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Understanding how RNAs interact with proteins, RNAs, or other molecules

remains a challenge of main interest in biology, given the importance of these

complexes in both normal and pathological cellular processes. Since

experimental datasets are starting to be available for hundreds of functional

interactions between RNAs and other biomolecules, several machine learning

and deep learning algorithms have been proposed for predicting RNA-RNA or

RNA-protein interactions. However, most of these approaches were evaluated

on a single dataset, making performance comparisons difficult. With this review,

we aim to summarize recent computational methods, developed in this broad

research area, highlighting feature encoding and machine learning strategies

adopted. Given themagnitude of the effect that dataset size and quality have on

performance, we explored the characteristics of these datasets. Additionally, we

discuss multiple approaches to generate datasets of negative examples for

training. Finally, we describe the best-performing methods to predict

interactions between proteins and specific classes of RNA molecules, such

as circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), andmethods

to predict RNA-RNA or RNA-RBP interactions independently of the RNA type.
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Introduction

The involvement of RNAs in a wide range of biological processes, such as

transcription, translation, neurogenesis, and the biogenesis and function of non-

coding RNAs (ncRNAs) has been discussed in multiple studies (Newman et al., 2015;

Turner and Díaz-Muñoz, 2018; Peng et al., 2022). Basic cellular physiology is critically

dependant on RNA-Protein interactions (RPIs), as exemplified by their role in RNA

splicing, transcription efficiency, stabilization and termination (Kelaini et al., 2021), in

triggering RNA release from the transcription complex (Van Assche et al., 2015), and in

regulating RNA degradation (Gilbertson et al., 2018). RNAs interact with RNA-Binding

Proteins (RBPs) through sequence and structural motifs (Dominguez et al., 2018).

Adinolfi et al. (Adinolfi et al., 2019) identified several RNA binding motifs by
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analyzing PAR-CLIP, eCLIP and HITS-CLIP experiments.

Starting from these motifs, Guarracino et al. developed a web

server for the identification of enriched structure or sequence

motifs in a pool of RNAs which returns putative interacting RBPs

(Guarracino et al., 2021). Altered functionality of RBPs and

subsequent disruption of RNA-RBPs regulatory networks are

commonly observed in human genetic diseases,

neurodegenerative diseases and multiple cancer types (Pereira

et al., 2017; Gebauer et al., 2021; Schieweck et al., 2021). Besides

interacting with proteins, RNAs can also interact with each other,

giving rise to complex regulatory networks that control cellular

physiology in health and disease (e.g. mRNA regulation exerted

by miRNA) (Chen et al., 2019; Pepe et al., 2022b; Wang et al.,

2022). Moreover, RNAs influence each others’ expression level by

competing for a limited pool of microRNAs (miRNAs) (Seitz,

2009; Poliseno et al., 2010), as postulated by the “competitive

endogenous RNA” (ceRNA) theory (Salmena et al., 2011). The

interaction between viral DNA or RNA genomes and host

miRNAs is involved in immune system evasion and viral

replication (Qiao et al., 2019). Accordingly, the role of

exogenous DNA or RNA in viral infection has been

extensively studied, highlighting how viral genomes can act as

“sponges” for specific host miRNAs. This mechanism has been

described for Hepatitis C Virus (Luna et al., 2015) and Epstein-

Barr Virus (Riley et al., 2012) and it has also been suggested for

SARS-CoV-2 (Pepe et al., 2022a).

Given the importance that RNA interactions play in

fundamental cellular processes, cancer, and other diseases,

several methods for studying the physical interactions

between RNA and proteins have been developed (Ferrè

et al., 2015). These in vitro or in vivo methods can be

classified into two main categories: i) RNA-centric methods

used to study proteins associated with a specific RNA; ii)

protein-centric methods used to identify RNAs interacting

with a specific protein (Ramanathan et al., 2019). Despite

the large number of RNA interactions identified thanks to

these methods, experimental validation is still expensive and

time-consuming and computational approaches remain an

active area of research.

In this review, we aim to elucidate recent advances in RNA

interaction predictions, focusing on state-of-the-art methods

currently used for the prediction of RNA-RNA or RNA-RBP

interactions. The development of these methods is critically

dependent on the quality and characteristics of datasets of

known interactions. Accordingly, we will also review publicly

available sources of RNA interaction data.

Overview of databases

A crucial element in the development of RNA-protein

interaction prediction models is the retrieval of datasets

containing known interacting pairs to be used for ML models’

training. The present section will therefore survey two

fundamental aspects in this respect. Firstly, we describe the

main features of the most widely employed datasets for RNA-

protein interaction prediction. Indeed, during the last decade,

various datasets have been constructed and released to pursue

this task. Such datasets, typically, rely on information maintained

in databases or obtained through literature-mining operations

and they involve interactions supported by experimental

evidence. Subsequently in this section, a second crucial aspect

is pointed out. Since machine learning methods for binary

classification need to be trained on datasets containing a

balanced number of samples from both classes to be

predicted, in the case of RPI prediction this translates into

disposing of datasets containing RNA-protein pairs that are

known to interact (which will henceforth be referred to as

“positive dataset”) as well as non-interacting RNA-protein

pairs (which will henceforth be referred to as “negative

dataset”). We reported an overview of the major methods

employed for the construction of RPI negative sets as well as

a summary table reporting assumptions and outlines of such

strategies.

Publicly available datasets of RNA
interactions

Datasets currently considered as benchmarks for training,

cross-validating or testing RPI prediction models include

RPI369 and RPI2241 (Muppirala et al., 2011), RPI488 (Pan

et al., 2016), and RPI1807 (Suresh et al., 2015). These are

structure-based datasets which incorporate interaction pairs

obtained from RNA-protein complexes whose structures have

been deposited in the PDB (Velankar et al., 2021). Another

commonly used dataset is NPInter2.0 (Yuan et al., 2014), which

contains interactions derived from literature-mining and other

databases.

The RPI2241 and RPI369 datasets were obtained from

PRIDB (Lewis et al., 2011), a database of protein-RNA

interfaces derived from PDB complexes (Burley et al., 2021).

A total of 943 complexes from PRIDB (9,689 protein chains and

2,074 RNA chains) were initially selected. A final dataset

consisting of 2241 experimentally validated RNA-protein

interacting pairs (952 protein chains and 443 RNA chains)

was derived, by redundancy reduction (discarding similar

interaction on the basis of sequence identity) and sequence

length filtering. When the RPI2241 dataset was constructed, a

sizable fraction of all the RNA-protein complexes in the PDB

corresponded to ribosomal structures, leading to a strong bias

towards ribosomal RPIs. Accordingly, a second dataset, RPI369,

was generated from RPI2241 by removing all RPIs that contained

ribosomal proteins or ribosomal RNAs. Moreover, to generate a

balanced dataset of non-interacting RNA-protein pairs, the

RNAs and proteins from the original 943 complexes were
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randomly paired and pairs similar to known interactions were

further discarded.

The RPI488 dataset is a structure-based dataset, derived from

PDB complexes and specifically incorporating lncRNA-protein

interactions. In order to generate the dataset, 18 ncRNA-protein

complexes were downloaded from the PDB and 726 lncRNA-

protein pairs were collected from them. In order to derive both a

positive and a negative dataset, a distance cutoff of 5Å was used.

Also, redundant sequences (sequence identity greater than 90%

for both protein and lncRNA sequences) were excluded by using

CD-HIT (Fu et al., 2012). Following redundancy reduction, the

final RPI488 dataset contains 488 protein-lncRNA pairs

(243 interacting pairs and 245 non-interacting ones).

The RPI1807 dataset was derived by integrating the Nucleic

Acid Database (NDB) (Coimbatore Narayanan et al., 2014) and

the PRIDB. A total of 1560 RPI complexes available in NDB were

selected and, for 1336 of them, atomic interactions were extracted

from PRIDB, thus obtaining 13,163 protein and 2715 RNA

chains. The procedure for constructing the dataset included

sequence length filtering and redundancy removal according

to sequence similarity. In order to obtain both positive and

negative sets, the selected non-redundant pairs were further

analyzed for atomic interactions with a distance threshold

(3.40 Å). This threshold was used to distinguish strongly

interacting protein-RNA pairs (positive set) from weakly

interacting protein-RNA pairs (negative set). The final

RPI1807 dataset consists of 1807 positive pairs and

1436 negative pairs.

The overlap between RPI datasets is reported in Figure 1.

This overlap could be greater than that obtained by simply

intersecting the RNA-protein pairs since a redundancy

reduction was applied to each one of the RPI datasets. In each

of the RPI datasets, RNA-protein pairs were clustered and only

one pair was chosen as representative; this could influence the

overlap between the four datasets.

NPInter2.0 is a database that integrates experimentally-

validated functional interactions between ncRNAs and other

biomolecules (RNAs, proteins and DNAs), collected both

from literature mining and from multiple databases. Although

newer releases of the database exist (up to NPInter v4.0), NPInter

v2.0 is the most widely used dataset for the development of

prediction models. The dataset contains a total of

201,107 ncRNA interactions from 18 organisms, excluding

interactions involving tRNAs and rRNAs.

Interactions were derived from manual annotation of

articles published between 2008 and 2013 and include both

experimentally-validated interactions as well as binding sites

identified by genome-wide techniques (Yuan et al., 2014). The

authors also integrated data from other resources, mainly the

LncRNADisease database (Chen et al., 2013), and finally

performed a redundancy reduction procedure within the

dataset.

Several datasets have been derived from NPInter2.0 by

selecting subsets of interactions with characteristics of interest.

More specifically, the most widely used non-structure-based

dataset for the development and testing of RPI prediction

models is a subset of this database (namely NPInter10412)

first assembled by Suresh et al, (2015), and subsequently used

in numerous other works (Li et al., 2021; Wang et al., 2021; Zhao

et al., 2021). NPInter10412 contains 10,412 ncRNA-protein

FIGURE 1
Overlap between the four RPI datasets generated from PDB RNA-protein complexes.
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interactions, distributed among the different species as illustrated

in Table 1.

A fourth release of NPInter was published in 2019 that

increases the amount of high-throughput interactomes

available data. NPInter4.0 (Teng et al., 2019) includes

600,000 new ncRNA interactions, particularly ncRNA–DNA

interactions obtained via the ChIRP-seq technique, as well as

interactions involving circular RNAs. Additionally, disease

associations were added to the database.

Lastly, RNAInter4.0 is a recent resource that integrates

experimentally validated and computationally predicted RNA

interactions from literature-mining and databases (Kang et al.,

2022). It provides information about different types of

interactions in different taxa. Tables 2 and 3 summarize

RNAInter’s content.

Ultimately, despite remarkable advances in experimental

techniques, the development of large and reliable RPI

datasets is still the main bottleneck for training ML models.

Hence, we would also like to stress the importance of

redundancy control within data, since its presence may

cause a leakage of information between training and test

set during model training, resulting in untruthful

prediction performance.

Strategies for the construction of a
negative dataset

The lack of reliable datasets of non-interacting RNA-

protein pairs is a major concern in the development of

computational methods for RPI prediction. Indeed, it is not

trivial to conclusively state that a given protein does not

interact with a given RNA molecule (absence of evidence

does not constitute evidence of absence). Indeed, various

papers have demonstrated the critical effect of negative

dataset composition on the performance of Machine

Learning and Deep Learning models (Muppirala et al.,

2011; Pan et al., 2016; Peng et al., 2019). Additionally,

having balanced positive and negative sets is crucial to

avoid overfitting on one class.

The most often used (Muppirala et al., 2011; Pan et al., 2016;

Yi et al., 2020) method to construct a dataset of non-interacting

pairs is to randomly pair RNAs and proteins in the positive set,

followed by discarding the thus obtained pairs that showed high

sequence similarity to the interacting ones, while retaining the

others.

An interesting, albeit not widely used, technique to construct

negative samples is the FIRE (FInding Reliable nEgative samples)

method (Cheng et al., 2017). The core idea of this method relies

on the following observation: given an experimentally-validated

interaction between protein p1 and RNA r, and given another

protein p2, the more similar p2 is to p1, the higher the likelihood

that r interacts with p2. Thus, for each positive RPI (p1, r) the

p2 protein that is most dissimilar to p1 is selected; if (p2, r) is not

an experimentally-validated RPI, then it is selected as a negative

RPI. The innovation introduced in this work lies in the way the

similarity between each pair of proteins was computed, by taking

into account functional annotations and protein domains

information in addition to sequence similarity.

An additional approach that circumvents the requirement to

create a negative dataset is PU learning, a binary classification

method that can be applied when only positive (P) and unlabeled

(U) data are available. For example, PRIPU trains a biased SVM

on only positive and unlabelled examples (Cheng et al., 2015,

2017).

TABLE 1 Number of RNA-protein interactions by species in the
NPInter10412 dataset.

Species # of RNA-protein interactions

H. sapiens 6975

M. musculus 2198

D. melanogaster 91

C. elegans 36

S. cerevisiae 905

S. cerevisiae S288c 5

E. coli 202

TABLE 2 Number of interactions of each type in the RNAInter
database.

Interaction type # of interactions

RNA-RNA 9,483,936

RNA-Protein 37,060,698

DNA-RNA 138,552

RNA-Histone modification 1,060,684

RNA-Compound 10,889

TABLE 3 Number of interactions in the 8 taxa in the RNAInter
database. An overview of the main publicly available datasets for
RNA-protein interaction prediction is given in Table 4.

Taxon # of interactions

Actiniaria 872

Arthropoda 538,643

Bacteria 72,132

Fungi 622,927

Nematoda 883,131

Vertebrata 45,584,924

Viridiplantia 58,875

Virus 712,704
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Some of the most often employed strategies for the

construction of a negative dataset are listed in Table 5.

Computational methods for RNA-
protein interaction discovery

If on the one hand, the choice of the right training dataset is

critical, on the other hand the choice of the right algorithm for

RNA-RBP interaction prediction is also important, considering

that some predictors were developed for a specific class of RNAs,

such as lncRNA or circRNA. We will therefore review the latest

methods for RNA-RBP interaction prediction. Some methods

predict interactions between proteins and a specific class of RNA

molecules, such as circRNAs (Yang et al., 2021; Niu et al., 2022)

and lncRNAs (Ge et al., 2016; Zhao et al., 2018; Xie et al., 2019;

Zhou et al., 2021). Others were developed to predict RNA-RBP

interactions independently from the RNA type (Akbaripour-

Elahabad et al., 2016; Yi et al., 2018; Zhan et al., 2018; Wang et al.,

2019, 2021; Zhang et al., 2020).

LPI-deepGBDT: An artificial intelligence
algorithm for the prediction of long non-
coding RNA-protein interactions

Long non-coding RNAs (lncRNAs) are a class of RNA

molecules that have attracted strong interest in recent years

due to their abundance and their role in many physiological

and pathological processes (Kornienko et al., 2016). Since many

of the functions performed by lncRNAs require their interaction

with proteins (LPIs), and most of lncRNAs are of unknown

function, identifying new LPIs is a very important task. Most of

the methods developed for this task are based on hand-crafted

features, which is a process that requires time, domain knowledge

and is based on strong assumptions. We describe the LPI-

TABLE 4 Publicly available datasets for RNA-protein interaction prediction.

Dataset # Of positive
interactions

# Of negative
interactions

Description Negative set
strategy

References

RPI2241 2241 2241 Structure-based dataset, containing RNA-protein
interactions enriched in ribosomal RPIs

Random Pairing Muppirala et al.
(2011)

RPI369 369 369 Structure-based dataset, obtained from RPI2241 after
removal of interactions derived from ribosomal complexes

Random Pairing Muppirala et al.
(2011)

RPI488 243 245 Structure-based dataset, comprising interactions between
proteins and different classes of RNAs

Least atom
distance

Pan et al. (2016)

RPI1807 1807 1436 Structure-based dataset, comprising interactions between
proteins and different classes of RNAs

Least atom
distance

Suresh et al.
(2015)

NPInter10412 10,412 - Non structure-based dataset, comprising RNA-protein
interactions integrated from literature mining and other
databases

- Yuan et al. (2014);

Suresh et al.
(2015)

TABLE 5 Strategies for the construction of a negative dataset for RNA-protein interaction prediction.

Strategy Assumption Description

Random pairing The likelihood of interaction occurring between randomly paired RNAs
and proteins is low

By using known interacting pairs as starting point, the same number of
non-interacting pairs are generated by randomly pairing RNAs and
proteins from the positive set, followed by discarding pairs that are
similar to interactions already present in the positive set

FIRE method Given a known RNA-protein interacting pair (p1, r), and given a second
protein p2, the smaller the sequence similarity between p1 and p2, the
lower the likelihood that r interacts with p2

For each positive RNA-protein interaction (p1, r) the p2 protein that is
most dissimilar to p1 is selected, similarity between each pair of proteins
was computed by taking into account functional annotations and protein
domain information in addition to sequence similarity

Subcellular
localization method

RNAs and proteins that are not in the same subcellular compartment do
not interact with each other

This method requires subcellular localization data

Least atom distance
criterion

Only applicable to interactions derived from known-structure complexes Given a multimolecular RNA-protein complex, for each pairwise
combination of its constituent RNA and protein molecules, if there is at
least one atom of the RNA located closer than a threshold to at least one
protein atom, the pair is considered to be interacting otherwise it is
included in the negative dataset
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deepGBDT algorithm (Table 6), which uses a feed-forward deep

architecture based on gradient boosting decision trees (Zhou

et al., 2021). In this work three human and two plant LPI datasets,

derived from the NPInter database, were used as training for the

classifier. These datasets were processed using several filters,

similar to previous works (Li et al., 2015; Zheng et al., 2017;

Zheng et al., 2017; Zhang et al., 2018; Bai et al., 2019). Multiple

features of lncRNAs and proteins were calculated from their

sequences using Pyfeat (Muhammod et al., 2019) and BioProt

(Márquez and Castro Amaya, 2019). The dimensionality of the

feature space was then reduced using PCA, and protein and RNA

features were concatenated to obtain a matrix of features

representing the interaction pairs. This matrix was used as

input to the classifier, which consisted of a multi-layered deep

framework based on a gradient boosting model. The authors

compared their model with five state-of-the-art LPI prediction

methods, namely LPI-BLS, LPI-CatBoost, PLIPCOM, LPI-SKF

and LPI-HNM (Yang et al., 2016; Deng et al., 2018; Fan and

Zhang, 2019; Wekesa et al., 2020; Zhou et al., 2020), using six

measurements: precision, recall, accuracy, F1-score, AUC and

AUPR, and obtaining better average performances. Furthermore,

the LPI-deepGBDT algorithm was successfully applied to the

identification of potential protein partners for a specific lncRNA

and, given a specific protein, to infer its potential interacting

lncRNAs. The authors highlight that one of the main drivers of

performance improvement for this method is the integration of

biological features.

LncPNet: A human long non-coding RNA-
protein interactions predictor

Most models are developed to predict lncRNA-protein

interactions irrespective of the species, which can result in the

introduction of noise and negatively affect performance.

To address this and other limitations, Zhao et al, (2021)

introduced a new predictor model called LncPNet (Table 6). This

method is designed to exclusively predict human lncRNA-

protein interactions. Moreover, protein and lncRNA features

are automatically generated using a network embedding. For this

study, human lncRNA-protein interactions were selected from

NPInter v2.0 resulting in 7523 experimentally validated pairs,

TABLE 6 Description of the train/test datasets, feature encoding and machine learning strategy for each of the described methods.

Method Interacting
molecules

Train/test dataset Feature encoding Machine learning strategy References

LPI-
deepGBDT

lncRNA-RBP Derived from NPInter Sequence features extracted using Pyfeat
(Muhammod et al., 2019) and BioProt
(Márquez and Castro Amaya, 2019)

Gradient boosting decision trees Zhou et al.
(2021)

LncPNet lncRNA-RBP Derived from NPInter v2.0 Heterogeneous network embedding of
lncRNAs and proteins similarity
networks and of the known lncRNA-
protein interaction network

Support-vector machine Zhao et al.
(2021)

CRBPDL circRNA-RBP CLIP-seq experiments k-nucleotide frequency (KNF), Doc2vec,
electron-ion interaction pseudopotential
(EIIP), chemical characteristics of
nucleotides (CCN) and accumulated
nucleotide frequency (ANF)

Deep multi-scale residual network
(ResNet) and bidirectional gated
recurrent unit with a self-attention
mechanism (BiGRUs)

Niu et al.
(2022)

EDLMFC ncRNA-RBP RPI1807 NPInter v2.0 RPI488 k-mer frequencies of the sequence and
structure representations

Ensemble deep learning framework
including convolutional neural
networks (CNN) and bi-directional
long short-term memory net-work
(BLSTM)

Wang et al.
(2021)

preMLI miRNA-mRNA Plants lncRNA-miRNA
interaction dataset constructed
using RNAHybrid 2.1.2

word2vec based sequence embedding CNN and bidirectional gated recurrent
unit (Bi-GRU)

Yu et al. (2022)

PrismNet RNA-RBP CLIP-seq experiments One-hot-encoded sequence vectors and
icSHAPE structure scores

Convolutional layers, squeeze-and-
excitation networks (SE) and residual
blocks

Sun et al.
(2021)

PRNA RNA-RBP RsiteDB Number of atoms, electrostatic charge,
potential hydrogen bonds,
hydrophobicity and relative accessible
surface area were used as sequence
features. Secondary structure of amino
acid residues, conservation score (PSI-
BLAST), side-chain environment were
used as structure features. A sliding
window was used to encode amino acid
residues and create feature vectors

Random Forest Liu et al. (2010)
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including 3052 lncRNAs and 212 proteins. LncRNAs and

proteins lacking sequence information were removed, thus

obtaining a dataset of 4578 interactions between

2009 lncRNAs and 78 proteins. The negative dataset was built

using the subcellular localization method (see Table 5). This

method is based on a heterogeneous network of lncRNA-protein

which is constructed using: i) lncRNA-lncRNA and protein-

protein similarity; ii) known lncRNA-protein association. The

similarity between lncRNAs and proteins is both calculated by

Jaccard similarity and BLAST similarity. Subsequently the

metapath2vec (Dong et al., 2017) method is used for network

embedding and dimensionality reduction. LncRNA-protein

interactions are represented as vectors of dimensionality 1 x

256 and those vectors are used to train a Support Vector Machine

in order to predict whether an lncRNA interacts with a protein.

Comparison with other state-of-the-art methods shows that

LncPNet achieves better performances in terms of accuracy,

F1-score and MCC.

CRBPDL: A deep learning approach for the
prediction of circular RNA-RBP
interactions

Circular RNAs or circRNAs are non-coding RNA molecules

which can bind RBPs and are involved in multiple regulatory

processes (Zang et al., 2020). CRBPDL (Table 6) (Niu et al., 2022)

is a recently developed method that uses a deep learning

approach (also used in other studies, e.g. Pan and Shen, 2018;

Zhang et al., 2019; Yang et al., 2021) to predict interactions

between circRNAs and proteins. The main improvement of

CRBPDL is in the feature encoding step, which is critical for

prediction performance. CRBPDL uses five different coding

schemes (k-nucleotide frequency, Doc2vec, electron-ion

interaction pseudopotential, nucleotide chemical properties,

and cumulative nucleotide frequency) for the construction of

a feature matrix. The method then uses a deep neural network

architecture in order to extract local and global context

information and subsequently train the model with a self-

attention mechanism checking the robustness of the method.

The deep neural network architecture is composed by a ResNet (a

deep multi-scale residual network) and a BiGRUs (bidirectional

gated recurrent unit) with the final integration of AdaBoost

algorithm in order to improve the prediction performances.

The authors trained and benchmarked CRBPDL using a

circRNAs-RBPs interaction dataset derived from the

CircInteractome database (Dudekula et al., 2016), consisting

of interactions from 37 CLIP-seq experiments, consistently

obtaining better performances when compared with existing

methods. CRBPDL encodes different types of information

about the sequence of circRNA: the dinucleotide and

trinucleotide composition frequency (KNF), the free electron

energy (EEIP), and also chemical informations about the

nucleotides that compose circRNA sequences. For long-term

context dependencies Doc2vec, used as encoding scheme,

demonstrated to give a great contribution to the feature

representation. CRBPDL was also tested on 31 datasets of

linear RNA-RBP interactions, obtaining an average AUC of

0.91, which is significantly higher than the AUCs of other

methods (ICIRCRBP-DHN (Yang et al., 2021), CRIP (Zhang

et al., 2019), iDeepS (Pan et al., 2018), and CIRCSLNN (Ju et al.,

2019)). CRBPDL is available on Github (https://github.com/

nmt315320/CRBPDL).

EDLMFC: An ensemble deep learning
framework for the prediction of non-
coding RNA-RBP interactions

In this section, we discuss a class of ncRNA-RBP interaction

predictors not designed for a specific RNA type. A recent

computational method developed in this field, called

EDLMFC, uses an Ensemble Deep Learning framework with

Multi-scale Features Combination (Table 6) (Wang et al., 2021).

EDLMFC was trained on ncRNA-RBP interaction pairs derived

from the RPI1807, NPInter v2.0, and RPI488 datasets and uses

different types of features as input such as the primary sequence

and the secondary and tertiary structure of ncRNAs and proteins.

Using a greater number of features was shown to increase

prediction performance compared with single features. This

method combines two different techniques: i) a convolutional

neural network (CNN); ii) a bi-directional long short-term

memory network (BLSTM). The first one is a deep learning-

based method which is used to extract high-level information

from the features and the second one is a recurrent neural

network method which learns long-range dependencies

between features, mainly on sequential data. Finally, a three-

layer, fully connected, layer is able to predict ncRNA-protein

interactions. In a five-fold cross-validation experiment,

EDLMFC obtained better performance than RPITER (Peng

et al., 2019), IPMiner (Pan et al., 2016), and CFRP (Dai et al.,

2019). Moreover, independent tests demonstrated that EDLMFC

can be effectively used to predict potential ncRNA-protein

interactions in different organisms.

PRNA: Binding site features enable
improvement RNA-protein interaction
prediction

For the prediction of RNA-RBP interactions, several methods

have been developed in order to find the potential binding sites in

RNA or in RBP sequences. One of them is from Liu et al, (2010)

(Table 6). In this work the authors highlighted the importance of

both sequence and structure features in RNA-binding proteins,

that simultaneously contribute towards the recognition of a
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specific RNA sequence site. In order to determine in a more

comprehensive way the interacting sites in protein sequences, the

authors suggested a parameter to consider interaction propensity

of an amino acid. This variable represents a measure of mutual

dependence of a triplet of amino acids in proteins where the

central amino acid binds a nucleotide on the RNA sequence.

Then this feature is encoded in a vector of other hybrid features

to describe exhaustively the amino acids in the protein sequence.

The method was trained using a dataset of protein-RNA

complexes obtained from RsiteDB and used to predict RNA

binding residues in proteins given the previous set of features,

using Random Forest (RF), that with a sliding window of 5 amino

acids on the protein sequence predicts the possible site of a

binding event. The result in terms of AUC is of 0.905 with a ACC

of 81.4% indicating a good performance if compared to other

methods (RNABindR (Terribilini et al., 2007), BindN (Wang and

Brown, 2006), RNAProB (Cheng et al., 2008), PPRint (Kumar

et al., 2008)). In this paper the idea emerges that by integrating

the information carried by the neighborhood of an amino acid

with other features of the protein sequence and structure

analyzed, we can substantially improve the prediction of

RNA-RBP interactions by finding the binding sites. A concept

well developed also in a recent work of Niu et al. in which instead

of focusing on the binding protein sequence, the RNA sequence is

fundamental.

PrismNet: A deep learning algorithm to
predict RPIs that uses in vivo RNA
structures

One of the most important factors determining the

interaction between RNAs and proteins is the RNA secondary

structure (Taliaferro et al., 2016). Therefore, leveraging this

feature in prediction models can significantly increase their

performance. Although there are different methods for the

prediction of RNA secondary structure (Seetin and Mathews,

2012), computational methods based exclusively on the primary

sequence do not take into account the dynamic nature of these

structures. Indeed, RNA secondary structures are extremely

dynamic and can change depending on various factors such as

the interaction with chaperones and other RBPs. All these factors,

ultimately, vary depending on the cellular conditions in vivo

(Lewis et al., 2017). PrismNet is an RNA-protein prediction

method that leverages experimental data on RNA secondary

structures, being capable, in this way, to take into account their

dynamism (Table 6). This method is based on secondary

structure information obtained via in vivo click selective 2′-
hydroxyl acylation and profiling experiments (icSHAPE)

(Flynn et al., 2016) that were carried out in 7 cell types (i.e.

K562, HepG2, HEK293, HEK 293T, HeLa, H9, and mES) in

which RNA structures were profiled transcriptome-wide. This

data was integrated with RBPs binding sites data from CLIP

experiments in the same cell types. To construct the model input,

the structure scores derived from the icSHAPE experiments were

encoded as a one-dimensional vector and the sequence was

represented as a four-dimensional one-hot-encoded vector.

The deep learning model consists of a series of convolutional

layers, while squeeze-and-excitation networks were used to

recalibrate the convolutional channels and residual blocks to

capture the joint sequence and structural determinants of RBP

binding. The authors compared their model with other

computational methods including RCK (Orenstein et al.,

2016), GraphProt (Maticzka et al., 2014; Orenstein et al.,

2016) and DeepBind (Alipanahi et al., 2015), using the

binding sites obtained from the CLIP-seq datasets for each

RBP, and obtaining better performance in terms of AUC and

AUPRC. Furthermore, by training their model using different

combinations of inputs, they observed that the model trained

using both the sequence and the experimentally determined RNA

secondary structures outperformed other models, demonstrating

that experimental information on the RNA secondary structure

in vivo is critical to the performance improvement.

Computational methods for RNA-
RNA interactions prediction

RNAs can also interact with other RNAs and several studies

have shown these interactions to be crucially involved in the

regulation of gene transcription, cell metabolism, and other key

cellular functions (Deogharia and Gurha, 2021; Singh et al., 2022;

Wang et al., 2022). Despite the fact that a large number of RNA-

RNA interactions have been experimentally validated, many

more have yet to be identified. Therefore, several

computational methods have been developed for the

prediction of RNA-RNA interaction, many of which are based

on sequence complementarity (Kang et al., 2020, 2021; Yang

et al., 2020). In the last 5 years, these methods have been

gradually revolutionized by the introduction of deep learning

approaches borrowed from the field of natural language

processing. PreMLI is one of the latest methods in this field, it

was published in early 2022 by Yu and collaborators (Table 6)

(Yu et al., 2022), and, currently, it achieves better overall

performance compared with other existing methods. This

method was specifically built to predict miRNA-lncRNA

interactions and relies exclusively on RNA sequence

information. PreMLI was trained using a plant lncRNA-

miRNA interaction dataset, constructed using RNAHybrid

2.1.2. The approach consists of three steps: i) in the pre-

training phase the RNA sequences are used as input for

rna2vec training in order to obtain a weight matrix that better

describes the RNA sequence and can be used as the input to the

next step; ii) deep feature mining approaches, based on

Convolutional Neural Network, Bidirectional Gated Recurrent

Unit, and attention layers are used to obtain additional potential
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features; iii) in the last step the two feature vectors are connected

as input to the prediction layer. The authors demonstrate how the

pre-training and the deep feature mining phases improve

prediction performance and, furthermore, they show how this

method performs better than already existing advanced RNA-

RNA interaction predictors in terms of sensitivity, specificity, and

AUC. Although the pre-training step improves the model

performance, it also increases the computational time required

for the entire prediction process. Moreover, this method is

optimized for the prediction of miRNA-lncRNA interactions

in plants. In order to extend its use to other types of RNA-RNA

interactions or other organisms the model needs to be trained on

an appropriate specific dataset and the hyperparameters need to

be adjusted.

Conclusion

In the last few years several studies have explored the RNA

interactions landscape, given the crucial role that RNA-RBPs

and RNA-RNA networks play in cell biology. Despite the

advances made so far, novel experimental methods for the

identification of binding sites (such as HITS-CLIP and PAR-

CLIP) are still time-consuming and cost-intensive. That is

why computational approaches represent a complementary

strategy to guide experimental work. In this review, we

provide an overview of the most recent prediction methods.

We summarize recent advances in the algorithms developed to

solve specific tasks, such as circRNA- or lncRNA-RBPs

interaction predictions or, more generally RNA-RBPs

interactions. Besides, we highlight how the development of

a larger dataset of interactions is crucial to increase

performance. Lastly, despite the fact that many methods

rely only on sequence information, among the ones

analyzed, those that obtain the best performances tend to

include a variety of different biological features. Performance

comparison of the described methods shows how the

inclusion of structure information contributes to improving

the accuracy and efficiency of the models. Only one of the

described methods uses both RNAs and proteins structural

information as input features for the predictive model because

if, on the one hand, a large number of reliable protein

structures is available, on the other hand, RNA structures

are mainly obtained through computational prediction. RNA

structure uncertainty could add noise to the model, resulting

in untruthful prediction performances. The prediction of

protein structure has reached satisfactory levels of

performance thanks to the development of AlphaFold

(Jumper et al., 2021). Conversely, RNA structure prediction

still lags far behind. One of the main limitations is the paucity

of known RNA structures that can be used for model training.

To address this issue a new deep learning model called Atomic

Rotationally Equivariant Scorer (ARES) has been developed

(Townshend et al., 2021). ARES achieves good performances

in the prediction of RNA structures, based on a training

dataset of only 18 experimentally determined RNA

structures. While this is a useful development, further work

is needed in this area. Ultimately, as demonstrated by the

methods described in this review, the availability of high-

quality RNA structure predictions could greatly improve the

inference of RNA-RBP and RNA-RNA interactions.

Moreover, the advances in RNA secondary structure

determination methods, that takes into account the

information from biochemical assay like icSHAPE-seq

(Flynn et al., 2016), could improve the confidence of such

information as a feature for prediction models, likely leading

to an improvement of their performance.
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