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Detecting RNA/RNA interactions in the context of a given cellular system is

crucial to gain insights into the molecular mechanisms that stand beneath each

specific RNA molecule. When it comes to non-protein coding RNA (ncRNAs),

and especially to long noncoding RNAs (lncRNAs), the reliability of the RNA

purification is dramatically dependent on their abundance. Exogenous

methods, in which lncRNAs are in vitro transcribed and incubated with

protein extracts or overexpressed by cell transfection, have been extensively

used to overcome the problem of abundance. However, although useful to

study the contribution of single RNA sub-modules to RNA/protein interactions,

these exogenous practices might fail in revealing biologically meaningful

contacts occurring in vivo and risk to generate non-physiological artifacts.

Therefore, endogenous methods must be preferred, especially for the initial

identification of partners specifically interacting with elected RNAs. Here, we

apply an endogenous RNA pull-down to lncMN2-203, a neuron-specific

lncRNA contributing to the robustness of motor neurons specification,

through the interaction with miRNA-466i-5p. We show that both the yield

of lncMN2-203 recovery and the specificity of its interaction with the miRNA

dramatically increase in the presence of Dextran Sulfate Sodium (DSS) salt. This

new set-up may represent a powerful means for improving the study of RNA-

RNA interactions of biological significance, especially for those lncRNAs whose

role as microRNA (miRNA) sponges or regulators of mRNA stability was

demonstrated.
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Introduction

Since the first characterization of RNA, DNA and protein

chemical composition, it has becoming increasingly clear the

need to carve the interactions that these macromolecules

establish in living cells to execute their functions (Matthews,

1988; Moore, 2005). On this line, protein-centric methodologies

for the antibody-mediated detection of specific peptide/nucleic acid

contacts (Phizicky and Fields 1995), have greatly impacted

molecular biology research. Along with the discovery of several

classes of non-protein-coding RNAs, the need to study their

functions prompt to develop increasingly refined technologies for

characterizing their physical association with individual proteins (as

reviewed in Cipriano and Ballarino, 2018). The native RNA

immunoprecipitation (RIP) (Lerner and Steitz 1979) represented

the first method developed for this purpose, which was followed in

the early 2000s by the development of UV-crosslinking and

immunoprecipitation (CLIP) assays and subsequent CLIP-based

methods (Ule et al., 2003; Lee and Ule 2018; Hafner et al., 2021).

Over the years these approaches were gradually flanked by the

development of complementary RNA-centricmethods, in which the

putative interactors of a given RNA are specifically purified by using

antisense DNA probes as baits (McHugh et al., 2015; Ramanathan

et al., 2019).

Among the RNA-centric approaches, the methodologies

allowing to detect RNA/RNA contacts train great attention, also

in light of the ever-increasing importance of base-complementarity

between transcripts, both in a mechanistic and in a regulative

perspective (Helwak et al., 2013; Engreitz et al., 2014; Guil and

Esteller, 2015). Although these strategies already contribute in a

significant manner to functional/descriptive studies of RNA-RNA

and protein interactions, continuous adjustments are required to

adapt the experimental protocols to specific case studies. The latter

observation largely applies to long noncoding RNAs (lncRNAs)

which, especially in the last three decades, have been shown to

greatly contribute to regulate gene expression in the nucleus and

cytoplasm (Li and Chang, 2014; Herman et al., 2022).

Consequently, aberrant lncRNA expression has been implicated

in a variety of human diseases, including cancer, cardiovascular

and neurological disorders (Fatima et al., 2015; Lekka and Hall,

2018; Ni et al., 2022).

LncRNAs represent an heterogenous class of non-protein

coding molecules arbitrarily defined as transcripts longer than

200 nucleotides, which regulate gene expression through

transcriptional as well as post-transcriptional mechanisms

(Yao et al., 2019; Statello et al., 2021). Many of them are not

constitutively active but exert regulatory roles, which makes their

study particularly challenging. In fact, their low abundance at the

steady-state level, their restricted expression to specific cell

subtypes or developmental windows and their modest

evolutionary conservation, often makes the lncRNA-mediated

gene regulation extremely circumscribed and hard-to-be

unraveled (Fatica and Bozzoni 2014; Kopp and Mendell, 2018).

From a mechanistic standpoint, lncRNAs function through

the interaction with other biomolecules (Ferrè et al., 2016), and

several examples suggest a crucial role for local lncRNA-RNA

contacts at the root of their activities (Gong and Maquat, 2011;

Carrieri et al., 2012; Kretz et al., 2013; Martone et al., 2020).

Overall, these observations suggest that practices which aim to

ameliorate the identification of bound partners from complex

cellular extracts represent a critical step to clarify noncoding

RNA-mediated cellular activities. Several databases and in silico

tools were developed for the prediction of lncRNA functions

based on lncRNA-RNA interactions (Bellucci et al., 2011;

Fukunaga, and Hamada, 2017; Gong et al., 2018; Fukunaga

et al., 2019). In parallel, experimental procedures have evolved

to globally enhance the reliability and efficacy in detecting RNA-

RNA interplays (Cai et al., 2020).

Hereinafter, we propose a strategy which represents a

variation on the theme of the standard RNA pull-down (PD),

with the innovative use of the Dextran Sulphate Sodium (DSS)

salt as a hygroscopic chemical additive. By testing the procedure

to the motoneuron-expressed lncRNA lncMN2-203 (Biscarini

et al., 2018; Carvelli et al., 2022), we found that DSS 1) greatly

improves the purification of lncMN2-203, as compared to

previous analysis and, importantly, 2) facilitates the

identification of its RNA binding partner, the microRNA

miRNA-466i-5p. These results promise to upgrade RNA

functional analyses in a straightforward and effective manner.

Materials and equipment

Oligonucleotide probe design and
sequences

A number of 15 oligonucleotide probes, 90-nucleotides long

and carrying a 5’-biotin modification, were designed as in

McHugh et al., 2015 to cover the lncMN2-203 sequence. U1

snRNA Probes (Desideri et al., 2020) were used as a control.

Buffer composition

Lysis buffer

Tris-HCl pH 7.5 50 mM, NaCl 150 mM,MgCl2 3 mM, NP40

0.5%, EDTA 2 mM. Add fresh DTT 1 mM, 1× PIC, and RNase

Inhibitors (0.2 U/μl).

Hybridization buffer (HB)

Tris-HCl pH 7.5 100 mM, NaCl 300 mM, MgCl2 1 mM, SDS

0.2%, Formamide 15%, NP40 0.5%, EDTA 10 mM. Add fresh

DTT 1 mM, 1× PIC, and RNase inhibitors (0.2 U/μl).
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Reagent list

1) Streptavidin Magnesphere paramagnetic beads—Promega.

2) Dextran Sulfate Sodium (DSS) salt—SigmaAldrich

3) cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail

(PIC)—ROCHE.

4) RNase Inhibitor: RiboLock—ThermoFisher Scientific.

5) Tris, NaCl, MgCl2, SDS, Formamide, NP40, EDTA and

Dithiothreitol (DTT)—SigmaAldrich.

6) TRI-Reagent—Zymo Research.

7) Direct-zol RNA Miniprep Kit and DNase—Zymo Research.

8) Superscript VILO™ cDNA Synthesis Kit—ThermoFisher

Scientific.

9) SYBR Green Power-UP - ThermoFisher Scientific

10) miScript II RT Kit—QIAGEN

11) miScript SYBR Green—QIAGEN.

Experimental procedure

mESCs carrying the Hb9:GFP transgene (Wichterle et al.,

2002) are differentiated to motoneurogenesis through embryoid

bodies (EB) formation as previously described (Wichterle and

Peljto, 2008). Embryoid bodies at day 6 of differentiation (EB6)

are harvested in PBS and centrifuged at 400 x g for 5 min, before

proceeding as follows:

1) Gently resuspend cell pellets from EB6 in lysis buffer

supplemented with proteases (1X PIC- ROCHE) and

RNase inhibitors (0.2 U/μl—Thermo Fisher

Scientific). Live, freshly isolated, not frozen cells should

be preferred.

2) Incubate the cell suspension first on ice (10 min) and then on

a rotating wheel for 10 min at 4°C. Centrifuge the cell

suspension at 15,000 × g at 4°C for 15 min and collect

the supernatant, which represents the total cellular

extract, into new tubes. Quantify the extract by protein

determination and dilute 1:2 in Hybridization Buffer

(HB). From the diluted extracts, collect 1 mg of material

for each PD condition and 0.1 mg for the Input (i.e., 10% of

the PD sample). Typically, 10 millions of freshly lysed

EB6 yield up to 1 mg of total extract. CRITICAL STEP:

since DSS can interfere with enzymatic reactions, collect

Input before DSS addition to the EB6 total extract or use

TABLE 1 List of biotinylated probes used for LncMN2 RNA Pull down.

LncMN2. PD1 AACTTCTGGCCATTTTCAACCCATTTGCTCCAGTTCACAGCACTCACGCAGAAGTATGGCACTGAGGGGCT CAG
GATACCTCAGGAATGA

LncMN2. PD2 ATCTTCCTGGATTTACCGACCTCAGGCTCCAGTTCTGCATAATTAGCTTAAACTGGCTCAAATGGATTTTAACTG
GTCAGAAATTCAATT

LncMN2. PD3 TCTTGGAGCCTTGGTTTTCTCATCATATCACAAAGCCTCCAGTCACCACAGGGCCAGGGTGAAGTCAAGGAAGAA
GTGAAGCTGGAATCC

LncMN2. PD4 ACTCCGTGAAGGTGCTGGCTCTTAGGCCACTTAATAGCTGCATTCTAGGGAGCAGCAGGATAACAGGGAAACCAG
AAGCTGATGACTGGC

LncMN2. PD5 AGAAGGCCTCCAACACAAGCATCAGCCTCCTTGAGACTATATAGATCACTATTGCTGTTAGTTCAAGCATTGGGA
ATTTCCATAGGCTGA

LncMN2. PD6 AAGAATGATGGAGTTTCTGCTTTTATGGTTCATTCCTTGTGTACAGCAGAGGAAAAAGTGTTTATAAGGCCAGAT
GGATATGGAAGATGC

LncMN2. PD7 TCATCCCAGAGCCAGCAGAACCCACTGGCTCAACTGCACAACAATTTTCAACAGTCCACATATTAAAGGGCTTTT
CAACAATGTGGTTCT

LncMN2. PD8 CTATACATCAGCTACAATCATGTACTGGCACTGGGCTAAAGACCATGTGACTTTATCTTCCTTCAATATGGTATT
AATTTTCACCAAGAA

LncMN2. PD9 GCCCAGGCAGAGTTGGATGGTGGAGGAAGTCCACAACCCTAGCCTAAAAAGCAGTGTGCTAGTGGTGCAGATCAA
CTCTACATTCCTATC

LncMN2. PD10 TGATCCCTTTCTTATGGTGAGCTCAGTCCTCTGAGGACTTCTGTTGTTGCTGTTAATTAAGACTGACATAAGGAG
ACAAGCAGACATTGA

LncMN2. PD11 TTATGTGTGACTGTGTGTCCCACACTCAGTGAGTAACTTTGAACCAAGGATAAGAATTGAGTTGGAGCCTAGGAC
TTGGGGAAGAAGGCT

LncMN2. PD12 TAAATATAAACATCCACATTAAAATCACCTTAGTCAGCTATGAGTGAAGAATATGTATCCTACACAGTTCTTTGC
TAGATATTTTAGCTC

LncMN2. PD13 CCCTCCCAGAATGATCAACAGATCCTGTATTATAAGTTCTAAGAGTGTCTACTTTTGCAACAGCTCTGATCCATT
TGTGGTCATAGTCAT

LncMN2. PD14 CTCAGTTGGGACCCAATGATGTTAACCTTAGTCTTGTGCTTGTTGTATTTCTCCACTATGAGCTGACTTTGCCTCTTA
TTCTGGACTCCA

LncMN2. PD15 AGATAGAGATCCGTTTTTCTCTTCTTCTCCATCATTTTACCATGTTTTTTCCATTGTCTTTAAACTTGAAGCAGAATC
TTTATTTTAATG
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specific RNA purification methods to remove possible salt

contaminants. A final volume of 0.9 ml in a 1.5 ml vial tube

is the ideal condition for hybridization.

3) Add DSS salt (SigmaAldrich) to each PD sample at a final

concentration of 1% or 2.5%. CRITICAL STEP: DSS can be

very viscous when undiluted, be careful to pipette

the required volume. Cutting the tip of the pipette

could help.

4) Dilute 100 pmol of 5′-biotinylated (90-mer long) antisense

DNA oligonucleotide probes specifically targeting lnc-MN2

or U1snRNA to a final volume of 50 μL with HB. Heat-

denature the probes for 3 min at 80°C and directly add to

each sample (MN2 PD, U1 PD).

5) Mix the specific probes with the cellular extract and

incubate at 4°C for, at least, 4 h. Incubate Input and

PD samples in parallel. Before concluding the

incubation, gently wash 0.1 ml of Streptavidin

paramagnetic beads (Promega)/sample with HB on a

magnetic rack (Millipore). Repeat this step. CRITICAL

STEP: prior to pipette the needed amount of beads, gently

flick the bottom of the tube until the particles are

completely dispersed.

6) Resuspend the Streptavidin paramagnetic beads in 0.1 ml of

fresh HB and then add to each PD sample.

7) Incubate beads/extract/probe for 1 h at RT (20–25°C). On a

magnetic rack, remove the supernatant from the beads and

discard as it contains the unbound material. Keep the beads

for steps 8–9!

8) Carefully wash the beads 4 times (3 min each) on a rotating

wheel with HB at RT (20–25°C). After each wash, recover the

beads on a magnetic rack.

9) For RNA extraction, add Trizol (TRI Reagent- Zymo

Research) directly on the washed beads and vortex

thoroughly for 2 min to detach the probes. Place back the

samples on the magnetic rack and collect the supernatant in

a new 1.5 ml tube. CRITICAL STEP: the supernatant

contains RNA. Keep it for RNA extraction!

10) Purify the RNA with Direct-zol RNAMiniprep Kit (Zymo

Research), according to manufacturer’s instructions

and treat with DNase at RT (20–25°C). Elute RNA in

30 μL of Elution Buffer (Zymo Research) or DNase/

RNase-Free Water. *OK to store RNA at −20°C at this

point.

11) For long RNA transcript quantification, perform reverse

transcription with SuperScript™VILO™ cDNA Synthesis

Kit (ThermoFisher Scientific), according to

manufacturer’s instructions and qRT-PCR with SYBR

Green Power-UP (ThermoFisher Scientific). For

miRNA quantification, perform reverse transcription

with miScript II RT Kit (QIAGEN) and qRT-PCR with

miScript SYBR Green (QIAGEN). 250–500 μg of RNA

for each reverse transcription reaction is the ideal

amount.

Results

The abovementioned protocol is thought to optimize the

performance of the classical endogenous RNA PD procedures,

with the aim to increase the recovery of the targeted lncRNA and,

consequently, the specific enrichment of its co-precipitated RNA

interactors.

The efficacy of the procedure was tested on lncMN2-203

(Figure 1A), a motor neuron (MN) specific lncRNA (Biscarini

et al., 2018) recently found to control the specification of murine

MNs by acting as a miRNA sponge (Carvelli et al., 2022). By

using the same amount of total cell extract (2 mg of Input)

previously used for lncMN2-203 precipitation (Carvelli et al.,

2022), we reproduced its significant enrichment as compared to

U1 snRNA PD, used as a control (Figure 1B). In accordance with

the earlier analyses, the recovery of the other lncRNA isoforms

(lncMN2-202/204) was almost null, in both the specific and

control samples. In this setting, we also checked for miRNAs

known to co-precipitate with lncMN2-203 and we confirmed

that miR-466i-5p was significantly enriched in the MN2 as

compared to the U1 PD (Figure 1C, left panel). MiR-669a-5p

and miR-325-3p, used as negative controls, were almost

undetectable in both the conditions (Figure 1C, middle and

right panels), in line with their known inability to interact

with the lncRNA (Carvelli et al., 2022).

Building upon these results, we wondered whether we could

improve the cost-effectiveness of the procedure without reducing

the performances. The evidence that lncRNA expression is often

restricted to specific cell sub-populations causes not negligible

concentration constrains (Goff et al., 2015). This is even more

evident when the total cellular extracts are not prepared from

FACS-sorted cells but rather from mixed cell populations, where

the lncRNA average expression might be diluted. These aspects,

that severely risk to impact the performance of the endogenous

PD approaches, make lncMN2-203 as the most suitable

candidate for testing the protocol. In fact, previously

performed single-cell RNA-sequencing (scRNA-seq) showed

that lncMN2-203 expression is restricted to a specific

subpopulation of EB6 cells, namely the late MNs (Carvelli

et al., 2022).

With the aim to reduce unnecessary costs, lncMN2-203 PD

was repeated by halving the Input used in our original set-up

(Figure 1A) to 1 mg of total lysate. Such a scale-down can be

particularly useful when the targeted RNA is expressed in model

systems whose maintenance and handling is costly and labor

intensive. The mouse embryonic stem cells used for the

characterization of lncMN2-203 perfectly fit in this example,

as they require multiple passages for cell expansion and

differentiation towards MNs, through the formation of EB

(Figure 2A). In these new conditions, while the recovery of

the lncRNA remained significant compared to the U1 control,

the lncMN2-203 yield, calculated as percentage of Input, was

about ten-fold lower than previously obtained (Figure 2B and
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Supplementary Figure S1A). More importantly, the diminished

RNA recovery was not sufficient to co-precipitate the lncMN2-

203 interactor, miRNA-466i-5p (Supplementary Figure 1A).

Exploring further resolutive options, we considered to use DSS

salt, based on its well-known ability to accelerate probes-to-target

hybridization (Lederman, et al., 1981), increasing fluorescent signals

(Van Gijlswijk, et al., 1996) and reducing background (Singh and

Jones, 1984). Together, these properties make the DSS particularly

useful in RNA Fluorescence In Situ Hybridization (RNA-FISH)

experiments for the visualization of both mRNA (Singer andWard,

1982) and other transcripts which are less abundant, as with most

lncRNAs (Ballarino et al., 2018; Santini et al., 2021). This feature is

due to the chemical composition of this polysaccharide containing

17–20% sulfur that, being a highly water-soluble natural polymer,

sequesters H2O molecules and enhances the effective concentration

of DNA probes available for nucleic acid targeting (Figure 2C and

Wetmur, 1975). Normally, the working concentration of DSS on

membrane-immobilized or cell-fixed nucleic acids is ~10% of the

final reaction volume (Wahl et al., 1979). At these concentrations of

DSS, the solution appears viscous, and this could hamper the

homogeneous mixing of RNA/protein extracts with the specific

antisense oligonucleotide probes, which is crucial for the success of

the PD assay. For this reason, the RNA PD was repeated by keeping

constant the extract amount (1 mg), which was incubated with two

different concentrations of DSS, specifically 1% and 2.5% of the final

reaction volume (Figure 2C). Interestingly, in the two conditions we

obtained a ~25 and ~280 -fold enrichment of lncMN2-203

respectively, measured as percentage of Input, as compared to

the PD performed without DSS (DSS minus, Figure 2D and

Supplementary Figure 1B). This dramatic enhancement in

lncMN2-203 purification was accompanied by a slightly

significant (but much lower respect to lncMN2-203) enrichment

of the lncMN2-202/204 isoforms, as compared to the control

(Figure 2D and Supplementary Figure 1B). This may be

explained by the partial overlap between lncMN2-203 and

lncMN2-202/204 sequence isoforms, together with the fact that a

fraction (4 out of 15) of the capturing oligonucleotides targets the

lncMN2 shared exons (Table 1).

Encouraged by these results, we then checked for lncMN2-

203 miRNA interactors in the 1% and 2.5% DSS PD samples.

Interestingly, we found that both the percentage and the

specificity of miRNA purification responded to the efficiency

of lncMN2-203 PD, as miR-466i-5p enrichment was significantly

higher in the 2.5% than in the 1% DSS sample (Figure 2E and

Supplementary Figure 1B). Importantly, in none of the two

conditions any significant enrichment was found for the

negative controls, the miRNAs miR-669a-5p and miR-325-3p,

which is in line with the specificity of the antisense

FIGURE 1
LncMN2-203 RNA pull-down in mESCs-derived embryoid bodies. (A) Block-and-line scheme representing the structure of the three
lncMN2 RNA isoforms (Carvelli et al., 2022). Exon (black blocks)/intron (thin lines). The position of the antisense probes used for the RNA pull-down
experiments is highlighted in red. (B) Quantification by qRT-PCR of lncMN2-203 and lncMN2-202/204 recoveries from lncMN2-203 (MN2) or
control (U1 snRNA) RNA pull-down experiments. A total of 2 mg cell extracts prepared from differentiated EB6 were used for each reaction.
LncRNA enrichments are expressed as Input percentage (%). Error bars represent SEM. n = 3 biological replicates. (C)Quantification by qRT-PCR of
miR-466i-5p (Left), miR-669a-5p (Middle) and miR-325-3p (Right) recoveries from lncMN2-203 (MN2) or control (U1 snRNA) pull-down
experiments. MiRNA enrichments are expressed as Input percentage (%). Error bars represent SEM. n= 3 biological replicates. Data information: **p ≤
0.01, n. s.> 0.05 (two-tailed, unpaired Student’s t-test).
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oligonucleotide probes, even in the presence of DSS (Figure 2E

and Supplementary Figure 1B).

It was previously reported that DSS inhibits the activity of

reverse transcriptase enzymes and the amplification by PCR

(Kerr et al., 2012; Viennois et al., 2013; Juritsch and Moreau,

2019). However, the DSS-treated PD samples were normally

PCR-amplified, likely because the repeated washing steps which

precede the RNA extraction (see Experimental Procedure)

remove any DSS residue potentially interfering with the RNA

analysis. For these reasons, we recommend collecting the Input

(EB6 total extracts) before adding DSS to the samples, or to use

specific RNA purification methods to remove possible salt

FIGURE 2
Dextran Sulfate Sodium salt increases the enrichment of LncMn2-203 and its miRNA interactor. (A) Left: Schematic representation of mESC-
derived embryoid bodies differentiation (Capauto et al., 2018; D’Ambra et al., 2021). A representative field of EBs at day 6 of differentiation (EB6) is
shown aside. Scale bar: 100 μm. SAG = Smoothened Agonist; RA = Retinoic Acid; GDNF = Glial cell line-derived neurotrophic factor. (B)
Quantification by qRT-PCR of lncMN2-203 and lncMN2-202/204 recovery from lncMN2-203 (MN2) or control (U1 snRNA) pull-down
experiments. A total of 1 mg of cell extracts prepared from differentiated EB6 were used for each reaction. LncRNA enrichments are expressed as
Input percentage (%). Error bars represent SEM. n = 3 biological replicates. (C) Scheme of the Dextran Sulfate sodium salt (DSS) chemical structure
and hygroscopic properties. By sequestering H20 molecules, the DSS salt increases the local concentration of DNA antisense probes targeting
nucleic acid. (D) Quantification by qRT-PCR of lncMN2-203 and lncMN2-202/204 recoveries from lncMN2-203 (MN2) or control (U1 snRNA) RNA
pull-down experiments. Different doses of DSS, 1% (Left) or 2.5% (Right), were used for each reaction. LncRNA enrichments are expressed as Input
percentage (%). Error bars represent SEM. n = 3 biological replicates. (E)Quantification by qRT-PCR of miR-466i-5p, miR-669a-5p andmiR-325-3p
recoveries from lncMN2-203 (MN2) or control (U1 snRNA) RNA pull-down experiments. Different doses of DSS, 1% (Left) or 2.5% (Right), were used
for each reaction. MiRNA enrichments are expressed as Input percentage (%). Error bars represent SEM. n = 3 biological replicates. Data information:
*p ≤ 0.05, **p ≤ 0.01, n. s.> 0.05 (two-tailed, unpaired Student’s t-test).
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contaminants. All the experimental steps are schematized in

Figure 3.

Concluding remarks

Here we provide a straightforward protocol, with comments

and tips, which optimizes the classical endogenous RNA PD

approach. We show that, at specific concentrations, the addition

of DSS during precipitation dramatically increases the recovery

of targeted RNAs without affecting their binding to the

physiological partners. As an example, we tested the

performance of the new set-up on lncMN2-203, whose

isolation from 1 mg of DSS-treated extracts was found

enhanced. Moreover, we found that the DSS treatment also

improved the recovery of miR-466i-5p, previously identified

as a functional lncMN2-203 partner (Carvelli et al., 2022). In

line with the binding specificity, only background enrichments

were found for miR-669a-5p and miR-325-3p, previously shown

as non-interacting miRNAs.

Although the RNA PD experiments must be adapted to the

specific abundance of the target RNA molecule in the suitable

model system, we believe that the improvement here presented

will be of great help for many scientists working across the field of

FIGURE 3
Schematic representation of the DSS-based RNA pull-down assay workflow. 1. Sample preparation; 2. Hybridization; 3. RNA Extraction and
Quantification. The detailed protocol is reported in the Experimental Procedure section.
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RNA biology and networks. Despite the proven effectiveness of

the current protocols, the RNA purification still represents a

technical challenge for the isolation of classes of transcripts, as

lncRNAs, whose expression can be low or diluted across

heterogeneous cell populations. This is also highlighted by the

recent single cell (sc)RNA sequencing technologies showing that

the expression of given RNAs can be extremely cell type specific,

thus underrated in total extract, especially for those whose

expression is further restricted to specific time and space

windows (Savulescu et al., 2020).

Forthcoming perspectives

We have tested the feasibility and the outcomes of a new

RNA precipitation protocol, by narrowing our attention to

lncMN2-203, a lncRNA recently demonstrated to be

functionally relevant through a mechanism of lncRNA/

miRNA interaction. In principle, we cannot predict any

technical restriction that may impede, in the future,

downstream transcriptomics for a deeper and unbiased

identification of the lncRNA-RNA interactome. Moreover,

we believe that the improvements to the endogenous RNA

PD protocol herein presented could also be applied to future

studies on other RNA partners (e.g. proteins) or other RNA

substrates. For instance, it may serve as a beneficial tool for

the analysis of difficult-to-precipitate ncRNAs, such as

circular RNAs (circRNAs), covalently closed lncRNAs

generated by back-splicing of canonical pre-mRNAs

(Kristensen et al., 2019). The mechanism of action of this

class of transcripts often implies the association with other

RNAs (Hansen et al., 2013; Piwecka et al., 2017), whose

identification is hampered by the fact that the back-splicing

junction is the only circRNA distinctive site, as compared to

their linear precursors. Additional physical-chemical

treatments of the cells (e.g., ultraviolet light or psoralen

crosslinking) that have not been tested in the current

study, can also be envisaged for the detection of more

direct RNA-RNA interactions.
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