,000 deaths.
It is one of the most serious tumors (Rawla and Barsouk, 2019). The early clinical symptoms of
gastric cancer are not obvious, and metastasis may have occurred at the time of treatment (Axon,
2006). Poor prognosis is one of the important reasons for the high mortality of gastric cancer (Eguchi
et al., 2003). Therefore, the identification of gastric cancer-related genes can be used as relevant
markers for diagnosis and treatment to improve diagnosis precision and guide personalized
treatment (Duffy et al., 2014).

Identifying gastric cancer-related genes plays an important role in the treatment of gastric cancer.
Research onmetastasis-related genes is conducive to timely detection of early metastasis, screening of
new markers and therapeutic targets, thereby improving the survival rate of patients (Arturi et al.,
1997). Using animal models to screen gastric cancer metastasis-related genes (Wang and Chen,
2002), fully mimic the process of tumor metastasis in vivo, with high metastasis efficiency, clear
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phenotypic characteristics, and good clinical similarity. Cell line
derived xenograft (CDX) model is a tumor model constructed by
transplanting cultured tumor cells into immunodeficient mice
(Georges et al., 2019). The cell lines used in the CDX model have
been cultured in vitro for many generations, and their biological
characteristics have changed significantly. Some tumor cell lines
that adapt to culture in vitro and have metastatic potential have
been selected, so it is easy to obtain the metastasis model. The
establishment of the CDXmodel can be realized by subcutaneous
injection, intraperitoneal injection, caudal vein injection, and so
on (Lallo et al., 2017). Zhu et al. (2020) established a
xenotransplantation model by subcutaneous injection of
gastric cancer cell line BGC-823 into the hind limbs of nude
mice. They found that mir-106a had the potential to promote
tumor growth by targeting Smad7. At the same time, they found
that mir-106a was related to peritoneal metastasis of gastric
cancer. At present, studies have found that gastrin level has a
strong relationship with the development of gastric cancer. Zu
et al. (2018) successfully established a cell xenotransplantation
model by subcutaneous injection of human gastric cancer cell line
SGC-7901 in nude mice. They found that gastrin can inhibit the
proliferation of poorly differentiated gastric cancer cells and
enhance the inhibitory effect of cisplatin on gastric cancer by
activating erk-p65-mir 23a/27a/24 axis. Tumor cells with
biological enzyme markers can also be used to establish a
CDX model (Agashe and Kurzrock, 2020), which is helpful to
dynamically monitor tumor metastasis in vivo and facilitate the
screening of metastasis related genes. Miwa et al. (2019)
successfully established the intraperitoneal metastasis model by
injecting MKN1 (MKN1 LUC) and MKN45 (MKN45 LUC)
gastric cancer cells stably expressing luciferase and n87, Kato
III, nugc4, and ocum-1 gastric cancer cells into the abdominal
cavity of nude mice. The liver metastasis model was successfully
established by injecting MKN1 Luc and MKN45 Luc directly into
the portal vein of mice. Because the establishment of CDX model
uses passage cell lines and lacks the microenvironment of tumor
growth in human body (Lallo et al., 2017), it cannot well simulate
the growth and metastasis of tumor in the human body. Patient
derived cell models (PDC) use patient derived tumor cells isolated
from malignant effusions such as ascites and pleural effusion
(Bolck et al., 2019). Therefore, it can better reflect the
individualized characteristics of patients and show unique
advantages in the screening of tumor metastasis related genes
and clinical drug screening. Lee et al. (2015) established a PDC
model with cells collected from patients with metastatic cancer.
The study found that the genomic changes of primary tumor and
offspring PDC model were highly consistent, and the correlation
of average variant allele frequency was 0.878. Further compared
the genomic characteristics of primary tumor P0, P1, and P2 cells,
and found that three samples (P0, P1, and P2 cells) were highly
correlated. The drug response of the model reflects the clinical
response of patients to targeted drugs. Although the PDC model
established by metastatic patient derived tumor cells can reflect
the individualized characteristics of patients, it is cultured in vitro,
which is difficult to culture and cannot simulate the process of
tumor metastasis in vivo. Therefore, the use of this model to
screen metastasis related genes is limited. The metastasis related

genes screened by the above CDX model and PDC model are
conducive to the discovery of relevant molecules promoting
gastric cancer metastasis and provide help for the early
detection of gastric cancer metastasis in the clinic (Almagro
et al., 2014). Patient derived xenograft (PDX) model improves
the shortcomings of the CDX model and the PDC model. It is a
better model to screen metastasis related genes at present. The
model is a xenotransplantation model established by
transplanting fresh clinical surgical specimens into
immunodeficient mice. It maintains the microenvironment of
primary tumor growth, so it can better simulate the biological
behavior of tumors in vivo. Choi et al. (2016) successfully
established 15 cases of gastric cancer PDX models, and found
that the histological and genetic characteristics of the tumor
models remained stable in subsequent passages and were
highly consistent with the primary tumor. This discovery
made the use of PDX models for the development of gastric
cancer molecules possible. Research and individualized treatment
are possible. The PDX model has relatively consistent genomics
characteristics with the primary tumor, which is very conducive
to the screening of individualized metastasis-related genes. Zhang
et al. (2015) successfully established 32 PDX models of gastric
cancer, and found that the gene amplification of FGFR2, MET,
and ERBB2 is very similar between PDX models and their parent
tumors, and the expression of PTEN and MET proteins are also
moderately consistent. These data are in vivo testing of
individualized therapy and screening of transfer-related genes
provides a theoretical basis. There are many methods of tissue
transplantation when establishing a PDX model, including
subcutaneous transplantation, renal capsule transplantation,
orthotopic transplantation, etc. (Okada et al., 2018). Among
them, subcutaneous transplantation is the most commonly
used transplantation method. Guo et al. (2019) established a
PDX model of gastric cancer by subcutaneous transplantation
and revealed the molecular mechanism of ISL1 that promotes
gastric cancer metastasis by combining the ZEB1 promoter and
the cofactor SETD7. ISL1may be a potential prognostic marker of
gastric cancer. Because the microenvironment of orthotopic
transplantation tumors is closer to the human environment,
orthotopic transplantation can simulate the growth of tumors
in the human body better than subcutaneous transplantation, and
it is easier to simulate clinical metastasis, which is beneficial to
screening metastasis-related genes. Wang et al. (2018) found that
28 miRNAs are differentially expressed in invasive gastric cancer
through array analysis. Among these 28 miRNAs, miR-29b is one
of the most significantly down-regulated miRNAs. RNA response
element (miRNA response element, MRE) binds to the negative
regulation of MMP2, thereby affecting the development of gastric
cancer.

However, this kind of animal model experiment method is
very costly and time consuming. With the continuous
enhancement of computing power, computing methods have
been able to process massive amounts of biological data and
mine knowledge from the data (Zhao et al., 2021). Deep learning,
machine learning, and reinforcement learning have been widely
used in the fields of biology and medicine (Zhao et al., 2020a;
Tianyi et al., 2020). These methods use existing knowledge to
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construct complex mathematical models to predict new
knowledge (Zhao et al., 2020b). In this paper, we extracted
network association of each gene by Random Walk (RW) and
used GBDT to identify the gastric cancer-related genes.

METHOD

We obtained 435 genes that are known to be related to gastric
cancer in DisGeNet (Piñero et al., 2020). We collected genes that
can interact with these 896 genes in HumanNet V2.0 (Hwang
et al., 2019). Based on the interaction information, we built a gene
interaction network. This network contains 1331 nodes, and each
node is a gene.

Extracting Features by RW
The core formula of RW is as follows:

Pt+1 � (1 − γ)APt + γP0 (1)

A is the adjacency matrix of the gene interaction network. P is
random walk matrix. γ is a parameter that is needed to be set. We
set γ as 0.5 based on experience.

If ‖Pt+1 − Pt‖> ℓ (we can set ℓ as arbitrarily small number), we
can repeat Formula (1). Otherwise, we could obtain Pt+1 as the
final RW matrix.

Identifying Gastric Cancer Susceptibility
Gene by GBDT
After obtaining the feature of genes by RW, we need to build a
classifier to identify whether a gene is associated with gastric
cancer GBDT does not need to scale the data to build model,

and it is also suitable for data sets where dual features and
continuous features exist at the same time. First, the decision
tree used by GBDT is a CART regression tree. Whether it is
dealing with regression problems or two classifications and
multiple classifications, the decision trees used by GBDT are
all CART regression trees. Because the gradient value to be
fitted in each iteration of GBDT is a continuous value, a
regression tree is used. The most important thing for the
regression tree algorithm is to find the best division point,
then the division point in the regression tree contains all the
desirable values of all features. The criterion for the best
division point in the classification tree is entropy or Gini
coefficient, which are both measured by purity, but the
sample labels in the regression tree are continuous values,
so it is no longer appropriate to use indicators such as
entropy, instead of the square error, which can judge the
degree of fit very well.

The process of constructing CART is as follows:
Input: training data set D. Output: regression tree f (x).
Recursively divide each region into two sub-regions in the

input space where the training data set is located and determine
the output value on each sub-region to construct a binary
decision tree:

min[min∑(yi − c1)2 +min∑(yi − c2)2] (2)

As shown in Formula (2), we need to choose (j, s) to minimize
min∑(yi − c1)2 +min∑(yi − c2)2. Then, we need to introduce (j,
s) to divide the area and determine the corresponding output
value:

R1(j, s) � x
∣∣∣∣x(j)≤ s, R2(j, s) � x

∣∣∣∣x(j)> s (3)

FIGURE 1 | ROC curves of 10-cross validation.
FIGURE 2 | PR curves of 10-cross validation.
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FIGURE 3 | Comparison chart of AUC values of five methods.

FIGURE 4 | Comparison chart of AUPR values of five methods.
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c
�
m � 1

N
∑

x1∈Rm(j,s)
yi, x ∈ Rm,m � 1, 2 (4)

Continue to call Steps (1) and (2) for the two sub-regions until
the stop condition is met.

Divide the input space into M regions (R1, R2, ..., Rm), build
the final decision tree.

f(x) � ∑M
m�1

c
�
mI(x ∈ Rm) (5)

Gradient boosting is an improved algorithm of the Boosting
Tree. There are three steps to implement the Boosting Tree.
Step 1 Initialize f0(x) � 0.
Step 2 Calculate residual rmi � yi − fm−1(x), i � 1, 2, . . . , N.
Step 3 Fit the residual rmi to obtain regression tree and obtain
hm(x).
Step 4 Update fm(x), fm(x) � fm−1(x) + hm(x).
Step 5 The final regression boosting tree would be: fM(x) �∑M

m�1hm(x).
Based on the Decision Tree and Gradient Boosting, we can

combine them to obtain the final GBDT.
First, we need to initialize week learner.

f0(x) � argminc∑
N

i�1
L(yi, c) (6)

For each sample i � 1, 2,..., N, we need to calculate the negative
gradient (residual):

rim � −[zL(yi, f(xi))
zf(xi) ]

f(x)�fm−1(x)
(7)

Use the residual obtained in the previous step as the new true
value of the sample and use (xi, rim) as the training data of the
next tree to obtain the new regression tree fm(x). The leaf node
area of fm(x) is Rjm, j � 1, 2, . . . , J. J is the number of
leaf nodes.

Calculate the Best Fit Value

γjm � argmin ∑
xi∈Rjm

L(yi, fm−1(xi) + γ) (8)

Update Strong Learner

fm(x) � fm−1(x) +∑J
j�1
γjmI(x ∈ Rjm) (9)

Get the Final Learner

f(x) � fM(x) � f0(x) + ∑M
m�1

∑J
j�1
γjmI(x ∈ Rjm) (10)

RESULTS

Since we obtained 435 genes that are known to be related to gastric
cancer in DisGeNet and 896 genes that have strong interaction
with them, the 435 genes were used as the positive samples and 896
were used as negative samples. We used these data to build GBDT
model to identify gastric cancer susceptibility genes.

We applied 10-cross validation to verify the accuracy of our
model. The AUC (Area Under Curve) and AUPR (Area Under
Precision Curve) of our model is shown as Figures 1 and 2,
respectively. The average AUC of 10-cross validation is 0.89 ±
0.008 and average AUPR of 10-cross validation is 0.81 ±
0.006. Since the number of negative samples is significantly
higher than positive samples, to balance the training sample
set, we randomly selected 435 negative samples from 896
genes each time and repeat the 10-cross validation. In
addition, we also compared our method with other methods,
such as Support Vector Machine (SVM), Xgboost, Adaboost, and
Deep Neural Network (DNN). We totally randomly sampled five
negative sets. The performance of these methods is shown as
Figures 3 and 4.

As shown in Figures 3 and 4, the AUC and AUPR of GBDT
are higher than other methods, which explains the superiority of
our method over other methods.

CONCLUSION

Through early detection, early diagnosis, and early treatment,
the cure rate of patients with early gastric cancer can reach 85%;
However, the 5-year survival rate of patients with advanced
gastric cancer is less than 10%. At present, inhibitors targeting
vascular endothelial growth factor (VEGF), epidermal growth
factor (EGF), and tyrosine kinase have been successfully
developed, showing significant curative effects on gastric
cancer. This greatly encourages us to study the characteristic
markers of recurrence or metastasis of gastric cancer from
the perspective of genes. Few genes related to gastric cancer
have been found in cohort studies and animal model experiments.
However, due to the cost, such methods cannot be popularized
large scale.

In this paper, we proposed a novel method to identify gastric
cancer-related genes in large scale. Genes that interact more
closely are more likely to be related to similar diseases. Based
on this hypothesis, we considered to use the gene interaction
information to build a network and infer the gastric cancer-
related genes by this network. RW was applied to encode the
features of genes and GBDT was implemented to identify gastric
cancer-related genes. We verified our method by two kinds of 10-
cross validation experiments. Our method showed high accuracy
in both experiments, indicating that our method can be used to
identify genes related to liver fibrosis. The method proposed in
this article will provide guidance for genetic mechanism and
clinical treatment of gastric cancer.
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