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Knee osteoarthritis (KOA) is one of the most common degenerative diseases,

and its core feature is the degeneration and damage of articular cartilage. The

cartilage degeneration of KOA is due to the destruction of dynamic balance

caused by the activation of chondrocytes by various factors, with oxidative

stress playing an important role in the pathogenesis of KOA. The

overproduction of reactive oxygen species (ROS) is a result of oxidative

stress, which is caused by a redox process that goes awry in the inherent

antioxidant defence system of the human body. Superoxide dismutase (SOD)

inside and outside chondrocytes plays a key role in regulating ROS in cartilage.

Additionally, synovitis is a key factor in the development of KOA. In an

inflammatory environment, hypoxia in synovial cells leads to mitochondrial

damage, which leads to an increase in ROS levels, which further aggravates

synovitis. In addition, oxidative stress significantly accelerates the telomere

shortening and ageing of chondrocytes, while ageing promotes the

development of KOA, damages the regulation of redox of mitochondria in

cartilage, and stimulates ROS production to further aggravate KOA. At present,

there are many drugs to regulate the level of ROS, but these drugs still need to

be developed and verified in animal models of KOA. We discuss mainly how

oxidative stress plays a part in the development of KOA. Although the current

research has achieved some results, more research is needed.
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Introduction

Osteoarthritis is the most common joint degenerative disease among adults in the

world, affecting approximately 78 million people worldwide by 2040 (Hootman et al.,

2016; Sharma, 2021). Due to the increase in stress in the weight-bearing part of the joint,

long-term strain will lead to cartilage exfoliation, hyperosteogeny, synovial hyperplasia,

degeneration, etc. This series of changes is called joint degenerative disease (Abbasi, 2017).

Most of a person’s weight is distributed across their knees, making the knee a very

important joint, so knee osteoarthritis (KOA) is also one of the most common
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degenerative diseases (Michael et al., 2010). At present, there is

no effective treatment for KOA, but various methods are used to

delay the progression of KOA. When KOA develops to the end

stage, total knee arthroplasty is generally used to improve the

living conditions of patients (Quinn et al., 2018). However, total

knee arthroplasty is expensive, so with the development of the

ageing world, the prevention and treatment of KOA have

increased the burden on society and patients.

Redox biological reactions have the two characteristics of

promoting physiological signal responses as well as promoting

pathophysiological cues (Espinosa-Diez et al., 2015; Zhang et al.,

2022). Oxidative stress is a state of imbalance that causes more

reactive oxygen species (ROS) to be produced or reduces the

body’s natural antioxidant defences (Kimball et al., 2021). ROS

are a class of substances containing oxygen free radicals, which

have unpaired electrons that make them unstable and highly

reactive; hydrogen peroxide (H2O2), hydroxyl (OH
−) radicals,

superoxide (O2
−) anions, and nitric oxide (NO) are all examples

of reactive oxygen species (Trachootham et al., 2008).

Mechanical and chemical stress can lead to an increase in the

production of oxygen free radicals, resulting in oxidative damage

to tissue (Cannizzo et al., 2011). The excessive production of ROS

leads to damage to macromolecules such as protein, fat and DNA

(Dröge, 2002; Cutler, 2005; Espinosa-Diez et al., 2015). When

free radical production exceeds cellular scavenging, lipid

peroxidation, for instance, can be brought on by an

overabundance of hydroxyl radicals and peroxynitrite, which

destroys cell membranes and lipoproteins (Pizzino et al., 2017).

Articular cartilage deterioration and destruction is the

hallmark of KOA, which affects all tissues of the knee joint

(Loeser et al., 2012). Cartilage degeneration in KOA is caused by

the destruction of the dynamic balance of chondrocytes caused

by activation based on other different aspects, in which the

matrix degrades enzyme production and exceeds the ability of

chondrocytes to secrete matrix components (Bolduc et al., 2019).

Elevated levels of ROS and oxidative stress in chondrocytes play a

role in the development of KOA (Blanco et al., 2011). This article

reviews which pathological reactions are mainly involved in the

pathogenesis of KOA by oxidative stress.

Pathogenesis of knee osteoarthritis

Among the various structures that make up the knee joint,

damage to hyaline articular cartilage is the main cause of

osteoarthritis. One of the most obvious risk factors for KOA

is ageing, in which ageing of cartilage and chondrocytes plays an

important role in the pathogenesis and development of KOA

(Rahmati et al., 2017). At first, the surface of the cartilage

becomes worn, and with the continuation of the pathological

process, deep cracks related to the shedding of cartilage

fragments gradually forms, causing delamination and exposure

of the calcified cartilage and bone below (Burr and Schaffler,

1997; Burr, 2004). In addition to cartilage lesions, KOA is

accompanied by changes in subchondral trabecular structure

and bone mass, osteophytes, bone marrow lesions, and the

development of cysts (Sandell, 2012) (Figure 1). In addition,

the decrease in bone tissue hardness may lead to cartilage

deformation and cartilage pathology, which are associated

with osteoarthritis (Stewart and Kawcak, 2018).

Additionally, synovitis is crucially involved in the

development of KOA. Synovitis is characterized by synovial

hyperplasia and diffuse infiltration of T and B lymphocytes

(Scanzello and Goldring, 2012). Magnetic resonance imaging

and ultrasound imaging studies have confirmed that synovitis is

positively correlated with the risk of osteoarthritis progression

(Baker et al., 2010). Additionally, cartilage damage and

malfunctioning chondrocytes contribute significantly to the

onset of synovitis. Chondrocytes release matrix

metalloproteinases to degrade the cartilage matrix and release

cartilage degradation products, which, together with other

proinflammatory cell derivatives, act on preinflammatory

products of synovium. These preinflammatory products are

fed back to chondrocytes to further affect the regulation of

their function (Glyn-Jones et al., 2015) (Figure 1).

Overview of oxidative stress

O2
− is the most abundant oxygen free radical under

physiological conditions, and mitochondria are thought to be

the primary source. O2
− is a potent reactive oxygen species that

FIGURE 1
Pathological manifestations of osteoarthritis of the knee joint.
Damage to hyaline articular cartilage is the main cause of
osteoarthritis. In addition to cartilage lesions, KOA is accompanied
by subchondral trabecular fracture, and bone cysts and
osteophytes are also characteristics of KOA. Cartilage degradation
products are produced after cartilage injury. These cartilage
degradation products and other inflammatory factors act on the
synovium to release preinflammatory products to induce synovitis.
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has a strong effect on the redox state of cells. Not only is O2
−

crucial for a normal immune response, but its direct oxidation of

proteins also has far-reaching effects on signal transduction, gene

expression, and the cell cycle (Turrens, 2003). To convert O2
− to

H2O2, superoxide dismutase (SOD) is needed. O2
−, produced by

the mitochondrial electron transport chain or by nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase (NOx)

activity. By converting O2
− to OH- in the presence of Fenton

reactive metals, SOD can also generate a more reactive and

destructive ROS, hydroxyl radical (OH−). (Dickinson and

Chang, 2011). NO is produced by three different NO

synthases (NOSs): inducible NOS (iNOS), endothelial NOS

(eNOS) and neuronal NOS (nNOS). NO derivatives can cause

macromolecular cell damage and nitrosation stress; for example,

O2
− combines with NO to produce ONOO-, which leads to the

synthesis of nitrotyrosine, another posttranslational alteration

signalling oxidative stress and injury (Oh et al., 2017). One of the

illnesses of ageing is osteoarthritis, and nitrotyrosine is found in

joints where there is wear and tear (Carlo and Loeser, 2003).

Superoxide (O2
−) and hydrogen peroxide (H2O2) are the most

typical ROS types in chondrocytes with ageing and osteoarthritis.

Peroxynitrite (ONOO-), an NO product, is also present in

cartilage and helps control how chondrocytes work (Bolduc

et al., 2019). As ROS production rises, the defence system of

the cell against oxidative stress is triggered, leading to efficient

clearance of ROS molecules. Multiple enzymes, such as

mitochondrial catalase (MCAT), peroxidases (Prxs),

glutathione peroxidase (GPx), SOD and nonenzymes, such as

glutathione and ascorbic acid (vitamin C) (Pisoschi and Pop,

2015), work together to form the antioxidant defence mechanism

of the cell. Glutathione is a small molecular mercaptan that plays

a key role in oxidative metabolism (Figure 2). Sufficient levels of

glutathione must be maintained to exert protective and

biosynthetic functions (Wang et al., 2021). Glutathione is

essential for maintaining proper cellular redox potential and

protecting against oxidative damage. It is important to note that

glutathione can be either reduced (GSH) or oxidized (GSSG).

Maintaining redox homeostasis and delivering antioxidant stress

protection are dependent on the total glutathione concentration

and the GSH/GSSG ratio in cells (Diaz-Vivancos et al., 2015).

Prxs receive new oxygen at the mercaptan active site to protect

proteins from oxidation by hydrogen peroxide (Rhee et al., 2012).

By oxidizing GSH, GPx protects membrane lipids from H2O2-

induced oxidation (Lubos et al., 2011).

The role of oxidative stress in articular
cartilage degeneration

Biochemical analysis of degenerative cartilage from patients

with OA showed that there was a pathological relationship

between the downregulation of SOD2 and cartilage

degeneration in the progression of OA, suggesting that the

redox balance centred on SOD2 in mitochondria plays a

central role in the pathogenesis of KOA (Ruiz-Romero et al.,

2009; Scott et al., 2010). We all know that increased weight

loading is one of the main risk factors for KOA. Koike et al. have

shown that mechanical load in vivo promotes the production of

O2
− in mitochondria of chondrocytes, and the expression of

SOD1 and SOD2 in mitochondria decreases, while

mitochondrial dysfunction induced by superoxide in

mitochondria will further lead to cartilage degeneration

(Koike et al., 2015). In addition, the expression of all three

SODs was shown to be high in human cartilage but

dramatically reduced in advanced OA cartilage (34), which

further aggravated the oxidative stress response in

chondrocytes and promoted the degeneration of chondrocytes

(Scott et al., 2010). The decrease in SOD2 in OA chondrocytes is

related to the increase in promoter methylation (Scott et al.,

2010). Extracellular SOD has also been shown to decrease in

human OA cartilage, suggesting that extracellular SOD also plays

a key role in regulating ROS in cartilage (Regan et al., 2005).

(Figure 3) Some studies have shown that Nox is involved in

macrophage phagocytosis and neutrophil bactericidal activity, so

Nox has a firmly established importance in immune function

(Dang et al., 2002; Brandes et al., 2014). In addition, O2
− and

H2O2 produced by Noxs in many cell types are essential for

normal signal transduction of growth factors and cytokines

(Holmström and Finkel, 2014). For example, ROS produced

by Nox2 and Nox4 is involved in chondrocyte differentiation

(Kim K. S. et al., 2010). But other researchers have found Nox4 is

considered to be the main active subtype of chondrocytes in OA

cartilage, in which the activation of Nox4 by proinflammatory

cytokines increases the production of O2
−and H2O2 (Morel et al.,

FIGURE 2
Generation and regulation of ROS. Superoxide (O2

−) is
produced by incomplete reduction of molecular oxygen in the
mitochondrial electron transport chain (ETC) or through NADPH
oxidase (NOX) activity. In general, SOD disproportionates O2

−

to form H2O2, and peroxidase (Prxs) further reduces H2O2 to
water, catalase (CAT) or glutathione peroxidase (GPx). SOD can
also be converted into OH−, and OH− is a more reactive and
destructive ROS. NO is produced by three different NO synthases
(NOSs). O2

− reacts with NO to produceONOO−, which leads to the
formation of nitrotyrosine. Reduced glutathione (GSH) and
ascorbic acid (vitamin C) can reduce ROS levels.

Frontiers in Molecular Biosciences frontiersin.org03

Liu et al. 10.3389/fmolb.2022.1001212

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1001212


2015). The formation of ROS caused by the activation of

Nox4 aggravates the decomposition of cartilage (Rousset et al.,

2015).

NO in cartilage and synovium is produced by iNOS, which

mediates the expression of inflammatory factors, inhibits the

synthesis of collagen and proteoglycan, and induces chondrocyte

apoptosis and pain (Suantawee et al., 2015). The selective

inhibition of iNOS reduces the tissue level of catabolic factors,

so NO plays an inflammatory role in OA (Ahmad et al., 2020).

The production of NO in OA cartilage is unusually high because

OA chondrocytes produce high levels of NO. NO regulates ECM

homeostasis and cytokine expression, leading to oxidative

damage and chondrocyte apoptosis, thus promoting the

pathogenesis of OA (Scher et al., 2007). In addition, excessive

NO produced by iNOS leads to cartilage injury by enhancing

matrix metalloproteinase (MMP) activity and down regulating

proteoglycan and collagen biosynthesis (Lepetsos and

Papavassiliou, 2016). In addition, by reacting with oxidants

such as superoxide anions, NO promotes cell injury and

makes chondrocytes vulnerable to apoptosis induced by

cytokines (Amin et al., 2000).

One study found that NO alone did not result in chondrocyte

death but that NO triggered apoptosis when it reacted with O2- to

produce chondrocytes (Blanco et al., 1995); therefore, it seems

that NO can increase chondrocyte death through apoptosis (Del

Carlo and Loeser, 2002). The flexibility of cartilage is due in large

part to the presence of proteoglycans in the cartilage matrix. NO

may disrupt cartilage homeostasis by inhibiting proteoglycan

production (Clancy et al., 1997). The production of NO by

activating iNOS is initiated by signals from proinflammatory

cytokines, including interleukin (IL)-1β, IL-17, tumour necrosis

factor-α and interferon-γ (Nathan and Xie, 1994). Martel-

Pelletier et al. found that the expression of iNOS and the

increased level of the downstream product NO in

chondrocytes work together to maintain the role of

inflammatory cytokines, which will further cause chondrocyte

damage (Martel-Pelletier et al., 1999). O2
− reacts with NO to

produce ONOO−. Peroxynitrite can induce mitochondrial

dysfunction through a calcium-dependent process, which leads

to chondrocyte apoptosis mediated by calpain (Whiteman et al.,

2004).

Zhu et al. discovered that the redox balance and glutathione

content were drastically altered depending on the presence and

pattern of load-rest cycles. For example, loading without rest for

48 h under physiological cycle conditions caused significant net

oxidation of glutathione in cartilage, which decreased the

protection of glutathione against further oxidative stress (Zhu

et al., 2020). One study found that Prx3 (mitochondrial Prx) is

highly oxidized in the cartilage of elderly patients with

osteoarthritis, indicating that oxidative stress is intensified in

degenerative cartilage. Overproduction of ROS can be caused by

mitochondrial malfunction or unchecked SOD2 expression,

which in turn can irreparably damage chondrocytes and

trigger cell death via apoptosis or necrosis (Lepetsos and

Papavassiliou, 2016).

The role of oxidative stress in
synovitis

The aetiology of KOA is heavily influenced by synovitis.

Inflamed synovium produces prostaglandins, leukotrienes, ROS,

cytokines, chemokines, and adipokines, all of which contribute to

cartilage breakdown and further exacerbate inflammation

(Scanzello and Goldring, 2012). Increased synovitis and

angiogenesis are related to oxidative stress induced by hypoxia

(Biniecka et al., 2010). To reduce oxidative stress and hypoxia-

induced mitochondrial mutation in inflammatory arthritis,

tumour necrosis factor (TNF) blocking treatment is effective

(Biniecka et al., 2011b). Low synovial oxygen supply efficiency in

an inflammatory environment is caused by a combination of

factors, including an imbalanced network of synovial

FIGURE 3
Oxidative stress is involved in the injury and senescence of chondrocytes. Weight loading promotes the production of O2

− in mitochondria and
reduces the expression of SOD, while mitochondrial dysfunction induced by ROS in mitochondria will further lead to cartilage degeneration. The
production of NO by activating iNOS is initiated by signals from proinflammatory cytokines, including IL-1β, IL-17, tumour necrosis factor-α (TNF-α)
and interferon-γ (INF-γ). O2

− reacts with NO to produce ONOO−. Peroxynitrite can inducemitochondrial dysfunction, resulting in chondrocyte
damage. Reduced glutathione (GSH) can reduce the level of ROS.
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microvessels and the increased energy demand of activated

infiltrating immune cells and resident inflammatory cells. This

combination of factors, in turn, causes a hypoxic

microenvironment and mitochondrial dysfunction (McGarry

et al., 2018), promoting inflammation and oxidative damage

by increasing the production of ROS (McGarry et al., 2018).

During the process of oxidizing nutrients to generate adenosine

triphosphate (ATP), mitochondria produce ROS (Kuksal et al.,

2017). Changes in mitochondrial DNA (MtDNA) in somatic

cells are caused by elevated oxidative stress because the

mitochondrial genome is very susceptible to mutation

(Biniecka et al., 2011a; Harty et al., 2012). The

proinflammatory mitochondrial phenotype is related to

mtDNA mutation and decreased oxygen partial pressure in

the synovium (Du et al., 2020), suggesting that hypoxia and

oxidative stress may play a significant role in causing joint

inflammation. The inflammatory response of fibroblast-like

synoviocytes in rheumatoid arthritis have been shown to be

able to be reduced by reducing oxidative stress in peripheral

blood mononuclear cells (Lee et al., 2021). Phagocytes produce

large amounts of reactive oxygen species during respiratory

outbursts, and T cells usually exist near phagocytes. Activated

phagocytes produce H 2O 2 through NOX-2. H2O2 can oxidize

mercaptan on the surface of T cells and enter into the interior of

T cells. H2O2 in T cells can oxidize glutathione (GSH) and

interfere with DNA synthesis (Belikov et al., 2015). Compared

with traditional T cells, T reg cells have lower levels of

intracellular ROS and can be protected from H 2O 2 induced

death (Mougiakakos et al., 2009). In addition, T cell homeostasis

requires the balance of redox reaction. Changing the level of ROS

or antioxidants to disrupt this balance will lead to T cell

hyperresponsiveness or hyporeactivity, which may lead to the

development of various pathology (Gelderman et al., 2007). For

example, increasing the level of mercaptan in T cells can lead to T

cell-mediated arthritis in mice after collagen immunization

(Gelderman et al., 2007).

Abnormal ROS signalling in OA synovial fibroblasts induced

by cytokines, thrombin or stress is related to the increased

activity of nuclear factor erythroid 2 p45-related Factor 2

(NFE2L2, also known as NRF2) (Bernard et al., 2017).

Moreover, Balogh et al. found that oxidative stress in the

synovium can promote glycolysis, which may help to

accelerate the mechanism of inflammation (Balogh et al.,

2018). In addition, Yao et al. found that magnesium ions

(Mg2+) promote the synthesis of cartilage matrix mediated by

hypoxia inducible factor-1α (HIF-1α) (Yao et al., 2019).

However, oxidative stress can inhibit the expression of HIF-1α
and magnify inflammation, which may impair the therapeutic

effect of Mg2+ in OA (Mobasheri et al., 2017). The intraarticular

combination of Mg2+ and vitamin C can reduce oxidative stress

and synovitis in OA (Yao et al., 2021). Synovitis worsens, matrix

components are destroyed, and apoptosis occurs as a result of

oxidative stress-induced mitochondrial and nuclear DNA

damage, lipid peroxidation, changes in cellular signal

transduction and transcription, and epigenetic transcription

factors (Marchev et al., 2017). Andrographis paniculata

inhibits lipid peroxidation and nitrate levels to prevent

neutrophils from gathering and passing through the cell

membrane and reduces the levels of chemokines and

inflammatory factors (Luo et al., 2020) .

The role of oxidative stress in aging of
Knee osteoarthritis

Even while being older does not guarantee you will develop

osteoarthritis, the changes that come with getting older lay the

groundwork for OA to develop in the first place, such as cell

senescence and telomere wear, which are thought to represent

key mechanisms by which ageing leads to the development of

age-related diseases (López-Otín et al., 2013). Mitochondrial

failure is an age-related phenomenon that increases

intracellular ROS and causes oxidative stress (Venkataraman

et al., 2013). Because mitochondria control the ratios of NADH/

NAD+, NADPH/NADP+, and GSH/GSSG, alterations in redox

homeostasis have been proposed as a potential cause of ageing

(Leeuwenburgh et al., 2011).

The gradual breakdown of extracellular matrix (ECM) is a

hallmark of KOA (Loeser, 2017), which is caused by an

imbalance of catabolic and anabolic signals in cartilage.

Oxidative stress significantly accelerates the telomere

shortening and ageing of chondrocytes (Brandl et al., 2011).

FIGURE 4
Oxidative stress is involved in the pathogenesis of synovitis.
Hypoxia leads to mitochondrial dysfunction, which leads to an
increase in the level of ROS and further promotes inflammation.
Cytokines, thrombin or stress can cause an increase in
nuclear factor erythroid 2 p45-related Factor 2 (NRF2), which leads
to an increase in ROS. The combination of Mg2+ and vitamin C can
reduce oxidative stress and synovitis in OA. At the cellular level,
oxidative stress can cause DNA damage, lipid peroxidation and
epigenetic changes in gene expression, leading to synovitis
deterioration.
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In addition, in OA chondrocytes, the decrease in the activity of

respiratory chain complexes I, II and III may affect several

pathways related to cartilage degradation, including oxidative

stress, biosynthesis of chondrocytes, increased inflammation and

matrix catabolism induced by cytokines, calcification of cartilage

matrix and increased apoptosis of cartilage cells (Blanco et al.,

2011). Mutations in mtDNA or the direct impact of

proinflammatory mediators such cytokines, prostaglandins,

ROS, and nitric oxide may contribute to mitochondrial

dysfunction in chondrocytes in KOA (Kim J. et al., 2010)

(Figure 4). In addition, proteomic analysis showed that

mitochondrial SOD2 in human chondrocytes decreases with

age (Ruiz-Romero et al., 2006). Some studies have shown that

ageing can lead to an imbalance in the anabolism and catabolism of

chondrocytes and promote the senescence and apoptosis of

chondrocytes (Loeser et al., 2002; Shane Anderson and Loeser,

2010). Both human and primate ageing cartilage and OA cartilage

showed increased generation of hydrogen peroxide and active

nitrogen (including NO) (Loeser et al., 2002). Human chondrocyte

explants grown in the presence of hydrogen peroxide exhibited

senescent features, including telomere shortening, decreased

replication ability and decreased glycosaminoglycan production.

Fu et al. found that Sirtuin 3 (SIRT3) protein is lost with ageing,

which can damage the SOD2 activity of cartilage. Due to the

decrease in SIRT3 expression and the impairment of SOD2-

specific activity, ageing promotes the development of KOA,

impairs the regulation of redox of mitochondria in cartilage

and stimulates ROS production (Passos et al., 2010; Fu et al.,

2016). Stress-induced chondrocyte senescence and OAmay be the

result of an increase in ROS generation in cartilage, which may be

stimulated by damaging mechanical load (Yamazaki et al., 2003).

Collins et al. found that MCAT inhibited the catabolism of

chondrocytes induced by toluene diketone and inhibited the

progression of age-related osteoarthritis in mouse models

(Collins et al., 2016), pointing to the oxidative stress that comes

with ageing being able to interfere with the regular physiological

signal transduction of the body, which in turn can cause

osteoarthritis (Figure 5).

Members of the mitogen-activated protein kinase (MAPK)

pathway have been shown in some research to play a role in

regulating cell survival and oxidative stress tolerance. For

example, oxidative stress inactivates c-Jun N-terminal

kinases (JNKs) in human chondrocytes cultured in vitro

(Nelson et al., 2018). In mice, the loss of JNK1 and

JNK2 led to more severe age-related OA and ageing of

cartilage and synovium (Loeser et al., 2020), an indication

that JNK is a detrimental regulator of joint degeneration.

Glutathione, as one of the reductants, is also a regulator of

joint senescence in ageing-induced KOA. For example, Carlo

et al. found that the ratio of GSH/GSSG in chondrocytes in

elderly patients (age ≥50) is lower than the ratio of GSH/GSSG

in chondrocytes in young patients (age 18–49), suggesting that

oxidative stress increases with age, which increases the risk of

oxidant-mediated cell death in chondrocytes through the

imbalance of the glutathione antioxidant system (Carlo and

Loeser, 2003). Therefore, damage to the glutathione systemmay

lead to proinflammatory-induced oxidative stress in

chondrocytes, especially in the process of senescence

(McCutchen et al., 2017; Issa et al., 2018). The increase of

ROS in chondrocytes caused by aging may be the cause of

oxidative damage of genomic and mitochondrial DNA

(McCulloch et al., 2017). Mitochondrial DNA damage in

turn leads to the senescence of osteoarthritis chondrocytes.

The stagnation of chondrocyte proliferation in this case is due

to the accumulation of DNA damage after exposure to stress

inducers (Minguzzi et al., 2018). Therefore, chronic oxidative

stress and mitochondrial dysfunction may be the main causes of

chronic degenerative diseases. In addition, researchers have

found that the aging of cartilage is not caused by telomere wear

and aging of mature chondrocytes, but is attributed to a group

of progenitor cells (Fellows et al., 2017). Combining these

results, we can see that there is a correlation between

oxidative stress and cartilage ageing, which may promote the

pathogenesis of KOA.

How to solve the oxidative stress in
Knee osteoarthritis

Several different antioxidant treatment methods are being

investigated, some of which are currently in clinical trials. These

measures include removing O2
− before reacting with NO to form

ONOO-, removing H2O2 before forming OH-, using precursors

to increase GSH and increasing the synthesis of antioxidant

enzymes.

FIGURE 5
Chondrocyte senescence and oxidative stress. Hydrogen
peroxide can cause the ageing of chondrocytes, such as telomere
shortening andmitochondrial dysfunction. Sirtuin 3 (SIRT3) protein
is lost with ageing, which damages the SOD2 activity of
cartilage, affects the regulation of mitochondrial redox in cartilage
and stimulates ROS production. In addition, harmful mechanical
loads can also stimulate an increase in ROS. Oxidative stress
inactivates c-Jun N-terminal kinases (JNKs) and leads to cartilage
degeneration. Reduced glutathione (GSH) can combat oxidative
stress caused by ageing.
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SOD is essential for preventing oxidative stress since it is the

sole enzyme that can remove O2
− from mammalian cells. Since

it was discovered in 1969, SOD has generated interest due to its

potential as a treatment. Numerous SOD simulations have been

created since then. Metalloporphyrins, Mn cyclic polyamines,

nitrogen oxides, and other compounds are included in these

simulations. Previous research has listed a summary of their

chemical characteristics (Batinić-Haberle et al., 2010; Bonetta,

2018). The most comprehensive SOD simulator studied is

probably manganese porphyrin. At present, researchers have

synthesized various manganese porphyrin compounds and

evaluated their O2
−disproportionation activity (Batinic-

Haberle et al., 2015). For example, the protective and

therapeutic effects of MnTE-2-pYp 5 + and MnTDE-2-

ImP5+ have been confirmed in animal models. (Mackensen

et al., 2001; Gauter-Fleckenstein et al., 2008; Rabbani et al.,

2009; Ganesh et al., 2016). The ability of GC4419 to remove

superoxide anions selectively without interacting with other

oxidants makes it a further intriguing SOD mimic (Aston et al.,

2001), and GC4419 shows therapeutic effects in a mouse model

of arthritis (Salvemini et al., 2001). In addition, a variety of GPX

simulations have been developed, among which ebselenoline is

the best known. Ebselenoline has been shown to reduce

oxidative damage in inflammation-related carcinogenesis

(Nakamura et al., 2002). However, there are no related

experiments to prove that ebselenoline can effectively

improve oxidative stress in KOA. One of the most

researched medicinal antioxidants is N-acetylcysteine (NAC).

There is some indication that NAC supplementation is

particularly important in mediating the antioxidant effect of

GSH (Rushworth andMegson, 2014). NAC has been used in the

treatment of many diseases, including airway cystic fibrosis

(Conrad et al., 2015) and nephropathy (Xu et al., 2016).

However, exogenous GSH degrades quickly in plasma, and

GSH cannot be delivered efficiently to most cells (Wendel

and Cikryt, 1980). Therefore, the ester derivative of GSH is a

more successful complementary strategy. Many studies have

confirmed that GSH esters can efficiently increase GSH in cells

and/or tissues in cells and animal models (Chen et al., 2000;

Anderson et al., 2004).

Antioxidant enzyme induction of polyphenols is mediated

by the NRF2 signal (Forman et al., 2014). Therefore, as a result,

NRF2 activator is viewed as a promising medication for

boosting antioxidant defences and reducing pathology. Some

of the antioxidant enzymes utilized in clinical studies for

treating and preventing disease are induced by extracts from

foods such as tea, cocoa, and various vegetables and fruits

(Pandurangan et al., 2015; Li et al., 2016). For example, for a

variety of diseases, including chronic obstructive pulmonary

disease, osteoarthritis, joint stiffness and diabetic nephropathy

(Yagishita et al., 2019). NOXs, as the source of O2
− and H2O2,

play an important role in redox signal transduction; however, a

problem arises when NOXs are activated to an unhealthy degree

and cause harm to healthy tissue. Inhibiting NOX1, NOX2, and

NOX4 has been shown to be beneficial in animal models

(Teixeira et al., 2017). By contributing an electron to

neutralize free radicals, vitamin C is another key antioxidant

that plays a role in lowering oxidative stress (Frei et al., 1989).

The antioxidant properties of Vitamin E have been

demonstrated by numerous other investigations (Hill et al.,

2003; Bruno et al., 2006), especially in cases of oxidative stress

or other antioxidant deficiencies (Traber and Atkinson, 2007).

In animal models, the use of iNOS inhibitors significantly

reduced cartilage degeneration and osteophyte formation

(Pelletier et al., 1998).

Yamada et al. found that S. tuberculata can reduce the

damage related to oxidative stress in serum and reduce the

oxidative stress injury and pain caused by knee osteoarthritis

in rats (Yamada et al., 2020). In addition, they found that S.

tuberculata reduced the damage caused by oxidative stress and

cytokines in follow-up studies (Yamada et al., 2022). And the

combination of S. tuberculata and photobiologic therapy reduced

the levels of cytokines and nitrite/nitrate (Yamada et al., 2022).

Pan et al. found that Receptor-interacting protein 2 (RIP2) can

regulate cartilage degradation and oxidative stress in IL-1 β-
treated chondrocytes by regulating TRAF3 expression and p38-

MAPK pathway activation (Pan et al., 2021). TERT-

butylhydroquinone can effectively prevent oxidative stress and

inhibit apoptosis of rat chondrocytes by activating Nrf2 pathway

(Yang et al., 2021). Li et al. found that montelukast can effectively

reduce oxidative stress and apoptosis in chondrocytes and

improve the viability of chondrocytes (Li et al., 2021).

Transforming growth factor β 1 can protect chondrocytes

from oxidative stress by regulating autophagy (Kurakazu et al.,

2021). Karim et al. found that iron overload in chondrocytes can

induce oxidative stress, cell cycle arrest and apoptosis (Karim

et al., 2022). Pang et al. found that Bardoxolonemethyl can

inhibit chondrocyte apoptosis and ECM degradation induced

by oxidative stress in vitro, and reduce OA in vivo (Pang et al.,

2021).

Combined with the above research results, we can use these

substances regulating oxidative stress as potential therapeutic

drugs for KOA and verify the ability of these substances to

regulate ROS in the pathogenesis of KOA in animal experiments.

Conclusion

Many studies have found that oxidative stress not only

promotes the ageing and injury of chondrocytes but also

drives the development of synovitis in the pathogenesis of

KOA. In addition, with increasing age, the ROS level of

chondrocytes increases, which further promotes cartilage

injury. An increasing number of studies have found new

means to regulate the level of ROS, which provides a new

strategy for the prevention and treatment of KOA. Of course,
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more experiments are needed to study the effect of oxidative

stress on KOA.
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