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Hepatitis B virus (HBV) infection remains the leading cause of liver fibrosis (LF)

worldwide, especially in China. Identification of decisive diagnostic biomarkers

for HBV-associated liver fibrosis (HBV-LF) is required to prevent chronic

hepatitis B (CHB) from progressing to liver cancer and to more effectively

select the best treatment strategy. We obtained 43 samples from CHB patients

without LF and 81 samples from CHB patients with LF (GSE84044 dataset).

Among these, 173 differentially expressed genes (DEGs) were identified.

Functional analysis revealed that these DEGs predominantly participated in

immune-, extracellular matrix-, and metabolism-related processes.

Subsequently, we integrated four algorithms (LASSO regression, SVM-RFE,

RF, and WGCNA) to determine diagnostic biomarkers for HBV-LF. These

analyses and receive operating characteristic curves identified the genes for

phosphatidic acid phosphatase type 2C (PPAP2C) and versican (VCAN) as

potentially valuable diagnostic biomarkers for HBV-LF. Single-sample gene

set enrichment analysis (ssGSEA) further confirmed the immune landscape

of HBV-LF. The two diagnostic biomarkers also significantly correlated with

infiltrating immune cells. The potential regulatory mechanisms of VCAN

underlying the occurrence and development of HBV-LF were also analyzed.

These collective findings implicate VCAN as a novel diagnostic biomarker for

HBV-LF, and infiltration of immune cells may critically contribute to the

occurrence and development of HBV-LF.
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Introduction

Hepatitis B virus (HBV) infection remains the leading cause

of acute and chronic liver disease and is associated with high

morbidity and mortality. Approximately 20%–30% of chronic

hepatitis B (CHB) patients may develop progressive liver fibrosis

(LF), which leads to an increased risk of cirrhosis and liver cancer

(Vittal and Ghany, 2019). However, the clinical manifestations

and symptoms of early HBV-LF are nonspecific. Prevention and

early diagnosis are the most effective approaches to improving

the prognosis of patients with HBV-LF. Hepatic biopsy is the

“gold standard” for diagnosing and staging liver diseases

(Nakajima et al., 2020; Virarkar et al., 2021). It is worth

noting that the biopsy procedure is invasive and the risk of

serious complications is as high as 1%. Furthermore,

heterogeneous distribution of fibrosis can lead to sampling

errors in liver biopsy. Ultrasonography is the first choice for

screening LF because it is non-invasive, non-radioactive and

inexpensive (Lurie et al., 2015). Nevertheless, the disadvantage of

ultrasonography is its’ low sensitivity in assessing LF. Serum

markers/indices of LF, including the fibrosis-4 index,

Aspartateaminotransferase-to-Platelet Ratio Index and Lok

index, have high clinical and diagnostic values (Agbim and

Asrani, 2019). However, identifying novel biomarkers is

crucial for improving the early diagnosis of LF.

In recent years, high-throughput sequencing technologies

have provided powerful means for investigating the mechanisms

and characteristics of liver disease (Oh et al., 2020; Torres et al.,

2020). For example, Gong et al. identified that compared with

normal liver, there is a unique gene expression pattern for

immune response, necroptosis, and apoptosis in liver samples

of HBV-related acute liver failure (Gong et al., 2022). Based on

bioinformatics analyses, many pivotal genes that are essential for

liver disease have been identified. Wang et al. (2021) identified

four genes (CYP26A1, FAM110C, SMYD3, and ZG16) that were

expected to be novel diagnostic and prognostic targets for HBV-

related hepatocellular carcinoma (HCC). However, many

researchers have focused on LF and HBV-LF has rarely been

studied. Consequently, additional studies are required to identify

novel diagnostic biomarkers to differentiate the diagnoses and

clarify the underlying molecular mechanisms of HBV-LF.

In this study, the matrix file of HBV-LF was obtained from

the Gene Expression Omnibus (GEO) database, and differential

expression of genes was analyzed. Subsequently, three machine

learning strategies and the weighted gene co-expression network

analysis (WGCNA) algorithm were integrated to identify the

diagnostic biomarkers for HBV-LF. Next, single-sample gene set

enrichment analysis (ssGSEA) was conducted to assess the

differences in 28 immune cell subsets between HBV-LF and

CHB samples. Moreover, the relationship between biomarkers

and immune cells was studied to provide more insights into the

molecular mechanism involved in the progression of HBV-LF.

Materials and methods

Data collection

The matrix file of the GSE84044 dataset was obtained from

the GEO database (http://www.ncbi.nlm.nih.gov/geo/), which

included 43 liver biopsy samples from CHB patients without LF

and 81 liver biopsy samples from CHB patients with different

stages of LF. All these patients were diagnosed according to the

Asian Pacific Association for the Study of the Liver (APASL)

criteria (Wang et al., 2017). We also obtained corresponding

clinical information from the 124 patients (Table 1). The

clinical information included gender, age, histological stage

of fibrosis, inflammation grade, and two biochemical

markers (ALT and AST). To test the diagnostic efficacy of

the diagnostic biomarkers, the matrix file of 10 CHB and

10 HBV-LF samples from the GSE114783 dataset were

downloaded as a verification cohort.

Differential expression analysis

R package “Limma” was performed on the dataset of

GSE84044 to identify differentially expressed genes (DEGs; |

log2FC| > 0.585 and FDR <0.05). A protein–protein interaction

(PPI) network based on theses DEGs was then constructed using

TABLE 1 Clinical information of patients in the GSE84044.

Covariates Total (n = 124)

Age

<40 60 (48.39)

≥40 64 (51.61)

Gender

Male 88 (70.97)

Female 36 (29.03)

Grade of inflammation

0 37 (29.84)

1 33 (26.61)

2 34 (27.42)

3 15 (12.10)

4 5 (4.03)

Histological stage of fibrosis

0 43 (34.68)

1 20 (16.13)

2 33 (26.61)

3 18 (14.52)

4 10 (8.06)

ALT 121.53 ± 191.53

AST 74.91 ± 97.06
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a Search Tool for the Retrieval of Interacting Genes (STRING)

database (https://string-db.org/).

Functional enrichment analysis

To assess the underlying biological functions and signaling

pathways of DEGs, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and genomes (KEGG) analyses were

conducted using the “clusterProfiler” R package. To evaluate

the DEGs-related diseases, we employed R package “DOSE” for

disease ontology (DO) analysis. The “clusterprofiler” R package

was used for gene set enrichment analysis (GSEA) to clarify

further the functional pathways of significant enrichment

(FDR <0.25, NOM p < 0.05).

Screening and verification of diagnostic
biomarkers

The least absolute shrinkage and selection operator (LASSO)

logistic regression, support vector machine recursive feature

elimination (SVM-RFE), random forests (RF), and WGCNA

were utilized to identify diagnostic biomarkers. R package

“glmnet” were applied for LASSO logistic regression, which

was performed by 10-fold cross-validation to adjust the

optimal penalty parameter λ. R packages “e1071” and “caret”

for the SVM-RFE algorithm were used to calculate the point with

the smallest cross-validation error, so as to screen diagnostic

biomarkers. The RF algorithm was applied using the R package

“randomForest” to identify genes that could distinguish HBV-LF

from CHB patients with a filter condition of relative importance

>0.2. We also adopted WGCNA analysis with the “WGCNA” R

package. By calculating Pearson correlation coefficient between

the eigengenes of each module and the disease state, modules

with the most significant correlation with HBV-LF was

determined (p < 0.05).

We then examined whether the overlapping genes identified

using the four algorithms could be used as diagnostic biomarkers.

Receiver operating characteristic (ROC) curve analyses were

conducted to evaluate the sensitivity and specificity of these

diagnostic biomarkers in distinguishing HBV-LF values

patients. We further calculated the area under the curve

(AUC) to evaluate the reliability of distinguishing HBV-LF

from CHB samples.

Evaluation of immune cell infiltration

Relative infiltration levels of 28 immune cell subsets in the

GSE84044 dataset were quantified using the ssGSEA algorithm. R

package “corrplot” was used to visualize the correlation between

the 28 types of infiltrating immune cells. R package “vioplot” was

executed to draw violin plots to demonstrate the different

infiltration levels of 28 kinds of immune cells. Furthermore,

LASSO logistic regression investigation was conducted using the

“glmnet” R package to identify the immune cells with significant

differential infiltration between HBV-LF and CHB. The

Spearman rank correlation test was used to further evaluate

the relationship between these immune cells and diagnostic

biomarkers, and then visualized by the “ggplot2” R package.

The criteria for significant association between diagnostic

biomarkers and significantly differential immune cells were set

as R > 0.50 and p < 0.001.

Validation of Versican (VCAN) expression
and construction of the TF–VCAN–miRNA
regulatory network

The VCAN expression was further verified using the

GSE114783 dataset. Representative immunohistochemical

staining images of VCAN in normal liver tissue and liver

cancer tissue were downloaded from the human protein atlas

(HPA) database (https://www.proteinatlas.org/). We

identified the top 100 genes of VCAN with similar

expression patterns from the Gene Expression Profiling

Interactive Analysis (GEPIA) database (http://gepia.cancer-

pku.cn/) (Tang et al., 2017). R package “clusterProfiler” was

performed to study the biological functions and signal

pathways of these similar/interactive genes of VCAN. To

further investigate the regulatory mechanisms of VCAN,

the ENCORI (https://starbase.sysu.edu.cn/index.php),

miRWalk (http://mirwalk.umm.uni-heidelberg.de/) and

miRDB (http://www.mirdb.org/) databases were performed

to predict the miRNA that targeting VCAN. Furthermore, the

transcriptional regulatory relationships unravelled by the

sentence-based text-mining (TRRUST) database (http://

www.grnpedia.org/trrust/) were applied to predict the

transcription factors (TFs) that regulate VCAN.

Subsequently, the TF-VCAN-miRNA regulatory network

was visualized using Cytoscape software.

Results

Identification of DEGs

Figure 1 depicted the flow chart of the research. To identify

the DEGs between HBV-LF and CHB samples, we

comprehensively studied the expression matrix of the

GSE84044 dataset. A total of 173 genes (|log2FC| > 0.585,

FDR <0.05) were differently expressed. Of these, 22 genes

were down-regulated and 151 genes were up-regulated

(Figures 2A,B; Supplementary Table S1). Furthermore, we

constructed a PPI network to clarify the protein-protein
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interactions of these DEGs. The minimum interactive score was

set to 0.70 to ensure accuracy. As depicted in Figure 2C, the PPI

network contained 166 nodes and 206 edges.

Functional enrichment analysis

GO and KEGG analyses were carried out to further illustrate

the biological processes and pathways of these DEGs. The GO

enrichment analysis results were shown in Figures 3A,B. The

biological processes (BP) of DEGs demonstrated that they were

involved in response to chemokine and chemokine-mediated

signaling pathways. With regard to molecular functions (MF)

and cellular components (CC), these DEGs were primarily

involved in collagen-containing extracellular matrix (ECM),

complex of collagen trimers, cytokine activity, and signaling

receptor activator activity. KEGG analysis depicted that these

DEGs were mainly involved in the chemokine signaling

pathway, cytokine-cytokine receptor interaction, Toll-like

receptor signaling pathway and ECM-receptor interaction

(Figures 3C,D). We then conducted a DO enrichment

analysis to elucidate the role of DEGs in diseases. The result

showed that DEGs were significantly related to hepatitis,

interstitial lung disease, hepatitis C and other diseases

(Figures 3E,F). Moreover, GSEA analyses were conducted to

further understand the biological pathways involved in the

pathological progress of HBV-LF (Figures 3G,H). The KEGG

pathways of GSEA suggested that fatty acid metabolism,

threonine metabolism, glycine serine, chemokine signaling

pathway, cell adhesion molecules cams, and cytokine-

cytokine receptor interaction were significantly enriched in

the HBV-LF.

Identification and verification of
diagnostic biomarkers

To identify reliable diagnostic biomarkers from the DEGs, we

integrated four algorithms, including LASSO, SVM-RFE, RF, and

WGCNA. Seven genes were screened out as diagnostic

biomarkers by using the LASSO regression (Figure 4A;

Supplementary Table S2). Forty candidate genes were

identified by the SVM-RFE algorithm (Figure 4B). The

application of the RF algorithm identified four genes with

good generalization performance as potential biomarkers

(Figure 4C). Three co-expression modules were screened by

WGCNA analysis. The correlation between these modules and

HBV-LF was shown in the heat map, which indicated that the

blue module was the most significant one, with a total of

488 genes (Figure 4D). Finally, two genes, namely,

phosphatidic acid phosphatase type 2C (PPAP2C), and

VCAN, were identified as the potential diagnostic biomarkers

for HBV-LF based on the four algorithms (Figure 4E). ROC curve

analyses were performed to clarify whether these two genes could

distinguish HBV-LF from CHB samples. The results revealed

that the AUC values of PPAP2C and VCAN were 0.828 (95% CI

0.750–0.892) and 0.847 (95% CI 0.777–0.915), respectively

(Figures 4F,G). In the validation set, the AUC values of

PPAP2C and VCAN were 0.840 (95% CI 0.630–1.000) and

0.740 (95% CI 0.500–0.960), respectively (Figures 4I,J). The

AUC values of PPAP2C and VCAN were significantly higher

than those of ALT, AST, and AST/ALT (Supplementary Figure

S1). Furthermore, the combined AUC values of PPAP2C and

VCAN reached 0.853 (95% CI 0.781–0.915) and 0.830 (95% CI

0.610–0.990) in the training and validation cohort, respectively

(Figures 4H,K). These results indicated that PPAP2C and VCAN

FIGURE 1
The Flow chart of this research.
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had excellent specificity and sensitivity for the diagnosis of

HBV-LF.

We further evaluated the relationships between these two

diagnostic biomarkers and disease progression. Generally,

liver biopsy remains the gold standard for the diagnosis of

LF, and the progress of LF can be evaluated according to

histological fibrosis stages and inflammatory grades. The

results depicted that as the histological fibrosis stages and

inflammatory grades gradually increased, the expression levels

of PPAP2C and VCAN also increased (Figures 5A,D).

Additionally, two biochemical markers, ALT and AST, are

often used to assess liver inflammation and function. As

depicted in Figures 5E,H, the expression level of PPAP2C

and VCAN were highly associated with ALT (R = 0.49, p =

9.4e−08, and R = 0.59, p = 2.3e−11, respectively) and AST (R =

0.53, p = 7.4e−09, and R = 0.65, p = 8.2e−14, respectively). The

above results indicated that PPAP2C and VCAN were closely

related to the progress of HBV-LF.

Immune cell infiltration profile and
correlation analysis

To comprehensively understand the immune landscape in

HBV-LF and CHB samples, we assessed the relative infiltration

levels of 28 immune cell subsets using ssGSEA algorithm

(Figure 6A). Significant positive correlations was found among

almost all immune cells, whereas neutrophils were negatively

associated with memory B cells (Figure 6B). As shown in

Figure 6C, 22 types of immune cells aberrantly differed

FIGURE 2
Identification of DEGs between the HBV-LF and CHB samples. (A) The heatmap of the DEGs. (B) The volcanomap of DEGs. (C) The PPI network
of DEGs.
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between HBV-LF and CHB samples. These included activated B,

activated CD4 T, activated CD8 T, effector memory CD4 T,

effector memory CD8 T, gamma delta T, natural killer T,

regulatory T, T follicular helper, type 1 T helper, type

17 helper T, type 2 T helper, activated dendritic CD56 bright

natural killer, immature B, immature dendritic, mast, MDSC,

memory B, natural killer and plasmacytoid dendritic cells.

Subsequently, seven significantly different types of immune

cells were extracted using LASSO regression. These included

immature dendritic, mast, memory B, natural killer, natural killer

T cells, central memory CD4 T, and type 17 helper T cells

(Figure 6D). Compared with CHB, the number of immune

cells in the HBV-LF samples increased significantly.

Correlation analysis showed that PPAP2C and VCAN

positively correlated with almost all immune cells, except

macrophages, monocytes, and neutrophils (Figures 6E,F).

Furthermore, we analyzed the correlation between the two

diagnostic biomarkers and seven significantly different

FIGURE 3
Functional enrichment analysis of DEGs. (A,B) GO analyses of DEGs. (C,D) KEGG analyses of DEGs. (E,F) DO analysis of DEGs. (G,H) GSEA
analysis.
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immune cells (Figure 6G). PPAP2C was positively correlated

with central memory CD4 T cell (R = 0.64, p < 0.001),

immature dendritic cell (R = 0.59, p < 0.001), mast cell

(R = 0.68, p < 0.001) and natural killer T cell (R = 0.52,

p < 0.001). While VCAV was positively correlated with

central memory CD4 T cell (R = 0.79, p < 0.001),

immature dendritic cell (R = 0.62, p < 0.001), mast cell

(R = 0.71, p < 0.001), memory B cell (R = 0.55, p < 0.001)

and natural killer T cell (R = 0.64, p < 0.001).

Enrichment of similar/interactive genes of
VCAN

VCAN is the main component of the ECM of early

fibrogenesis. VCAN is related to the migration and

proliferation of fibroblasts and promotes collagen deposition

(Bukong et al., 2016). Therefore, we further compared the

expression of VCAN between the CHB and LF patients, based

on the transcriptomic profiles of peripheral blood mononuclear

FIGURE 4
Identifying and verifying diagnostic biomarkers via the comprehensive strategy. (A) LASSO logistic regression. (B) SVM-RFE algorithm. (C) RF
algorithm. (D)WGCNA analysis. (E) Venn diagram of the intersection of diagnostic biomarkers screened. (F–H) The ROC analysis of PPAP2C, VCAN,
and PPAP2C + VCAN in the training set. (I–K) The ROC analysis of PPAP2C, VCAN, and PPAP2C + VCAN in the validation set.
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cells. Compared with CHB patients, the expression of VCAN in

HBV-LF patients was significantly increased (Figure 7A). Several

studies have found that VCAN is also present in the stroma of

various types of cancers and is associated with cancer growth and

invasion (Naboulsi et al., 2016). The immunohistochemical

staining results of VCAN protein downloaded from the HPA

database indicated moderate staining for VCAN protein in liver

cancer, but no detectable expression in the normal liver tissue

(Figure 7B).

Moreover, we identified 100 VCAN-related similar/interactive

genes from the GEPIA database. Then, the Metascape website was

applied to conduct an enrichment analysis of these 100 genes. GO

analysis depicted that these similar/interactive genes were correlated

with the regulation of cell adhesion, focal adhesion, and ECM

(Figure 7C). KEGG analysis indicated that these similar/interacted

genes mainly participated in the ECM-receptor interaction, cell

adhesion molecules and transforming growth factor-beta (TGF-β
signaling pathway (Figure 7D).

Construction of the TF–VCAN–miRNA
regulatory network

To further assess the regulatory mechanisms of VCAN,

we predicted the miRNAs and TFs that targeting VCAN. A

total of 41 miRNAs targeting VCAN were identified through

the intersection of miRNAs predicted by the ENCORI,

miRWalk, and miRDB databases (Figure 8A).

Interestingly, based on the TRUUST database, only two

TFs [transcription factor 4 (TCF4) and tumor protein p53

(TP53)] that could regulate the expression of VCAN were

screened out. Subsequently, we generated a regulatory

FIGURE 5
Relationships between the diagnostic biomarkers and clinicopathological features. (A–D) The expression level of PPAP2C and VCAN in different
groups divided by clinical characteristics. (E–H) The correlation analysis between PPAP2C and VCAN and ALT, and AST.
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network among VCAN, miRNAs, and TFs using Cytoscape

software (Figure 8B).

Discussion

CHB virus infection is a major public health problem that

affecting 292 million individuals worldwide (Polaris

Observatory, 2018). LF is an inevitable process by which CHB

develops into HBV-related liver cancer (Schweitzer et al., 2015;

Qi et al., 2016). Identification of effective diagnostic biomarkers is

of great clinical significance for improving the prognosis of HBV-

LF. In addition, HBV infection elicits various immune responses

within the liver microenvironment, and the infiltration of

immune cell is crucial for the development of HBV-LF

(Zaki et al., 2022). Here, we attempted to screen diagnostic

biomarkers for HBV-LF and explore the role exerted by the

immune infiltration cells by using comprehensive and

effective bioinformatics methods.

In this study, by comparing the matrix file of the HBV-LF

and CHB samples, we identified 173 DEGs, of which 22 were

downregulated and 151 were upregulated. To improve the

accurate identification of HBV-LF-related diagnostic

biomarkers, we integrated three different machine learning

methods (LASSO, SVM-RFE, and RF algorithms) and

WGCNA. Finally, PPAP2C and VCAN were identified as

FIGURE 6
Immune cell infiltration pattern analyses of HBV-LF and CHB samples. (A) Heatmap of the immune landscape by ssGSEA algorithm. (B)
Correlation heatmap of 28 immune cells. (C) Violin diagram of 28 immune cells. (D) LASSO analysis to screen the different infiltrates of immune cells.
(E–G) Correlation between PPAP2C and VCAN and differential immune cells in HBV-LF.
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potential diagnostic biomarkers. ROC curve analysis further

suggested that PPAP2C and VCAN exhibited high predictive

accuracy for diagnosing HBV-LF, which were higher than that of

ALT, AST, and AST/ALT. Moreover, PPAP2C and VCAN were

positively associated with histological fibrosis stages,

inflammatory grades, and two biochemical markers ALT and

AST. These findings indicated that PPAP2C and VCAN are

significantly correlated with the progression of HBV-LF.

PPAP2C (also known as PLPP2) is a triglyceride synthesis-

related gene which encodes lipid phosphate phosphatase 2

(LPP2), a member of the phosphatidic acid phosphatase

(PAP) family (Tang et al., 2015). Previous studies have

reported that the increase in LPP2 expression in synchronized

fibroblasts accelerates the entry of cells into the S phase (Morris

et al., 2006). In addition, the expression of PPAP2/LPP2 is also

upregulated in numerous carcinomas and sarcomas (Flanagan

FIGURE 7
VCAN expression in HBV-LF and enrichment analysis of similar/interactive genes of VCAN. (A) The expression level of VCAN between the CHB
and LF in the validation set. (B) The immunohistochemistry staining images of VCAN from the HPA. (C) GO analysis of similar/interactive genes of
VCAN in Metascape database. (D) KEGG analysis of similar/interactive genes of VCAN in Metascape database.
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et al., 2009). However, there is no data on the role of PPAC2P in

the development and progression of LF.

VCAN is a large, multi-domain chondroitin sulfate

proteoglycan that upregulates inflammation in various diseases

(Islam and Watanabe, 2020). The pathogenesis of LF is closely

associated with persistent hepatic inflammation. Activation of

hepatic stellate cells (HSCs) and collagen renewal are the main

mechanisms of LF. Recent researches have shown that the

expression of VCAN increases during the activation of HSCs

and LF, while the proteolysis process occurs during the regression

of LF (Bukong et al., 2016; Wight et al., 2020). Moreover,

previous studies have suggested that LF is an inevitable stage

in the progression of CHB to HBV-associated liver cancer, also

known as the “hepatitis trilogy.” Interestingly, compared with

paracancerous tissue, the expression level of VCAN was

significantly upregulated in HCC tissue (Tanaka et al., 2018;

Zhangyuan et al., 2020). In support, we also found that VCAN

was significantly up-regulated in HBV-LF and HCC samples.

Thus, VCAN may contribute to the progression of chronic liver

disease to LF, cirrhosis and liver cancer. However, the specific

mechanism by which VCAN determines the pathogenesis of

HBV-LF requires further investigation. Given the enrichment

analysis of VCAN-related similar/interacted genes, our results

proposed the possibility that VCAN may promote LF through

HSC-related mechanisms and the TGF-β signaling pathway.

Taken together, these results showed that VCAN can be used

as an effective diagnostic biomarker for HBV-LF patients.

Functional analysis of DEGs revealed that, except for the

synthesis of ECM and the processes of anabolism and catabolism,

they were also enriched in the immune response-related processes,

which was consistent with previous studies (Yuan et al., 2019; Zaki

et al., 2022). In this study, we further implemented the ssGSEA

algorithm to evaluate the relative infiltration levels of immune cells.

We found that the infiltration levels of 22 kinds of immune cells in the

HBV-LF samples were significantly higher than those in CHB

samples. Among them, seven kinds of immune cells were screened

out by LASSO logistic regression, which included immature dendritic,

mast, memory B, natural killer, natural killer T, type 17 helper T, and

central memory CD4 T cell. Dendritic cells are key regulators of liver

immunity, and abnormal dendritic cell phenotype can lead to the

activation of T cells andHSCs, thus inducing a pathological fulminant

environment andfibrogenesis (Xu et al., 2019).Mast cells are immune

cells that are ubiquitous in all connective tissues and the mucosal

environment. The pathogenicity of mast cells in LF is mainly realized

by releasing a variety of mediators that directly interfere with the

recruitment and activation of inflammatory cells, stimulate the

proliferation of fibroblasts, promote synthesis or inhibit the

degradation of ECM (Weiskirchen et al., 2019). Type 17 helper

T cell is a subgroup of helper T cells that mainly secretes

interleukin (IL)-17, a cytokine that promotes inflammation and

fibrosis. It is currently evidenced that IL-17A can induce LF by

directly activating HSCs in HBV patients and animal models of LF

(Tan et al., 2013). Zhang et al. (2017) further confirmed that IL-17A

inhibits hepatocyte autophagy through the IL-10/STAT3 signaling

FIGURE 8
Construction of the TF–VCAN–miRNA Regulatory Network. (A) Venn diagram of the intersection of targeted miRNAs screened by ENCORI,
miRWalk, and miRDB databases. (B) TF–VCAN–miRNA regulatory network. The square represents the gene, the circle represents miRNA, and the
triangle represents TF.
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pathway and plays a pivotal role in the pathogenesis of LF. Moreover,

natural killer, natural killer T, memory B, and central memory

CD4 T cells have been demonstrated to be involved in the

occurrence and development of LF (Wang and Yin, 2015; Huang

et al., 2020; Zuluaga et al., 2020; Zuluaga et al., 2022). Therefore, our

results were consistent with these previous reports, and our

bioinformatics analysis further emphasized the important role of

these immune cells in the pathogenesis of LF. In this study, we also

found that PPAC2C and VCAN were significantly positively

correlated with infiltrating immune cells. However, the molecular

mechanisms and functions of immune cell infiltration in the

development of HBV-LF are still urgent issues to be elucidated.

It should be pointed out that the present research still has some

limitations. First, the study lacks clinically relevant information,

including serum markers or indices. Therefore, we cannot compare

the diagnostic efficacy of PPAC2C, VCAN, and conventional

serological markers or indices. Second, the sample size is not

sufficiently large and only from the GEO dataset. Third, ssGSEA

is an algorithm to estimate immune cell infiltration based on gene

expression, which requires further experimental verification.

Conclusion

In the present study, we performed a comprehensive

bioinformatics analysis of DEGs that may be involved in HBV-

LF. VCAN may be an effective diagnostic biomarker of HBV-LF.

This study also reveals that immune cell infiltrationmay contribute to

the initiation and progression of HBV-LF. Our results may help to

clarify the potential molecular mechanisms related to the occurrence,

development, and prognosis of HBV-LF.
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