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Hepatocellular carcinoma (HCC) is a common malignancy. However, the

molecular mechanisms of the progression and prognosis of HCC remain

unclear. In the current study, we merged three Gene Expression Omnibus

(GEO) datasets and combined them with The Cancer Genome Atlas (TCGA)

dataset to screen differentially expressed genes. Furthermore, protein‒protein

interaction (PPI) and weighted gene coexpression network analysis (WGCNA)

were used to identify key gene modules in the progression of HCC. Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses indicated that the terms were associated with

the cell cycle and DNA replication. Then, four hub genes were identified

(AURKA, CCNB1, DLGAP5, and NCAPG) and validated via the expression of

proteins and transcripts using online databases. In addition, we established a

prognostic model using univariate Cox proportional hazards regression and

least absolute shrinkage and selection operator (LASSO) regression. Eight genes

were identified as prognostic genes, and four genes (FLVCR1, HMMR, NEB, and

UBE2S) were detrimental gens. The areas under the curves (AUCs) at 1, 3 and

5 years were 0.622, 0.69, and 0.684 in the test dataset, respectively. The

effective of prognostic model was also validated using International Cancer

Genome Consortium (ICGC) dataset. Moreover, we performed multivariate

independent prognostic analysis using multivariate Cox proportional hazards

regression. The results showed that the risk score was an independent risk

factor. Finally, we found that all prognostic genes had a strong positive

correlation with immune infiltration. In conclusion, this study identified the

key hub genes in the development and progression of HCC and prognostic

genes in the prognosis of HCC, which was significant for the future diagnosis

and prognosis of HCC.
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Introduction

Primary liver cancer is the sixth-most frequently occurring

cancer in the world and the third-most common cause of cancer

mortality (Sung et al., 2021). Hepatocellular carcinoma (HCC) is

the most common form of liver cancer and accounts for ~90% of

cases (Llovet et al., 2021). Although the strategy of treatment of

HCC, including resection, liver transplantation, image-guided

tumor ablation, image-guided transcatheter tumor therapy and

systemic treatment, was effective for HCC patients, treatment

indication still should be evaluated individually (Forner et al.,

2018). Moreover, the methods of diagnosis of HCC remain poor

except for histology for lesions and radiologic tests (Yang and

Heimbach, 2020). However, some biomarkers could be utilized as

diagnostic genes. For example, a set of immunostaining markers,

such as glypican 3, heat shock protein 70, and glutamine

synthetase, could increase diagnostic accuracy (Villanueva,

2019). Therefore, it is urgent to identify novel genes for the

diagnosis of HCC and the precision medicine of HCC.

Recently, it was reported that some molecular drivers were

involved in the development of HCC (Llovet et al., 2018). Studies

have shown that TERT and CTNNB1 mutations are associated

with malignant transformation in <10% of cases (Nault et al.,

2017). Other frequent mutations or genetic alterations were

found in TP53, RB1, CCNA2, CCNE1, PTEN, ARID1A,

ARID2, RPS6KA3 or NFE2L2, all of which altered cell cycle

control (Llovet et al., 2021). In addition, two major molecular

subtypes of HCC were proposed (Zucman-Rossi et al., 2015).

One was the proliferation gene class involved in cell proliferation

and survival. It was demonstrated that TP53 inactivation and

FGF19 and/or CCND1 amplifications were involved (Wang et al.,

2013). The other was the nonproliferation gene class, which

activated the canonical WNT signaling pathway owing to the

mutation of CTNNB1 (Lachenmayer et al., 2012). Moreover,

genome-wide gene expression studies demonstrated that some

pathways, including TGFβ, the cell cycle, interferon,MYC, PI3K/

AKT, and MET, were aberrantly activated in HCC (Rebouissou

and Nault, 2020). Thus, it is extremely important to identify

novel genes involved in the occurrence of tumors and determine

the molecular mechanism of the progression of HCC.

The development of next-generation sequencing (NGS)

technologies and bioinformatic tools has been widely used to

search for novel targets and biomarkers for the diagnosis and

precision medicine of cancer. In the current study, three Gene

Expression Omnibus (GEO) datasets and The Cancer Genome

Atlas (TCGA) dataset were merged and combined with

bioinformatic analysis to screen differentially expressed genes

(DEGs) in HCC. Then, a protein–protein interaction (PPI)

network was constructed to select candidate hub genes.

Moreover, DEGs of TCGA were used to screen the key gene

modules using weighted gene coexpression network analysis

(WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analyses were

used to perform functional annotation and identify potential

pathways in HCC, and the protein and transcript expression of

hub genes was validated using the human protein atlas database

and gene expression profiling interactive analysis (GEPIA)

database. Additionally, univariate Cox regression analysis,

LASSO regression analysis and multivariate Cox regression

analysis were used to identify prognostic genes. And the

effective of prognostic model also was validated using

International Cancer Genome Consortium (ICGC) dataset.

Overall, our work identified novel genes involved in the

progression and prognosis of HCC, which was of significance

for the diagnosis and treatment of HCC.

Materials and methods

Data collection and processing

The workflow of the current study is shown in Figure 1. The

gene expression profiles of the GSE84402, GSE101685, and

GSE113996 datasets, including 42 normal samples and

58 tumor samples in total, were downloaded from the GEO

database. The datasets were merged and the batch effect was

eliminated using the R package “sva” (Leek et al., 2012).

Differentially expressed genes (DEGs) were analyzed using the

R package “limma” (Ritchie et al., 2015). p-value were adjusted

using the false discovery rate (FDR) correction method. The

cutoff for DEGs was set as |log2FC| > 1 and adjusted

p-value < 0.05.

RNA sequencing (counts) and clinical data for TCGA liver

hepatocellular carcinoma (LIHC) patients, including 51 normal

samples and 371 tumor samples, were downloaded and analyzed

using the R package “TCGAbiolinks” (Colaprico et al., 2016). The

cutoff for DEGs was set as |log2FC| > 1 and adjusted p-value <
0.05. Visualization of overlapping genes in the Venn diagram was

performed using the R package “VennDiagram.”

RNA sequencing (counts) and clinical data for ICGC Liver

Cancer—RIKEN, JP (LIRI-JP) patients, including 232 tumor

samples, were downloaded. Two samples were excluded

because of infinite values in RNA sequencing data, and

230 samples were included for further analysis. LIRI-JP was

used to validate the performance of the prognostic model

constructed from TCGA dataset.

Protein–protein interaction network
construction and analysis of modules

DEGs were used to build a PPI network using the Search Tool

for the Retrieval of Interaction Genes (STRING), and visualized

using Cytoscape software. Five analysis methods in CytoHubba

were used to select the key genes in PPI: edge percolated

component (EPC), maximal clique centrality (MCC), maximal
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neighborhood component (MNC), node connect degree

(degree), and node connect closeness (closeness) (Gao et al.,

2020). The top 30 genes for each method were selected, and

overlapping genes were identified as candidate hub genes.

Molecular Complex Detection (MCODE) is a Cytoscape

plugin for module analysis. Modules of interest were selected

using a cutoff MCODE score >2, number of nodes >3, and
confidence score >0.4.

Weighted gene co-expression network
analysis

WGCNA was used to find clusters (modules) of highly

correlated genes (Langfelder and Horvath, 2008). DEGs in

TCGA were subjected to WGCNA using the R package

“WGCNA.” Clinical data for 421 LIHC patients were

processed, with age, sex, and tumor occurrence selected as

clinical traits. The soft-threshold power was used to raise the

absolute value of the correlation. Hierarchical clustering and

dynamic tree cut methods were used to identify modules.

Eigengene networks were used to study module relationships.

The module–trait relationship was assessed by Pearson’s

correlation tests by attributing values of 0 and 1 to healthy

individuals and tumor patients, respectively. Module

membership (MM) was defined as the correlation of genes

with modules of interest, where a high MMmodule score

indicated that a gene was highly correlated with the module.

Gene significance (GS) was defined as the correlation of genes

with clinical traits. The cutoff values for hub genes were set as

GS > 0.2 and MM > 0.8.

Functional enrichment analysis

Genes in the modules of interest from WGCNA were

subjected to Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analyses

using The Database for Annotation, Visualization and

Integrated Discovery (DAVID) database, with a

comprehensive set of functional annotation tools (Dennis

et al., 2003). GO terms included biological process (BP),

cellular component (CC), and molecular function (MF).

The cutoff was set as p < 0.05. Visualization of GO terms

and KEGG pathways was performed using the R package

“ggplot2.”

Construction of prognostic model and
survival analysis

Clinical data were downloaded using the R package

“TCGAbiolinks,” and samples with missing values in terms

of overall survival data were removed. Finally, a total of

364 patient samples were randomly divided into a training

dataset (n = 273) and a test dataset (n = 91). In the training

FIGURE 1
The workflow of the study design.

Frontiers in Molecular Biosciences frontiersin.org03

Gao et al. 10.3389/fmolb.2022.1000847

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1000847


dataset, candidate prognostic genes were screened by

univariate Cox proportional hazards regression analysis

using the R package “survival.” LASSO regression analysis

was used to select the prognostic gene signature (Tibshirani,

1997) using the R package “glmnet.” After performing 10-fold

cross-validations 1,000 times, the minimum lambda value

was confirmed. The risk score was identified as a prediction

factor and calculated as follows:

Risk score � ∑n

i�1Coefi × Xi

where Coefi indicates the correlation coefficient of the

prognostic gene signature, and Xi indicates the expression

of the gene signature. Patients in the training and test datasets

were then divided into high- and low-risk groups according

to the median risk score. A heatmap of prognostic gene

expression was drawn using the R package

“ComplexHeatmap.” Kaplan–Meier survival curves were

plotted to evaluate the predictive effect of the model using

the log-rank test. The performance of the model at different

endpoints (1, 3, and 5 years) was then assessed via time-

dependent receiver operating characteristic (ROC) curves

using the R package “timeROC.” Multivariate Cox

proportional hazards regression analysis was then used to

determine if the risk score and clinical information were risk

factors using the R package “survminer,” with a cutoff for risk

factors of p < 0.01. The nomogram was analyzed and depicted

using the R package “nomogram.”

Validation of hub genes and prognostic
genes

The protein expression of the hub genes was validated using

the Human Protein Atlas database, transcript expression of hub

genes in LIHC patients was validated using the GEPIA database,

and the correlation between immune infiltration and prognostic

genes was validated using the Tumor Immune Estimation

Resource (TIMER) database.

Statistical analysis

Continuous variables were analyzed using Student’s t-

test, U-test, or nonparametric rank-sum test. Correlations

between the quantitative data were expressed by Spearman’s

coefficient. Prognostic analyses were performed using

univariate and multivariate Cox regression analyses.

Overall survival was analyzed using Kaplan-Meier analysis,

and survival differences between the high- and low-risk

groups were compared by log-rank test. All statistical

analyses were performed using RStudio, and p < 0.05 was

considered significant.

Results

Identification of differentially expressed
genes

We identified DEGs in HCC by analyzing transcriptome

information from three GEO datasets (GSE101685, GSE113996,

and GSE84402) and TCGA (TCGA-LIHC). The GEO datasets

contained 100 samples, including 42 normal and 58 tumor

samples (Supplementary Table S1). The batch effect was

eliminated before the analysis of DEG. A heatmap of gene

expression in the merged GEO datasets is shown

in Figure 2A. The criteria for the identification of DEGs were

|log2FC| > 1 and adjusted p-value < 0.05. A total of 230 genes

were identified, including 81 upregulated and 149 downregulated

genes (Figure 2B). TCGA dataset contained 421 samples,

including 50 normal and 371 tumor samples. A total of

6,311 genes were significantly expressed in TCGA dataset.

Finally, a total of 189 overlapping genes were identified in the

GEO and TCGA datasets (Figure 2C) and were subjected to

further analyses.

protein‒protein interaction network
analysis of overlapping genes

Overlapping genes were used to perform PPI network

analysis using the STRING database. The related genes were

ranked and the top 30 genes were selected using five methods in

cytoHubba, a plugin for rank nodes in Cytoscape. A total of nine

genes overlapped and were identified as candidate hub genes

(Figure 3A). Network analysis was then performed using the

MCODEmodule in Cytoscape. The candidate hub genes were all

in module 1, which was the most highly scored module (MCODE

score 53.321), including 57 nodes and 2,986 edges (Figure 3B).

Details of the MCODE scores are shown in Supplementary

Table S2.

Weighted gene coexpression network
analysis and key module identification

We identified the key gene modules in HCC by WGCNA

using the TCGA-LIHC dataset. Samples were clustered, and

TCGA.66.A9EV.01A and TCGA.DD.A3A6.01A were

excluded according to their height (>160) in the

hierarchical clustering tree (Supplementary Figure S1). The

soft-threshold power was set as 13 based on the scale

independence and mean connectivity (Figure 4A). A total

of 21 modules were identified using the dynamic tree cut

package (Figure 4C). The cluster of module eigengenes and

the eigengene adjacency heatmap are shown in Figure 4B and

Supplementary Figure S2A. We determined the correlations
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between the modules and the occurrence of tumors by

establishing a module–trait relationship. The turquoise and

purple modules (Figure 4D) were significantly correlated with

tumor occurrence (coefficients 0.58 and 0.6, respectively),

and the cyan module was significantly correlated with normal

conditions (coefficient 0.67). In addition, high GS and high

MM values were usually identified as features of hub genes.

The gene distribution in the turquoise module showed that

GS and MM were highly correlated, indicating that genes in

this module were highly significantly associated with tumors

(Figure 4E). The purple and light-cyan module are shown in

Supplementary Figure S2B.

FIGURE 2
Identification of the differentially expressed genes of GEO and TCGA datasets. (A). Heatmap of gene expression in merged GEO datasets. (B).
The volcano plot of the differentially expressed genes of merged GEO datasets. Blue dots indicate the distribution of downregulated genes, and red
dots indicate the distribution of upregulated genes. (C).Venn diagram of overlapping genes in GEO and TCGA datasets.
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FIGURE 3
Identification of the candidate hub genes in the PPI network.(A). Top 30 genes in cytoHubba.(B).Gene interaction network of the most
significant module in MCODE. The size of the dot is related to the degree of genes, and the gradation of the dot is related to the expression of genes.
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FIGURE 4
Identification of the key gene modules in WGCNA.(A). Determination of the soft-thresholding power.(B). The heatmap of Eigengene
adjacency.(C). Dendrogram of differentially expressed genes clustered based on a dissimilarity measure (1-TOM). (D). The correlation of gene
modules with clinical traits.(E) Gene correlation scatter plot of the turquoise module.
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FIGURE 5
Validation of hub genes. (A). GO-BP term enrichment of genes in the turquoise module. (B). KEGG pathway enrichment of genes in the
turquoise module. (C). The protein expression of hub genes in tumor and normal samples using validation of immunohistochemistry (D). Transcripts
expression of hub genes in tumor and normal samples.
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Genes in the turquoise module were subsequently subjected

to GO and KEGG analyses. These genes were highly enriched in

GO-BP terms containing cell division, cell cycle, mitotic cell

cycle, and DNA replication (Figure 5A), and were enriched in

GO-CC and GO-MF terms containing nucleus, cytosol, protein

binding, and ATP binding (Supplementary Figure S3). KEGG

pathway analysis showed that the genes were enriched in

pathways including metabolic pathways, cell cycle and human

T-cell leukemia virus 1 infection, and DNA replication

(Figure 5B).

Moreover, the above candidate hub genes (Figure 3A) were

all included in the turquoise module, suggesting that these genes

played an important role in the progression of LIHC. We

therefore validated the related transcript and protein

FIGURE 6
Establishment of the prognostic model. (A). The selection of the minimum lambda of the lasso model via 10 folds of cross-validation. (B). The
calculation formula of the risk score.(C).The overall survival of different risk groups in the training dataset. (D). The overall survival of different risk
groups in the test dataset.(E). The time-dependent ROC curve of the performance of the prognostic model at 1, 3 and 5 years in the test dataset.
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expression of the candidate hub genes using the human protein

atlas and Gene Expression Profiling Interactive Analysis

(GEPIA) databases. Four hub genes were finally identified.

The results of immunohistochemistry showed that protein

expression levels of AURKA, CCNB1, DLGAP5, and NCAPG

were upregulated in tumor tissue compared with normal tissue

(Figure 5C). In addition, transcript levels of the four genes were

also significantly upregulated in LIHC patients compared with

healthy subjects (Figure 5D). The GS and MM values and the

combined scores of the four hub genes are shown in

Supplementary Tables S3,S4. These results thus indicated that

these four genes (AURKA, CCNB1, DLGAP5, and NCAPG) were

key hub genes involved in the development and progression

of HCC.

Construction of a prognostic model of
Hepatocellular carcinoma

To establish a prognostic model of HCC, we randomly

divided the subjects into a training dataset (n = 273) and a test

dataset (n = 91). The training dataset was subjected to

univariate Cox proportional hazards regression analysis

followed by LASSO regression to screen for prognostic

genes, and by multivariate Cox proportional hazards

regression. A total of 19 genes were identified by

univariate analysis, and LASSO regression identified eight

genes with the minimum lambda value of 0.0188 (Figure 6A).

The risk score was calculated as the sum of the gene

coefficients multiplied by each gene expression level

FIGURE 7
Validation of the prognosticmodel. (A). The distribution of survival duration in the training dataset. (B). The distribution of survival duration in the
test dataset. (C). The expression of detrimental prognostic genes in different risk groups in the training dataset. (D). The overall survival of detrimental
prognostic genes.
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(Figure 6B), and the high- and low-risk patient groups were

subsequently classified by the median risk score. Survival

curves in the training and test datasets were examined using

the Kaplan-Meier method, which showed that the low-risk

group had a higher survival probability than the high-risk

group in both the training and test datasets (Figures 6C,D). In

addition, we predicted the overall survival in the training and

test datasets at 1, 3, and 5 years. The respective areas under

the time-dependent ROC curves (AUCs) were 0.622, 0.69,

and 0.684 in the test dataset (Figure 6E) and 0.677, 0.645, and

0.63 in the training dataset (Supplementary Figure S4A).

Moreover, patients with high risk scores were more likely to

die in the training and test datasets (Figures 7A,B). FLVCR1,

HMMR, NEB, and UBE2S expression levels were significantly

upregulated in the high-risk groups compared with the low-risk

groups (Figure 7C), while COLEC10, DCN, ID1, and INMT were

significantly downregulated. This was in accordance with the

coefficients of the LASSOmodel and consistent with the heatmap

of gene expression in the training and test datasets

(Supplementary Figure S4B). In addition, HMMR and UBE2S,

but not FLVCR1 and NEB, were highly associated with poor

survival probability in the training dataset (Figure 7D). However,

we found that only FLVCR1 were highly associated with poor

survival probability in test dataset (Supplementary Figure S4C).

Multivariate Cox proportional hazards regression analysis

showed that the risk score was an important factor strongly

associated with the prediction of overall survival at 1, 2, 3, 4, and

5 years (Figures 8A,B). Increasing risk score was associated with a

decreasing probability of overall survival in the subsequent

1–5 years. These results thus indicated that the established

prognostic model could effectively predict the prognosis in

patients with HCC.

Validation of prognostic genes in
International Cancer Genome Consortium
dataset

We validated the effectiveness of the prognostic model

constructed from TCGA dataset in another dataset, LIRI-JP

from the ICGC database. A total of 230 LIRI-JP RNA

sequencing and clinical data were merged for further analysis.

High- and low-risk patient groups were classified according to

the median risk score, calculated as for the training dataset of

FIGURE 8
The identification of the risk score was an independent risk factor. (A). The hazard ratio of risk score using multivariate Cox regression analysis.
(B). The nomogram of prognostic model judgment.
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FIGURE 9
Validation of prognostic genes in ICGC dataset. (A). The overall survival of different risk groups in ICGC dataset. (B). The time-dependent ROC
curve of the performance of the prognostic model at 1, 3 and 5 years in ICGC dataset. (C). The distribution of survival duration in ICGC dataset. (D).
The overall survival of detrimental prognostic genes in ICGC dataset.
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FIGURE 10
The correlation of prognostic genes with immune infiltration.
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TCGA. The low-risk group had a higher survival probability than

the high-risk group (Figure 9A), and the AUCs were 0.733, 0.724,

and 0.741 for predicting overall survival at 1, 3, and 5 years,

respectively (Figure 9B). In addition, patients with high risk

scores in the ICGC dataset were more likely to die (Figure 9C),

consistent with the results for the training and test datasets.

HMMR, NEB, and UBE2S were highly associated with poor

survival probability in the ICGC dataset (Figure 9D). Taken

together, our results demonstrated that the prognostic model had

effective and robust performance for HCC.

Validation of the prognostic model

To validate the prognostic model, we analyzed the

association with genes and immune infiltration. The results

showed that FLVCR1 expression was strongly positively

correlated with B cells (cor = 0.24, p = 6.58e-06), CD4+

T cells (cor = 0.244, p = 4.61e-06), macrophages (cor = 0.331,

p = 3.61e-10), neutrophils (cor = 0.265, p = 6.21e-07) and

dendritic cells (cor = 0.213, p = 7.67e-05). HMMR expression

was strongly positively correlated with B cells (cor = 0.399, p =

1.47e-14), CD8+ T cells (cor = 0.271, p = 3.69e-07), CD4+ T cells

(cor = 0.267, p = 4.91e-07), macrophages (cor = 0.351, p = 2.54e-

11), neutrophils (cor = 0.368, p = 1.75e-12) and dendritic cells

(cor = 0.406, p = 6.84e-15). NEB expression was strongly

positively correlated with B cells (cor = 0.19, p = 4.04e-04),

CD8+ T cells (cor = 0.174, p = 1.22e-03), CD4+ T cells (cor =

0.163, p = 2.35e-03), macrophages (cor = 0.333, p = 2.66e-10),

neutrophils (cor = 0.289, p = 4.64e-08) and dendritic cells (cor =

0.227, p = 2.63e-05). UBE2S expression was strongly positively

correlated with B cells (cor = 0.408, p = 2.97e-15), CD8+ T cells

(cor = 0.269, p = 4.49e-07), CD4+ T cells (cor = 0.21, p = 8.67e-

05), macrophages (cor = 0.353, p = 1.86e-11), neutrophils (cor =

0.294, p = 2.62e-08) and dendritic cells (cor = 0.36, p = 8.19e-12).

COLEC10 expression was strongly positively correlated with

CD8+ T cells (cor = 0.127, p = 1.90e-02) and macrophages

(cor = 0.13, p = 1.65e-02). DCN was strongly positively

correlated with CD8+ T cells (cor = 0.189, p = 4.50e-04),

CD4+ T cells (cor = 0.346, p = 4.29e-11), macrophages (cor =

0.302, p = 1.29e-08), neutrophils (cor = 0.235, p = 1.03e-05) and

dendritic cells (cor = 0.241, p = 7.20e-06). ID1 expression was

strongly positively correlated with CD8+ T cells (cor = 0.173, p =

1.35e-03), CD4+ T cells (cor = 0.198, p = 2.22e-04), macrophages

(cor = 0.222, p = 3.62e-05), neutrophils (cor = 0.198, p = 2.21e-

04) and dendritic cells (cor = 0.162, p = 2.80e-03). INMT

expression was strongly positively correlated with CD8+

T cells (cor = 0.175, p = 1.13e-03), CD4+ T cells (cor = 0.207,

p = 1.07e-04), macrophages (cor = 0.184, p = 6.56e-04) and

dendritic cells (cor = 0.156, p = 3.91e-03) (Figure 10). Thus, the

results above indicated that the prognostic model we

established had potential and effective prediction for the

prognosis of HCC.

Discussion

In the current study, we merged three GEO datasets and

TCGA datasets and combined them with bioinformatics analysis

to screen and identify hub genes and prognostic genes in the

development and progression of HCC. We identified four hub

genes (AURKA, CCNB1, DLGAP5, and NCAPG) using WGCNA

and PPI network analysis based on the clustering of the key

modules and biological functional annotation. Moreover, we

established a prognostic model and identified four detrimental

prognostic genes (FLVCR1, HMMR, NEB, and UBE2S) using

Lasso-Cox regression. Therefore, these genes could be potential

biomarkers and prediction factors in the future diagnosis and

treatment of HCC.

Correlation networks are increasingly being used in

bioinformatics applications. WGCNA is a systems biology

method for exploring the module structure in a network,

measuring the relationships between genes and modules and

the relationships among modules (Langfelder and Horvath,

2008). Using WGCNA, we found that the turquoise module

was strongly positively correlated with the occurrence of tumors,

and most genes in the turquoise module overlapped with those in

the PPI networks, which indicated that these genes were highly

associated with the development of HCC. Finally, we identified

four hub genes (AURKA, CCNB1, DLGAP5, and NCAPG) and

validated them in HCC samples.

Aurora A (AURKA) is a type of Aurora kinase that belongs to

the family of serine/threonine kinases and plays essential roles in

regulating cell division during mitosis. It was reported that the

expression of AURKA was aberrantly high in HCC (Du et al.,

2021). Increased AURKA expression and a positive correlation

between AURKA and MYC expression were found in TP53-

mutated human HCCs (Dauch et al., 2016), which indicated that

AURKA was a potential druggable target. Additionally,

overexpression of Aurora-A was associated with high-grade

(grade II-IV) and high-stage (stage IIIB-IV) tumors, p53

mutation, infrequent beta-catenin mutation, and poor

outcome (Jeng et al., 2004).

Cyclin B1 (CCNB1) is a regulator involved in mitosis. MYC

was reported to activate WDR4 transcription, and WDR4

promoted CCNB1 mRNA stability and translation to enhance

HCC progression (Xia et al., 2021). In addition, CCNB1 could be

a candidate biomarker and potential therapeutic target for HBV-

related HCC recurrence after surgery (Weng et al., 2012). DLG-

associated protein 5 (DLGAP5), also known asHURP, can enable

microtubule binding activity. The molecular mechanism of

DLGAP5 in the development of HCC is limited, but known

studies have reported thatDLGAP5may be a potential biomarker

in HCC (Hao et al., 2021). Non-SMC condensin I complex

subunit G (NCAPG) was first isolated from HeLa cell nuclei

and demonstrated to regulate the location of DNA on

chromosomes (Sun et al., 2022). It was demonstrated that

NCAPG was a novel mitotic gene involved in the proliferation
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andmigration of HCC cells (Zhang et al., 2018; Gong et al., 2019).

Moreover, AURKA and DLGAP5 were mitosis-associated genes.

DLGAP5 is also a substrate of AURKA (Wu et al., 2013), which is

consistent with our results that AURKA is a hub gene. Although

investigation of the association between these four hub genes was

currently poor, they were involved in the regulation of cell

proliferation and cell cycle and played important role in the

development and progression of cancer.

Moreover, we established the prognostic model using Lasso

Cox regression and identified eight prognostic genes, four of

which were detrimental genes (NEB, UBE2S, FLVCR1, and

HMMR). These four genes could predict the overall survival

time in the high-risk groups and low-risk groups. In addition, the

prognostic model showed excellent prediction performance.

Therefore, four detrimental genes could be potential

diagnostic and prognostic genes.

Nebulin (NEB) encodes a giant protein component of the

cytoskeletal matrix that coexists with the thick and thin filaments

within the sarcomeres of skeletal muscle. It was reported that the

mutation of NEB was associated with many diseases, such as

nemaline myopathy (Piga et al., 2016) and fetal akinesia

deformation sequence/arthrogryposis multiplex congenita

(Feingold-Zadok et al., 2017). Additionally, the mutation

frequency of NEB at the amino acid 1,133 locus of thyroid

cancer patients was much higher than that of the normal

population (Wang et al., 2020). Although the relationship

between NEB and HCC has not yet been reported, further

research is needed to determine the molecular mechanism of

NEB in HCC.

Ubiquitin conjugating enzyme E2S (UBE2S), also known as

E2EPF, belongs to the E2 family of proteins and elongates the

K11-linked polyubiquitin chain on APC/C substrates for 26 S

proteasome-mediated degradation to promote cell division (Wu

et al., 2010). UBE2S can promote the progression of many types

of cancer, such as ovarian cancer (Hu et al., 2021), non-small cell lung

cancer (Qin et al., 2020), colorectal cancer (Li et al., 2018) and

prostate cancer (Peng et al., 2022). In addition,UBE2S promoted cell

chemoresistance through PTEN-AKT signaling in HCC (Gui et al.,

2021), which indicated that UBE2S may be a novel oncogene in the

development of cancer. Feline leukemia virus subgroup C receptor 1

(FLVCR1) has been reported to have a crucial role in cell proliferation

and cell death (Peng et al., 2018). A recent study showed that

FLVCR1 was significantly higher in the HCC cohort from ICGC

than in normal samples (Tang et al., 2020), whichwas consistent with

our results. Hyaluronan-mediated motility receptor (HMMR) is an

oncogene involved in neoplastic progression of human leukemias

and solid tumors (Tilghman et al., 2014). The overexpression of

HMMR was strongly associated with the occurrence of HCC.

However, there are some limitations in this study. First, gene-

based markers as biologic signatures were not enough to use as

prognostic model for predicting patient outcomes. Network or

subnetworks markers need to be developed to perform more

meaningful and accurate prediction. Song et al. developed a

method that identified survival prognostic subnetwork

markers (SPNs), which had more accurate and effective

performance for prediction of distant metastasis-free survival

time and uncovered the biological mechanism in in breast cancer

(Song et al., 2015). Additionally, Discrepancy of tumor immune

microenvironment under differed treatments need to be resolved

at single-cell level. It was reported that single-cell multi-omics

gene co-regulatory algorithm (SMGR) was developed to discover

cis-element elements and regulatory networks in mixed-

phenotype acute leukemia cells by integrating single-cell RNA-

sequencing and single-cell assay for transposase-accessible

chromatin using sequencing (Song et al., 2022). Taken

together, more comprehensive models and integrating

methods need to be used for the validation and analysis of results.

In conclusion, our results indicated that AURKA, CCNB1,

DLGAP5, andNCAPGwere key hub genes and thatNEB, UBE2S,

FLVCR1 and HMMR were crucial detrimental prognostic genes,

which could be potential biomarkers and druggable targets in the

diagnosis and treatment of HCC.
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