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Background: Copper metabolism plays an important role in the tumor

microenvironment, and cuproptosis is the last discovered

programmed cell death process. However, the potential mechanism of

cuproptosis in regulating the immune microenvironment of HCC remains

unclear.

Methods: A total of 716 HCC patients with complete mRNA expression

and survival information were collected from three public HCC cohorts

(TCGA-LIHC cohort, n = 370; GSE76427 cohort, n = 115; ICGC-LIRI cohort,

n = 231). The unsupervised clustering analysis (NMF) was performed to

identify three different cuproptosis-related subtypes. The univariate-Cox,

lasso-Cox and multivariate-Cox regression analyses were performed to

screen the cuproptosis related and construct the cuproptosis-related

prognosis signature (Cu-PS). The immune cell infiltration was estimated

by both CIBERSORT and MCPcounter algorithms.

Results: This study identified three distinct cuproptosis-related

metabolic patterns, which presented different pathway enrichment and

immune cell infiltration. The Cu-PS, a 5-genes (C7, MAGEA6, HK2,

CYP26B1 and EPO) signature, was significantly associated with TNM

stage, tumor mutational burden (TMB), drugs sensitivity, and

immunotherapies response.

Conclusion: This study performed a multi-genetic analysis of cuproptosis-

related genes and further explored the regulatory mechanism of cuproptosis in

HCC. The Cu-PS might be a useful biomarker for predicting immunotherapy

response and enhancing the diagnosis and treatment of HCC.
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Introduction

Hepatocellular carcinoma (HCC) has high heterogeneity and

poor prognosis (Dong et al., 2020) and led to the second-highest

mortality rate among all cancers (Sung et al., 2021). The 5-year

survival rate of HCC patients is less than 20% despite the

continuous emergence of immunotherapy and targeted drugs

(Llovet et al., 2021). Due to its high heterogeneity, the prognosis

of HCC also varies greatly (Pinero et al., 2020). Alpha-fetoprotein

(AFP), AFP-L3, glypican-3 (GPC3) and des-gamma-carboxy

prothrombin (DCP) are important markers for the diagnosis

and prognostication of HCC, but the sensitivity and specificity

are limited (Cai et al., 2019; Choi et al., 2019). Therefore, finding

novel regulatory mechanisms of HCC and identifying more

reliable prognostic markers are crucial for improving the

survival rate and promoting precision therapy.

Programmed cell death (PCD) is a process in which cells die

after being stimulated by an external signal, which may be

physiological or pathological (Hotchkiss et al., 2009).

Apoptosis, autophagy and necrosis are three major forms of

PCD that have been extensively studied (D’Arcy, 2019). In recent

years, new PCD patterns including ferroptosis, pyroptosis, and

necroptosis have been discovered, which play an important role

in the occurrence and development of tumors (Frank and Vince,

2019; Hirschhorn and Stockwell, 2019; Tsvetkov et al., 2022).

Copper ionophore-induced cell death, also called cuproptosis, is

the latest proposed PCD pattern. The main mechanism is that

copper binds to lipoylated components in the TCA cycle under

overload conditions, thus inducing cell death (Tsvetkov et al.,

2022). Copper metabolism plays an important role in the

regulation of tumor microenvironment, however, the

underlying mechanism of cuproptosis in HCC remains

unclear. Therefore, it is crucially important to explore the

association between cuproptosis and HCC, and to find new

strategies for diagnosis and treatment.

In this study, we first preformed multi-genetic analysis of

cuproptosis-related genes and further identified three

cuproptosis-subgroups by nonnegative matrix factorization

(NMF) clustering analysis. Differential pathway enrichment

and immune cell infiltration analyses of these three subgroups

were conducted to explore the biological mechanisms underlying

the three subtypes. The cuproptosis-related prognostic signature

(Cu-PS) was established based on the five identified prognostic

core genes. The Cu-PS was significantly associated with TNM

stage, tumor mutational burden (TMB), drug sensitivity, and

immunotherapy response. In conclusion, our study explored the

regulatory mechanism of cuproptosis in HCC and provides new

targets and strategies for the clinical diagnosis and treatment of

HCC patients.

Materials and methods

Data collection and preprocessing

A total of 716 HCC samples with complete survival and

mRNA expression information from three HCC cohorts

(TCGA-LIHC cohort, n = 370; GSE76427 cohort, n = 115;

ICGC-LIRI cohort, n = 231) were included in this study. The

clinical information and copy number variation data were

downloaded from https://www.cancer.gov/. The mRNA

expression and somatic mutation data of TCGA-LIHC

were downloaded from https://xenabrowser.net. The

clinical and mRNA expression data of the GSE76427 and

ICGC-LIRI cohorts were downloaded from https://www.

ncbi.nlm.nih.gov/geo/ and https://dcc.icgc.org/projects/,

respectively.

The RNA data (FPKM or count format) were transformed

into TPM format. The batch effects among the TCGA-LIHC,

GSE76427 and ICGC-LIRI cohorts were eliminated via the SVA”

package (Yang et al., 2020). The CNV diagram of 16 cuproptosis-

related genes was generated by the “Rcircos” package.

Identification of HCC cuproptosis
subtypes (Cu-clusters) based on NMF
unsupervised clustering analysis

The 16 cuproptosis-related genes were obtained from

published literatures, including 13 genes with positive

relationships (FDX1, LIPT1, LIAS, DLD, DBT, GCSH, DLST,

DLAT, PDHA1, PDHB, SLC31A1, ATP7A and ATP7B) and

3 genes with negative relationships (CDKN2A, MTF1 and GLS).

Based on the expression of these 16 cuproptosis-related genes, we

performed an unsupervised clustering analysis (NMF) and

identified three different cuproptosis-related subtypes. The

clustering analysis was performed with the “consensus-cluster

plus” package and iterated 1,000 times (Wilkerson and Hayes,

2010).

Pathway enrichment analysis of hallmark
and GO gene sets

The hallmark gene sets were downloaded from the MSigDB

(http://www.gsea-msigdb.org). Single-sample enrichment scores

for the hallmark gene set were estimated with the “GSVA”

package (Hanzelmann et al., 2013). The package

“clusterProfiler” was applied to annotate the GO functions

of DEGs.
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Estimation of immune cell infiltration with
the CIBERSORT and MCPcounter
algorithms

The “MCPcounter” package and CIBERSORT algorithm

were employed to estimate the fractions of tumor-infiltrating

immune cell subsets based on mRNA transcriptome profiles

(Becht et al., 2016). The CIBERSORT algorithm (https://

cibersort.stanford.edu/) can be used to evaluate the abundance

of 22 immune cells, and the MCPcounter algorithm can be used

to quantify the fractions of 8 tumor-infiltrating immune cell

types, as well as endothelial cells and fibroblasts.

Identification of cuproptosis subtype-
related DEGs

The “limma” package was applied to screen DEGs. A total of

140 DEGs were identified with significance criteria (adjusted p

value < 0.001, |logFC>1|). The “heatmap” package was used to

present the expression landscape of DEGs among three different

cuproptosis subtypes.

Construction of a prognostic signature
based on the cuproptosis-related DEGs

The “caret” package was used to divide the patients (from the

TCGA-LIHC and GSE76427 cohorts) into training (70%) and

testing (30%) cohorts. The independent cohort ICGC-LIRI was

used for validation. The “survival” and “glmnet” packages were

used for the univariate Cox and LASSO Cox analyses to identify

the cuproptosis-related and prognostically significant hub genes.

The cuproptosis-related prognostic signature (termed Cu-PS)

was constructed by multivariate Cox regression. The formula is

as follows: Cu-PS = ∑n
i coefi*mRNAi. The selection of the

optimal cutoff value was based on the “surv_cutpoint”

function in the “survival” package. The “survivalROC” and

“survminer” packages were used to generate the receiver

operating characteristic (ROC) and Kaplan–Meier (K−M)

curves, respectively.

Quantitative real-time PCR (qRT–PCR) in
cell lines

To validate the expression levels of the 5 hub genes in normal

and HCC cell lines, we cultured two HCC cell lines (Huh7 and

HLE) and one human hepatocellular cell line (MIHA). Total

RNA was extracted from the above 3 cell lines, and cDNA was

synthesized with a reverse transcription kit (TaKaRa, Japan). The

qRT–PCR was performed using SYBR Green Mix (TaKaRa,

Japan) and a C1000 system (Bio–Rad, Hercules, CA). The

primer sequences of the 5 hub genes are listed in Table 1. The

RNA quality was assessed, and RNA levels were normalized

based on human GAPDH.

Ability of the Cu-PS to predict
immunotherapy response

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm was employed to quantify immunosuppressive and

dysfunctional factors in the tumor immune microenvironment

(TIME) and to estimate the ability of cancer cells to escape

antitumor immunity (Jiang et al., 2018). In addition, the

IMvigor210 cohort (Mariathasan et al., 2018) (348 urothelial

carcinoma patients) and Liu et al. cohorts (Liu et al., 2019)

(121 melanoma patients) were employed to validate the

relationship between the Cu-PS and immunotherapy response.

The mRNA data of the two immunotherapy cohorts were

transformed into TPM values before further analysis.

Analysis of the correlation of the Cu-PS
with drug sensitivity

The “pRRophetic” package (Geeleher et al., 2014) was used to

calculate the IC50 values of drugs in the Genomics of Drug

Sensitivity in Cancer (GDSC) database. We analyzed the

correlation between IC50 values and the Cu-PS with

Spearman correlation analysis to explore the association of the

Cu-PS with drug sensitivity. |Cor| > 0.2 and adjusted p <
0.05 were used as cutoffs for identifying significant correlations.

Statistical analyses

All statistical analyses were performed with the software of R-

4.0.2. TheWilcoxon rank-sum test and Kruskal–Wallis tests were

TABLE 1 The primer sequences of the 5 hub genes.

Genes Primer sequence (59-39)

C7 (human)-F AATGGCTGTACCAAGACTCAGA

C7 (human)-R GCTGATGCACTGACCTGAAAA

MAGEA6 (human)-F AGGGGAGGGAAGACAGTATCT

MAGEA6 (human)-R AAAGCCCACTCATGCAGGAG

HK2(human)-F GAGCCACCACTCACCCTACT

HK2(human)-R CCAGGCATTCGGCAATGTG

CYP26B1(human)-F GGCAACGTGTTCAAGACGC

CYP26B1(human)-R TGCTCGCCCATGAGGATCT

EPO (human)-F GGAGGCCGAGAATATCACGAC

EPO (human)-R CCCTGCCAGACTTCTACGG
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FIGURE 1
Genetic variation landscape and Unsupervised clustering of 16 Cu-RGs in HCC. (A) Comparison of 16 Cuproptosis-related genes (Cu-RGs)
between normal and HCC tissues in mRNA expression. (B) The mutation frequency and classification of 16 Cu-RGs in TCGA-LIHC cohort. (C) The
CNV variation frequency of 16 Cu-RGs in TCGA-LIHC cohort. (D) The location of CNV alteration of 16 Cu-RGs on the chromosomes in TCGA-LIHC.
(E) Co-expression and prognosis relationship of 16 Cu-RGs in TCGA-LIHC. The regulation of Cu-RGs to cuproptosis were depicted by circles
(lift) in two colors: red, cuproptosis-down; gray, cuproptosis-up. The lines connecting 16 Cu-RGs represented their interaction with each other. The
size of each circle represented the prognosis effect of each regulator and scaled by p-value. The color on the right half of the circle represents the
effect of Cu-RGs on prognosis: green, protective factors; purple, risk factors. (F) Kaplan-Meier curves of overall survival (OS) for 485 HCC patients in
TCGA-GEO cohort with different Cuproptosis-clusters (termed as C1, C2 and C3). The numbers of patients in C1, C2, and C3 are 115, 172, and 198,
respectively.
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applied to identify differences between two and among three

groups, respectively (Hazra and Gogtay, 2016). K−M analysis

and the log-rank test were utilized to analyze differences between

distinct Cu-clusters, Cg-clusters and Cu-PS subgroups. The

mutation waterfall plot was generated with the “maftools”

package (Mayakonda et al., 2018). The CNV circle graph of

16 cuproptosis-related genes in human chromosomes was

generated with the “RCircos” package (Zhang et al., 2013). All

tests were bilateral, p < 0.05 was considered significant, and the

false discovery rate (FDR) was calculated for multiple hypothesis

testing (Ferreira, 2007).

Results

Multiomics landscape of 16 cuproptosis-
related genes and identification of
cuproptosis subtypes in HCC

The study analysis flowchart was shown in Supplementary Figure

S1. First, we analyzed the differences in the mRNA expression of

16 cuproptosis genes between HCC and normal liver tissues. The

results showed that in HCC patients, 9 of 13 genes positively

associated with cuproptosis were expressed at lower levels, 3 of

13 cuproptosis positive genes (LIPT1, DLAT and ATP7A) and the

3 cuproptosis negative genes (GLS, MTF1 and CDKN2A) were

upregulated, indicating that the level of cuproptosis was lower in

HCC than in normal liver tissues (Figure 1A). The mutation analysis

showed that 18 of 361 (4.99%) HCC patients had mutations in

cuproptosis-related genes (Figure 1B). The copy number alteration

(CNA) frequency analysis showed that most of the cuproptosis genes

had deletions affecting copy number. ATP7B had the highest

frequency of deletion, while LIAS had the highest frequency of

amplification (Figure 1C). The chromosomal locations of the

16 cuproptosis genes CNA are shown in Figure 1D.

TCGA-LIHC and GSE76427 samples with available survival

information were employed to generate the comprehensive

crosstalk network of the 16 cuproptosis genes (Figure 1E). We

found that the three genes negatively associated with cuproptosis

(CDKN2A, MTF1 and GLS) were risk factors for HCC overall

survival (OS) (HR < 1, univariate Cox test), and most of the genes

positively associated with cuproptosis were favorable factors

(HR < 1, univariate Cox test), which indicated that HCC

patients may benefit from cuproptosis. The NMF algorithm

was used to classify 485 HCC samples into three distinct

cuproptosis subgroups, termed Cu-cluster 1, Cu-cluster 2 and

Cu-cluster 3, based on the expression of the 16 cuproptosis genes.

The process of cluster analysis (rank = 2:7) is shown in

Supplementary Figure S2. K−M survival analysis showed that

the patients in Cu-cluster 3 had the best OS benefit, followed by

those in Cu-cluster 2 and Cu-cluster 1 (p = 0.039, Figure 1F). We

performed a multi-genetic analysis and identified three distinct

cuproptosis-subgroups associated with different OS prognoses.

Analysis of enriched pathways and
immune cell infiltration among the three
Cu-clusters

We explore the cuproptosis level based on the expression of the

16 cuproptosis-related genes among the three Cu-clusters. The

patients in Cu-cluster 1 had the lowest cuproptosis level, as

indicated by lower expression of genes positively associated with

cuproptosis and overexpression of genes negatively associated with

cuproptosis. The patients in Cu-cluster 2 had amoderate cuproptosis

level, and those in Cu-cluster 3 had the highest cuproptosis level

(Figure 2A). To discover the underlying biological mechanisms

behind the differences in survival between the three Cu-clusters,

we performed gene set enrichment analysis (GSEA) and immune cell

infiltration analysis. The GSEA results showed that Cu-cluster 1 was

enriched in mTORC1 signaling, E2F targets and G2/M checkpoint

pathways. Cu-cluster 3 was associated withmetabolic pathway terms,

such as bile acid metabolism, peroxisome, lipogenesis and fatty acid

metabolism. Cu-cluster 2 was enriched in the terms Notch signaling,

angiogenesis, epithelial-mesenchymal transition and TGF-β signaling
(Figure 2B). We further analyzed immune cell infiltration with

MCPcounter (Figure 2C) and the CIBERSORT algorithm

(Figure 2D). The HCC patients in Cu-cluster 1 had the highest

levels of inhibitory immune cells (myeloid dendritic cells (DCs),

regulatory T cells (Tregs) and M0 macrophages), while those in Cu-

cluster 2 had the highest levels of stromal cell subsets (endothelial cells

and fibroblasts); those in Cu-cluster 3 had lower immune cell

infiltration. Furthermore, the patients in cluster-C3 and normal

samples were less infiltrated in T cell, B cell as well as endothelial

cells and fibroblast (Supplementary Figure S3). These results

indicated that cuproptosis subtype is associated with tumor

microenvironment factors.

Identification of cuproptosis-related and
prognosis-related hub genes in HCC

To explore potential biological behaviors, we identified

140 DEGs among the three subtypes (|logFC|>0.5, adjusted

p < 0.01, Figure 3A) and further performed GO enrichment

analysis. The results showed that the DEGs were mainly enriched

in metabolic processes, such as steroid metabolic processes,

xenobiotic metabolic processes, fatty acid biosynthetic

processes, cellular hormone metabolic processes, estrogen

metabolic processes, vitamin D metabolic processes and bile

acid and bile salt transport (Figure 3B). In the training cohort,

univariate, LASSO and multivariate Cox analyses were applied to

identify the cuproptosis-related and prognosis-related hub genes.

A total of 10 prognostic DEGs were selected through LASSO Cox

analysis (Figures 3C,D), and 5 prognostic hub DEGs were

identified via multivariate Cox analysis. The hazard ratios and

p values of these selected genes are shown in the forest plot of the

univariate Cox analysis results (Figures 3E,F). One hub DEG
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FIGURE 2
Biological characteristics and immune cell infiltration characteristics in distinct cuproptosis-clusters. (A) Expression heatmap of 16 Cu-RGs in
the TCGA-GEO cohort. The patient annotations of Cuproptosis-cluster, OS-status, gender, TNM stage, age and cohorts were presented at the top of
heatmap. (B) GSVA score heatmap of Hallmark pathways among three Cuproptosis-clusters. (C,D) Comparison of immune cell infiltration among
three Cuproptosis-clusters, which was estimated by MCPcounter (C) and CIBERSORT (D) algorithm, respectively.
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FIGURE 3
Screening of Cu-DEGs and construction of cuproptosis-related prognostic signatures (Cu-PS) (A) The Venn diagram illustrated the 140 Cu-
DEGs among three cuproptosis-clusters. (B) GO enrichment analysis revealed the biological characteristics of the 140 DEGs. (C) 10 Cu-DEGs
screened by LASSO regression. (D) 10-fold cross-validation plot of LASSO regression. (E) Univariate Cox forest-plot of the 10 selected Cu-DEGs.
(F) Forest-plot of 5 hub Cu-DEGs in Cu-PS identified by multivariate Cox regression analysis.
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(C7) was the favorable factor for HCC prognosis, while the other

hub DEGs (MAGEA6, HK2, CYP26B1 and EPO) were risk

factors.

Construction and validation of the
cuproptosis-related prognostic signature
in HCC

With the training cohort, we further constructed a cuproptosis-

related prognostic signature termed the Cu-PS via multivariate Cox

analysis. The formula used to calculate the Cu-PS is described in the

Methods section. The Cu-PS the training cohort was calculated with

the same formula. The patients with an increased Cu-PS had a high

fraction of death and shortened survival time in both the training

cohort and testing cohort (Figures 4A–D). As can be seen in the

heatmaps, the risk genes (MAGEA6, HK2, CYP26B1 and EPO) were

upregulated with increasing Cu-PS, while the protective gene C7 was

downregulated (Figures 4E,F). HCC samples were divided into high-

and low-risk groups based on the median Cu-PS. The HCC patients

in the training cohort with low Cu-PS had longer OS, and a similar

result was found in the testing cohort (Figures 4G,I; p < 0.001). The

AUCs of Cu-PS for predicting 1-, 2-, and 3-year survival were 0.697,

0.704, and 0.682, respectively, in the training cohort and 0.713, 0.656,

and 0.644, respectively, in the testing cohort (Figures 4H,J).

To further confirm the prognostic value of the 5 hub genes (C7,

MAGEA6, HK2, CYP26B1 and EPO) in HCC, we performed K-M

survival analysis in the training cohort, testing cohort and

independent ICGC-LIRI cohort (Figures 5A–M). The optimal

cutoff value was identified by the “cutpoint” function in the

“survival” package. Consistent with the previous results

(Figure 3F), the patients with high expression of MAGEA6, HK2,

FIGURE 4
Construction and validation of Cu-PS in training and testing cohorts. (A,B) The range of Cu-PS in the training and testing cohorts, and patients
were cutoff into high- and low-two subgroups by the and median value of Cu-PS. (C,D) The distribution plots showed the survival status of patients
with increasing Cu-PS in the training and testing cohorts. (E,F) The heatmaps showed the expression of 5 hub Cu-DEGs between two Cu-PS
subgroups in the training and testing cohorts. (G,H) The Kaplan-Meier curves of overall survival (OS) between the two subgroups in the training
and testing cohorts. (I,J) The ROC curves of the Cu-PS in predicting 1-, 2-, and 3-year OS in the training and testing cohorts.
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FIGURE 5
The prognosis value of 5 hub Cu-DEGs in three HCC cohorts. (A–M) The Kaplan-Meier curves of C7 in training (A), testing (B) and ICGC (C)
cohorts, as well as CYP26B1(D–F), EPO (G–I), HK2 (H–J) and MAGEA6 (K–M).
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FIGURE 6
Correlation between the Cu-PS and clinical features and the landscape of somatic mutation. (A,B) Comparison of Cu-PS among different TNM
stages (A) and survival outcomes (B). Differences in risk scores between different survival outcome. (C)Comparison of TMB value between high- and
low- Cu-PS subgroups. (D) The waterfall plots showed the somatic mutation spectrum of the high- and low-risk groups. (E) Kaplan-Meier curves
between TP53mutation (110 patients) andwild (248 patients) groups in TCGA-LIHC. (F)GOenrichment analysis of the DEGs between high- and
low- Cu-PS subgroups.
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CYP26B1 and EPO had a worse prognosis in the training, testing

and ICGC-LIRI cohorts (Figures 5D,E,G–M and G-M, all p < 0.05;

Figure 5F, p = 0.105). Meanwhile, patients with high C7 expression

lead a prognostic benefit in the training cohort and ICGC-LIRI

cohort (Figures 5A,C; both p< 0.001), and the same trendwas found

in the testing cohort (Figure 5B, p = 0.322).

We further validated the 5 hub genes in tissues (TCGA-LIHC

dataset) and cultured normal (MIHA) and HCC cell lines

(Huh7 and HLE). The results from the TCGA-LIHC dataset

showed that C7, CYP26B1 and EPO were significantly

downregulated in HCC, while MAGEA6 was significantly

upregulated (Supplementary Figure S4A). Similar results were

found in the cell lines, but EPO and CYP26B1 did not show the

same differences (Supplementary Figure S4B). The expression of

EPO in HCC cell lines tended to be higher (without a significant

difference) than that in the normal cell line. The expression of

CYP26B1 in MIHA and Huh7 cell lines was significantly higher

than that in the HLE cell line.

Analysis of the correlation of the Cu-PS
with clinical characteristics and TMB

Patients with TNM stage Ⅱ and Ⅲ/Ⅳ disease had a higher

Cu-PS than those with stage Ⅰ disease (Figure 6A, both p < 0.01).

In addition, patients who died had a higher Cu-PS than those

who survived (Figure 6B, p < 0.001). Moreover, the TMB value in

the high-Cu-PS group was significantly higher than that in the

low-Cu-PS group (Figure 6C, p = 0.013). Waterfall plots of the

top 20 frequently mutated genes are shown in Figure 6D. The

patients with high Cu-PS had a significantly higher mutation

frequency of TP53 but a lower frequency of AXIN1 mutation. As

expected, the patients with TP53 mutation had a significant OS

benefit compared with TP53 wild-type patients (Figure 6E, p =

0.006). We further performed GO enrichment analysis of the

DEGs between the high- and low-Cu-PS groups. The results

showed that the DEGs were mainly enriched in the cell cycle and

metabolic processes, such as nuclear division, mitotic cell cycle

phase transition, chromosome segregation, organic acid

biosynthetic processes, carboxylic acid biosynthetic processes,

and hormone metabolic processes (Figure 6F). These findings

confirmed the prognosis values and revealed the underlying

mechanism of Cu-PS in HCC.

Ability of the Cu-PS to predict drug
sensitivity and immunotherapy efficacy

To further investigate the potential application value of the

Cu-PS in HCC treatment, we explored the correlations with drug

sensitivity and immunotherapy efficacy based on the GDSC

database and two immunotherapy cohorts (the GSE78220 and

IMvigor210 cohorts). We identified 16 drugs in the GDSC

database that were significantly associated with the Cu-PS by

Spearman correlation analysis (Figure 7A, p < 0.05). Among

them, 10 drugs showed a correlation between drug sensitivity and

the Cu-PS, including sorafenib, the Src inhibitor A.770,041, the

RAF inhibitor AZ628, the Src/Abl dual-kinase inhibitor

AZD.0530, and the JNK inhibitor AS601245 (all cor>0.2, all
p < 0.05). Six drugs showed a correlation between the Cu-PS and

drug resistance, including the PARP inhibitor ABT-888, all-trans

retinoic acid (ATRA), the Bcl-2 inhibitor ABT.263, the Akt

inhibitor A.443654 and the AMPK activator (all cor<0.2, all
p < 0.05). Sorafenib is a first-line treatment for advanced HCC.

As expected, the IC50 of sorafenib was significantly positively

associated with the Cu-PS (Figure 7B, cor = 0.25, p < 0.001),

which was in line with the sensitivity of HCC to sorafenib. These

results imply that the Cu-PS is correlated with drug sensitivity

and might be a potential biomarker for guiding drug treatment

selection.

Immunotherapy has made major breakthroughs in the

treatment of liver cancer. The immune cell infiltration analysis

showed that the patients with a high Cu-PS had a suppressive

immune microenvironment, poor prognosis, and significantly

enriched levels of Tregs, M0 macrophages, and neutrophils but

decreased levels of B cells, CD4+ T cells and mast cells

(Figure 7C). In addition, the patients in low-Cu-PS group had

a high fraction of memory CD8 T cell, while the effector

CD8 T cell was not significant (Supplementary Figure S5).

The TIDE scores in the high-Cu-PS group were also

significantly higher than those in the low-Cu-PS group, which

was associated with resistance to immunotherapy (Figure 7D).

We further confirmed the predictive ability of the Cu-PS in two

immunotherapy cohorts (the IMvigor210 and Liu cohorts). The

results showed that the patients in the Cu-PS-low group in the

IMvigor210 cohort had better OS (Figure 7E, p < 0.001). The

fractions of patients who achieved complete response (CR) and

partial response (PR) in the Cu-PS-low group were higher than

those in the Cu-PS-high group (Figure 7F). Similar results were

found in the Liu cohorts (Figures 7G,H). In summary, these

findings suggest that application of the Cu-PS might improve

drug selection and immunotherapy response prediction in HCC.

Discussion

Cuproptosis is a newly discovered PCD process, and

copper metabolism plays an important role in tumor

development, invasion and metastasis. In this study, we

systematically performed multiomics bioinformatics

analyses to explore the association of cuproptosis-related

genes with genomic and TIME characteristics, prognosis

and immunotherapy response in HCC.

In this study, we assessed the relevance of cuproptosis and the

immune microenvironment in HCC. We performed multiomics

analysis of the 16 cuproptosis-related genes and found that the
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level of cuproptosis was significantly higher in normal liver

tissues than in HCC tissues, which indicated that cuproptosis

may suppress tumorigenesis to a certain extent. We further

identified three distinct cuproptosis-related subgroups (Cu-

clusters) associated with OS and with different enriched

tumor hallmark pathways. Cu-cluster 1 was enriched in

mTORC1 signaling, E2F targets and G2/M checkpoint

pathways. Cu-cluster 3 was enriched in metabolism pathways,

while Cu-cluster 2 was enriched in angiogenesis and

epithelial-mesenchymal transition pathways. The HCC

FIGURE 7
Efficacy prediction of chemotherapy drugs and immunotherapy. (A) The correlation of Cu-PS with IC50 of drugs in GDSC database. (B) The
correlation scatter plot of Cu-PS and Sorafenib-IC50. (C) The proportion of immune cells in TME between the high- and low- Cu-PS subgroups. (D)
Comparison of TIDE score between the two Cu-PS subgroups. (E) Kaplan-Meier curves for high- and low- Cu-PS subgroups in the anti-PD-
L1 immunotherapy cohort (IMvigor210). (F) The proportion of immune response (CR, PR, SD and PD) between two Cu-PS subgroups in
IMvigor210 cohort. (G) Kaplan-Meier curves for high- and low- Cu-PS subgroups in the anti-PD1 immunotherapy cohort (GSE78220 cohort) (H) The
proportion of immune response between two Cu-PS subgroups in GSE78220 cohort.
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patients in Cu-cluster 1 had the highest levels of inhibitory

immune cells (myeloid DCs, Tregs and M0-macrophages),

while Cu-cluster 2 had the highest levels of stromal cell subsets

(endothelial cells and fibroblasts), and Cu-cluster 3 had lower

immune cell infiltration.

We further constructed a 5-gene (C7, MAGEA6, HK2,

CYP26B1 and EPO) prognostic signature termed the Cu-PS via

univariate Cox, LASSO and multivariate Cox regression analyses.

Complement component 7 (C7) is an essential component of the

complement system (CS) and is involved in membrane attack

complex (MAC) formation. Moreover, the C7 peptide can inhibit

Akt and Erk1/2 and further suppress HCC cell migration and

invasion induced by HGF (Zhao et al., 2019).

Melanoma-associated antigen family A (MAGEA) antigens

are expressed in a variety of malignancies. MAGEA6 can

promote pancreatic (Tsang et al., 2020), lung cancer (Pineda

et al., 2015) and colorectal cancer (Wu et al., 2018) carcinogenesis

by inhibiting autophagy. In addition, MAGEA6 regulates

stemness and self-renewal in HCC by activating the AMPK

signaling pathway and is associated with poor prognosis (Guo

et al., 2019).

Pericyte-hexokinase 2 (HK2) is the key rate-limiting enzyme

of the glycolytic pathway, which is associated with pathological

stage and prognosis (DeWaal et al., 2018). In the mouse model of

HCC, HK2 silencing could synergistically enhance the sensitivity

of HCC cells to sorafenib (Yu et al., 2022). CYP26 enzymes are

the major enzymes responsible for the clearance of retinoic acid

(RA), which is an important endogenous signaling molecule that

regulates the cell cycle and maintains epithelial cells.

CYP26 inhibitors can enhance endogenous RA activity in a

cell-type-specific manner and might be new, attractive targets

in cancer and skin disease treatment (Tsvetkov et al., 2022).

Erythropoietin (EPO) is primarily synthesized in the kidney and

can promote erythrocyte production. Under hypoxic conditions,

EPO is upregulated to promote the production of red blood cells

and enhance the oxygen-carrying capacity (Liu et al., 2020).

Although we conducted a comprehensive and systematic

analysis, the identification of additional new cuproptosis-

related genes will enrich our research. Due to the lack of an

HCC immunotherapy cohort, we assessed the ability of a

prognostic signature (Cu-PS) to predict the efficacy of

immunotherapy in two cohorts of patients with different

cancers treated with immunotherapy. In conclusion, we

performed a comprehensive analysis of 16 cuproptosis-related

genes in 716 HCC samples and identified a novel HCC

prognostic signature (Cu-PS), providing a new strategy for

predicting HCC prognosis and immunotherapy efficacy.

Conclusion

Compared with already known biomarkers such as AFP,

GPC3 and DCP, our study constructed a novel cuproptosis-

related prognostic signature (Cu-PS) that might be a useful

biomarker for predicting immunotherapy response and

enhancing diagnosis and treatment of HCC, which indicates

that cuproptosis is associated with the TIME andHCC prognosis.
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