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Over the past few decades, regulatory RNAs, such as small RNAs (sRNAs), have

received increasing attention in the context of host-microbe interactions due to

their diverse roles in controlling various biological processes in eukaryotes. In

addition, studies have identified an increasing number of sRNAs with novel

functions across a wide range of bacteria. What is not well understood is why

cells regulate gene expression through post-transcriptional mechanisms rather

than at the initiation of transcription. The finding of a multitude of sRNAs and

their identified associated targets has allowed further investigation into the role

of sRNAs in mediating gene regulation. These foundational data allow for

further development of hypotheses concerning how a precise control of

gene activity is accomplished through the combination of transcriptional

and post-transcriptional regulation. Recently, sRNAs have been reported to

participate in interkingdom communication and signalling where sRNAs

originating from one kingdom are able to target or control gene expression

in another kingdom. For example, small RNAs of fungal pathogens that silence

plant genes and vice-versa plant sRNAs that mediate bacterial gene expression.

However, there is currently a lack of evidence regarding sRNA-based inter-

kingdom signalling across more than two interacting organisms. A habitat that

provides an excellent opportunity to investigate interconnectivity is the plant

rhizosphere, a multifaceted ecosystem where plants and associated soil

microbes are known to interact. In this paper, we discuss how the

interconnectivity of bacteria, fungi, and plants within the rhizosphere may be

mediated by bacterial sRNAs with a particular focus on disease suppressive and

non-suppressive soils. We discuss the potential roles sRNAs may play in the

below-ground world and identify potential areas of future research, particularly

in reference to the regulation of plant immunity genes by bacterial and fungal

communities in disease-suppressive and non-disease-suppressive soils.
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Introduction

The rhizosphere is comprised of soil closely associated with

plant roots inhabited by a unique population of microorganism

and plays a pivotal role in plant growth and health in both natural

and managed ecosystems (Hartmann et al., 2008; Fierer, 2017).

This region is a hotspot where interactions between plants and

their associated microbes underpin the emergence of inter-

kingdom collaboration that can benefit all the participants.

Here, beneficial organisms across trophic levels interact with

each other, the bulk soil microbiome and the host plant through

signalling molecules and the provisioning of carbon and

nutrients. Conversely, plant pathogenic microorganisms may

also colonize the rhizosphere which can lead to a dysbiosis of

the rhizosphere microbiome leading to a more disease susceptible

host plant. The basis of these microbial interactions which can

lead to positive or negative outcomes in terms of plant growth

and health, involves both inter- and intra-kingdom cell-cell

communication. The mediation of gene regulation by small

RNAs (sRNA) has been found to control numerous biological

processes in many diverse organisms (Finnegan and Matzke,

2003) such as fungal pathogens (Fulci and Macino, 2007; Zhou

et al., 2012; Chen et al., 2014; Chen et al., 2015), plants (Yoo et al.,

2004; Lelandais-Brière et al., 2010), humans (Gong et al., 2005)

and bacteria (Hershberg et al., 2003; Vogel, 2009). Although

bacteria lack the distinctive sRNA biogenesis pathways identified

in eukaryotes, it is well established that control of target gene

expression in bacteria by sRNA-like molecules is mechanistically

similar (Liu and Camilli, 2010; Gottesman and Storz, 2011). A

variety of sRNA-like molecules in bacteria have been shown to

regulate cellular functions such as metabolism (Wassarman,

2007), virulence (Ramirez-Peña et al., 2010), structure and

stress response (Bessaiah et al., 2021) and biofilm formation

(Taylor et al., 2017). Recently, sRNAs were reported to mediate

interkingdom signalling in different organisms and pathosystems

(Wang et al., 2017a; Teng et al., 2018; Zeng et al., 2019). For

examples, plant-derived micro RNAs modulates the gut

microbiome (Teng et al., 2018) and the virulence genes of

plant pathogens (Wang et al., 2016) and fungal-derived

microRNAs modulate the expression of plant immune genes

(Wang et al., 2017a; Wang et al., 2017b).

Inspired by this evidence, we posit that sRNAs may serve as

mediators for inter-kingdom communication between members

of the rhizosphere microbiome and the host plant. However, it

remains difficult to identify this process in the complex, dynamic

and highly diverse rhizosphere environment where

communication between members can occur multi-

directionally (Mendes et al., 2013). Nevertheless, there are two

areas of foundational knowledge that support our hypothesis.

First, it is widely recognized that rhizosphere microorganisms are

intimately involved in plant growth and immunity through their

modulation of a variety of molecules and signals. Secondly, there

is growing interest in the role of sRNAs as mediators in the

regulation of functional and signalling pathways across different

kingdoms, especially in regard to their ability to effectively

migrate within or across microbe-plant cell boundaries

(Huang et al., 2019). With the purification of extracellular

vesicles (EV), it is now experimentally possible to parse

mobile sRNAs from existing total sRNAs thus allowing better

understanding of cell to cell interactions mediating inter-

kingdom gene regulation (Cai et al., 2019; Zeng et al., 2019).

We hypothesize that further investigation into sRNAs, in

combination with other techniques to untangle microbiome-

plant interactions, will serve to better our understanding of

the complex rhizosphere soil microbiome and the benefits it

provides to plant health. To illustrate this, we discuss two distinct

types of soil microbiomes originating from disease suppressive

and non-suppressive soils. We propose three possible pathways

of rhizosphere-mediated sRNA-based inter-kingdom signalling

during the infection of wheat by the fungal pathogen Rhizoctonia

solani AG-8. We also propose an integrated method to identify

genes with key functions within the rhizosphere which includes

traditional metagenomics and meta-transcriptomics approaches

coupled with sRNA analyses. In addition, we include fungal and

plant sRNAs as candidates for inter-kingdom signalling which

are less explored components in soil-based disease suppression

studies. An in-depth review of fungal and plant sRNAs was not

included in this paper as they have been well-covered in previous

publications (Ruiz-Ferrer and Voinnet, 2009; Billmyre et al.,

2013; Wang et al., 2016; Singh et al., 2018).

Mechanism of bacterial sRNA
regulations

Almost all eukaryotic and bacterial cells harbor two types of

RNAs: coding and non-coding. Coding RNAs are those that are

translated into protein (commonly called messenger RNAs or

mRNAs) whereas non-coding RNAs are not translated into

protein but otherwise regulate cellular functions (Hoe et al.,

2013). Non-coding RNAs can be further characterized into

different types based on their biogenesis and functions such as

small non-messenger RNAs (snmRNAs), small non-coding

RNAs (ncRNAs), untranslated RNAs (utRNAs), small RNAs

(sRNAs) or non-protein coding RNAs (Brosius and Tiedge, 2004;

Heidrich et al., 2006; Tjaden et al., 2006). For the purpose of this

review, we used the term sRNAs to refer non-coding RNAs.

Human, plant and fungal sRNAs are short non-coding RNAs

between18-30 nt in length and regulate their target mRNAs

through sequence complementarity. Bacterial sRNAs range

from 50 to 300 nt but regulate the translation and stability of

their mRNA targets in a similar way to higher eukaryotes

(Wagner and Romby, 2015). Bacterial sRNAs can interact

with mRNAs in four different ways, (i) by binding to the

open reading frame (ORF) of mRNA causing degradation of

RNA, (ii) by binding to the ribosome binding site (RBS) thereby
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blocking translation, (iii) by binding to mRNAs but not to RBS

resulting in a conformational change which can enhance or

supress translation, and (iv) by binding to protein targets

directly, thus altering their functions (Waters and Storz, 2009)

(Figure 1). An in-depth review concerning RNA-binding

proteins that regulate the activity of bacterial sRNAs has been

previously published (Quendera et al., 2020).

Based on the genomic loci of sRNAs and their corresponding

mRNAs, they can be further classified into cis-encoded and

trans-encoded. During cis encoding, both sRNAs and mRNAs

are expressed from the same locus while in trans-coded sRNAs

targets are expressed from different loci than sRNAs origin.

Silencing by cis-encoded sRNAs of their targets might be

achieved due to complementary sites and often a sole target

for the given sRNAs while trans-encoded sRNAs often have

multiple targets with partial sequence complementarity

(Papenfort et al., 2010).

Though the discovery of the first bacterial sRNA 6sRNA was

accomplished in 1967 (reviewed in (Wassarman et al., 1999)), its

biological function was only identified in early 2000 (Wassarman

and Storz, 2000). This sRNA was demonstrated to regulate RNA

polymerase activity in a highly precise manner. In the early

2000s, the computational identification of bacterial sRNAs was

accomplished, based on transcriptional signals and genomic

features of known sRNAs encoding genes (Argaman et al.,

2001; Rivas et al., 2001). With the more recent development

of whole genome profiling and deep sequencing, it is now

possible to directly detect sRNAs residing within the genome.

For example, the complete genome sequence of Escherichia coli

(Blattner et al., 1997) provided an opportunity to verify the

presence of sRNAs which laid the foundation for future sRNA

studies. Altogether, 24 sRNA-encoding genes were predicted of

which 23 have been experimentally tested. Among these,

14 sRNA genes were novel (not discovered before) and

exhibited abundant expression patterns under different

physiological conditions (Argaman et al., 2001). Since then,

several sRNA studies have been performed with Salmonella

enterica (Pichon and Felden, 2005; Bohn et al., 2010;

Chabelskaya et al., 2010; Eyraud et al., 2014) and

Staphylococcus aureus (Pichon and Felden, 2005; Bohn et al.,

2010; Chabelskaya et al., 2010; Eyraud et al., 2014) and varying

cellular, metabolic, and biological process have been identified as

regulated by sRNAs in different bacterial species. Bacterial

chromosomes might harbour a few hundred to thousands of

sRNAs with many yet to be discovered (Gottesman and Storz,

2011). Quite a number of computational tools have been

developed to predict and validate sRNA:mRNA interactions

including TargetRNA (Kery et al., 2014), sTarPicker (Ying

et al., 2011), IntaRNA (Mann et al., 2017), and CopraRNA

(Wright et al., 2014). Although these computational tools aid

in the identification of sRNAs and their mRNA candidates, false

positives or negatives hinder reliability. For example, while using

these tools for the prediction of sRNAs from 18 enterobacterial

species, CopraRNA was reported to have a low false positive rate

in comparison to other tools (King et al., 2019). Likewise, in the

fungal pathogen Sclerotinia sclerotiorum ten different

computational tools predicted a varying number of miRNAs

(Lee Marzano et al., 2018). Therefore, integrated experimental

and computational approaches need to be combined to identify

both sRNAs and their candidate target mRNAs.

Here, we discuss stress response and pathogenicity of bacteria

which are two functions mediated by bacterial sRNAs relevant

within the realm of rhizosphere communication and signalling.

Briefly, bacteria have evolved with diverse cellular process to

survive in fluctuating and stressful environments. A growing

number of sRNAs have been reported to regulate stress responses

in bacteria through fine tuning of signal transduction and

regulatory proteins (González Plaza, 2020). Different studies

have predicted and validated the involvement of a wide range

of bacterial sRNAs that potentially have a role in regulation of

responses to stresses such as variations in temperature, oxygen

level and pH fluctuations in different species including

FIGURE 1
Mechanisms of bacterial sRNA regulation. 1. sRNA binds
directly to open reading frame (ORF) of mRNA resulting in the
degradation of RNA: RNA hybrid. 2. sRNA binds to ribosome
binding site (RBS) resulting in blocking of translation. 3. sRNAs
bind to the outside of the RBS causing a conformational change
that allows or blocks access to the RBS. 4. sRNA directly binds to
proteins to change their structure and function. The figure was
produced with biorender.com (adapted from https://www.
wikiwand.com/en/Bacterial_small_RNA).
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Staphylococcus aureus (Abu-Qatouseh et al., 2010), Vibrio

cholrea (Raabe et al., 2011) and Rhodobacter sphaeroides

(Adnan et al., 2015). In R. sphaeroides, a series of experiments

revealed that SorY sRNA regulates the expression of takP mRNA

which encodes a TRAP-T transporter. This sRNA/mRNA pair

regulation has been shown to decrease the metabolite flux into

the tricarboxylic acid cycle which is an adaptive response of

bacteria during oxidative stress (Adnan et al., 2015).

Non-coding sRNAs are reported to regulate the virulence of

various bacterial pathogens as diseases develop in humans

(Toledo-Arana et al., 2007; Bordi et al., 2010; Bardill and

Hammer, 2012) and plants (Liang et al., 2011). sRNAs can

enhance the pathogenicity of bacteria by allowing them to

adapt quickly to the environmental conditions of the host.

They achieve this not with coarse “on or off” types of

regulation but by regulating genes and transcription factors

that fine tune the expression of target mRNA in response to

local conditions (González Plaza, 2020). The role of sRNAs in

bacterial virulence can be illustrated by their role in facilitating

the carbon store regulator (CsrA) system (Bordi et al., 2010).

CsrA is a sequence-specific binding protein used by bacteria for

post-transcriptional regulation of gene expression. To do this, the

CsrA protein binds to the 5’ untranslated end of early mRNA

coding regions and inhibits translation thus altering mRNA

turnover and/or transcript elongation. However, the amount

of free CsrA protein is regulated by the relative level of the

sRNA CsrB. When the CsrB sRNA is abundant, it competitively

binds the CsrA protein preventing CsrA from interacting with

target mRNAs which results in enhanced translation of the

down-stream target gene mRNAs (Vakulskas et al., 2015). The

synthesis and degradation of the CsrB sRNA are regulated in

such a way that allows CsrA activity to be rapidly and efficiently

adjusted in response to nutritional conditions and stresses

(Romeo and Babitzke, 2018). In addition to their role in

virulence, bacterial sRNAs are also involved in plant

protections against pathogenic fungi. For example, in a

beneficial rhizobacterial species Pseudomonas fluorescens three

sRNAs were reported to protect cucumber from Pythium

ultimum by regulating post-transcriptional derepress ion of

biocontrol factors (Kay et al., 2005).

The influence of the disease-
suppressive rhizosphere microbiome
in the rhizoctonia-wheat
pathosystem

As a platform for grounding hypotheses concerning the role

of sRNAs within the plant rhizosphere, we turn to a pathogen-

soil microbiome interactive system; the fungal pathogen

Rhizoctonia solani AG-8 and disease suppressive/non-

suppressive soil microbiomes. Rhizoctonia root rot or bare

patch disease is one of the most destructive soil-borne

diseases resulting in significant losses in cereal crops in

Australia, with an annual loss of $77 million (Murray and

Brennan, 2010). Currently, no resistant varieties are available

for wheat or barley and fungicide application and canola rotation

are the only methods of control. Fungicide control is expensive

and unreliable since incidence of infection and disease occur

from early seedling phase to physiological maturity (Gupta

2022). Nevertheless, biological methods such as seed coating

of hosts with antagonistic bacteria has been reported to decrease

the impact of other root rot diseases including Rhizoctonia

cerealis, and Fusraium culmorum. (Castro Tapia et al., 2020).

However, following several years of no-till management

practices, some soils have been shown to develop a disease

suppressive state which minimises the expression of disease

even though R. solani AG-8 is present in the soil (Wiseman

et al., 1996; Davey et al., 2021). As an economical and low

synthetic input method to control soilborne disease,

understanding biological suppressive activities is key for

sustainable agricultural production (Hayden et al., 2018). The

disease suppressive activity is defined as the biological activity of

resident microbial community which counteracts the pathogen

and/or suppresses disease incidence or severity (Cook et al., 1995;

Donn et al., 2014). Soils with suppressive activities against

different soil-borne plant diseases have been identified across

the globe (Anees et al., 2010; Schillinger and Paulitz, 2014;

Schlatter et al., 2017). The relative abundance and diversity of

microorganisms present in soils manifesting suppression of

pathogenic plant activities has been shown through the use of

DNA-based profiling both for bacteria (van Elsas et al., 2008) and

fungi (Penton et al., 2014). Several bacterial species have been

reported to contribute suppressive activities through various

mechanisms such as antibiosis (an antagonistic association

between two organisms, in which one is adversely affected)

and plant growth promotion (Garbeva et al., 2004; Weller

et al., 2007) while others were found to be abundant in

disease suppressive soils in comparison to non-suppressive

soils (Mendes et al., 2011; Donn et al., 2014). For example,

Proteobacteria, Pseudomonas, and nifH harbouring bacteria

such as Burkholderia (detailed in Table 1) possibly reflect

“keystone species”. Despite the current evidence, the

composition of key functional genes that govern suppressive

activity and interconnectivity between soil-rhizosphere-plant

microbiomes remains elusive. Although network analyses of

differences in relative abundances of bacterial and fungal

populations within suppressive and non-suppressive soils are

useful to understanding connectivity within the microbial

consortia, it is also important to understand the cause and

effect of such interactions (Poudel et al., 2016). Currently,

disease suppression research focuses on quantifying the

microorganisms present in the soil microbiome. However,

there remains knowledge gaps concerning how these

suppressive communities are recruited and constructed under

the influence of plant type and the identity of key functional traits
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that contribute to suppression. Here, we propose three cross-

kingdom mechanisms of gene regulation mediated by sRNAs

that potentially shape suppressive communities and demonstrate

how these approaches can shed light on some of these

fundamental questions.

Plant host sRNAs role in bacterial and
fungal infection

As analogous systems, at least at the coarse level,

microbiomes of the human gut and plant rhizosphere may be

influenced in similar fashions by sRNAs. Within the human gut,

a balance between the host and the gut microbiome is essential to

suppress the onset of disease. Defined sets of microbial signatures

have been reported to be associated with human diseases (Tarallo

et al., 2019; Wirbel et al., 2019). For example, specific bacterial

taxa such as Clostridiaceae, Ruminococcacceae, and

Fusobacteriaceae have been associated with colorectal cancer.

Host derived sRNAs have been reported to act as important

physiological regulators in human health (Tarallo et al., 2019).

For examples, differential expression of faecal sRNAs have been

shown to direct gut microbiome composition during colorectal

cancer. In a similar fashion, plant sRNAs have been shown lately

to regulate the gene regulation during the pathogen invasion.

Moreover, plant hosts harbor the ability to influence both the

structure and function of the associated, interacting rhizosphere

microbiome (Katiyar-Agarwal and Jin, 2010). More concisely, in

the context of plant diseases, sRNAs are reported to regulate gene

expression within both the host and fungal pathogen (Fujii et al.,

2005; Li et al., 2010; Xia et al., 2020; Regmi et al., 2021) and can

silence fungal virulence genes through the secretion of EV

particles (Cai et al., 2018). EVs are lipid-bound secretion of

cells into the extracellular space that comprises lipids, nucleic

acids, and proteins (Zaborowski et al., 2015). Recently, these

particles are reported to be a carrier of sRNAs across the different

TABLE 1 Bacteria identified in soil-borne disease suppression communities that have also been the subject of sRNA studies.

Bacterial
population

Soilborne disease
suppression
references

Techniques used
to study disease
suppression

sRNA and gene
expression related
techniques

Related sRNA and
gene expression
studies

sRNA study references

Paenibacillus Gupta (2014) TRFLP, nifH amplicon
sequencing

Transcriptomics Transcriptomics profiling of
carbohydrate utilization and
nitrogen fixation

Sawhney et al., 2016; Shi et al., 2016;
Brito et al., 2017

Sinorhizobium Gupta (2014) TRFLP, nifH amplicon
sequencing

sRNA profiling Role of sRNAs in nitrogen
fixation

Del Val et al., 2007; Ulvé et al., 2007;
Voss et al., 2009; Jiménez-Zurdo and
Robledo, (2015); Baumgardt et al.,
2016; Ceizel Borella et al., 2016

Clostridium Gupta (2014) TRFLP, nifH amplicon
sequencing

sRNA profiling Role of sRNAs in virulence Romby et al., 2006; Michaux et al.,
2014

Bradyrhizobium Gupta (2014) TRFLP, nifH amplicon
sequencing

sRNA profiling sRNA profiling in different
Bradyrhizobium lineage

(Lelandais-Brière et al., 2010;
Madhugiri et al., 2012

Verrucomicrobiae Gupta (2014) TRFLP, nifH amplicon
sequencing

sRNA profiling Role of faecal sRNAs in
colorectal cancer

Tarallo et al. (2019)

Burkholderia Mendes et al. (2011),
Gupta (2014)

16S ribosomal DNA sRNA profiling Role of sRNAs in stress
response and nutrient
depletion

Khoo et al., 2012; Stubben et al., 2014;
Mohd-Padil et al., 2017

TRFLP, nifH amplicon
sequencing

Pantoea
agglomerans

Gupta (2014) TRFLP, nifH amplicon
sequencing

sRNA profiling Identification of Hfq-
dependent (RNA chaperone)
sRNAs in virulence

Panijel et al., 2013; Shin et al., 2019

γ- Proteobacteria Mendes et al. (2011) 16S ribosomal DNA Non-coding RNA
profiling

Role of sRNAs in
riboregulation

Jiménez-Zurdo et al., 2013; Becker
et al., 2014)

Firmicutes Mendes et al. (2011) 16S ribosomal DNA sRNA +
transcriptomics

mRNA degradation
pathways in Gram-positive
bacteria

Durand et al. (2015)

Argobacterium
tumefacians

Gupta (2014) TRFLP, nifH amplicon
sequencing

sRNA profiling Role of sRNAs in virulence Wilms et al. (2012)

Xanthomonas Mendes et al. (2011) 16S Ribosomal DNA sRNA profiling Role of sRNAs in virulence Liang et al. (2011)

Pseudomonas Mendes et al. (2011),
Gupta (2014)

16S Ribosomal DNA sRNA +
transcriptomics +
proteomics

Genome wide identification
of non-coding RNAs,
antisense activity, and new
genes

Filiatrault et al. (2010)
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cells (Zhang et al., 2020). In wheat, host induced silencing of

pathogen (Blumeria graminis f. sp. tritici) genes by wheat sRNAs

enhances quantitative plant resistance (Schaefer et al., 2020).

Furthermore, wheat was shown to use sRNAs to regulate its own

endogenous defence genes in response to the fungal pathogen

Zymoseptoria tritici (Ma et al., 2020). Likewise, a novel canola

sRNA also mediates defence-related ethylene response factor

genes under infection by S. sclerotiorum (Regmi et al., 2021).

Although there is no direct evidence of plant sRNAs mediating

bacterial gene activity, as has been demonstrated for fungi, plant

sRNAs contributes to antibacterial resistance by repressing

signalling pathways (Navarro et al., 2006; Zhang et al., 2011).

It has been shown for the first time that miR393 from

Arabidopsis was induced upon the infection of Pseudomonas

syringae and repressed auxin signalling pathways which restrict

P. syringae growth (Navarro et al., 2006). In another study, non-

pathogenic, virulent and avirulent strains of Pseudomonas

syringae pv. tomato in Arabidopsis results in differential

expression of 15, 27 and 20 miRNA families that regulate

plant hormone and signalling pathways (Zhang et al., 2011).

This suggests that plants can reprogram their transcriptional

response to protect themselves against bacterial infection

through the use of sRNAs.

This opens up new questions which current technology can

serve to answer: To what degree do plant sRNAs have a role in

shaping the structure of a disease suppressive microbiome?What

types of microbial regulatory genes/transcription factors are

regulated by plant sRNAs? It has been reported that plants

can send sRNAs through EVs to invading fungal tissues in

order to silence fungal virulence genes (Cai et al., 2018),

however any role of plant derived EVs in shaping the

rhizosphere microbiome towards a disease suppressive state is

not known.

Fungal sRNAs role in the regulation of
plant mRNAs

An involvement of fungal sRNAs in the pathogenicity of

different plant pathogenic fungi such as Phytophthora (Qiao

et al., 2015), Magnaporthe oryzae (Raman et al., 2017),

Botrytis cinerea (Wang et al., 2017a), and Sclerotinia

sclerotiorum (Derbyshire et al., 2019) has been described.

These fungal derived sRNAs regulate functions including

effector gene regulation, transposable elements regulation,

stress response, appressoria formation, sclerotia development

and suppression of host immunity. In wheat, several studies

have reported cross-kingdom silencing of plant genes by fungal

sRNAs. For example, Puccinia striiformis and Fusarium

graminearum sRNAs silence pathogenesis-related 2 (PR2) and

resistance-related target genes (Chitin elicitor binding protein)

(Jian and Liang, 2019), respectively, resulting in the suppression

of wheat defence mechanisms (Wang et al., 2017b). Similar inter-

kingdom signalling was reported in other pathosystems

including in the Botrytis cinerea and Arabidopsis pathosystem,

where B. cinerea sRNAs silence plant immune related genes in

the plant host Arabidopsis (Wang et al., 2017a), and the

Fusarium-wheat pathosystem where fungal sRNAs suppress

the activity of wheat mRNAs (Jian and Liang, 2019). In

contrast, in the Zymoseptoria-wheat pathosystem strong

evidence for cross-kingdom RNAi was not found, suggesting

this phenomenon might not be universal (Kettles et al., 2019). In

addition to plant-pathogen interactions, plant-symbiont

interactions have also been shown to involve interkingdom

sRNA signalling (Silvestri et al., 2019; Silvestri et al., 2020).

For example, sRNAs derived from two AMF fungi, Gigaspora

margarita and Rhizophagus irregularis, were shown to target

11 common genes in the host Medicago truncatula, suggesting

sRNAs play a central role in conserved strategies to condition the

host plant for colonisation by the symbiont. Given the evidence

for interactions between soil-borne fungi and plants at the sRNA

level, we can ask whether Rhizoctonia sRNAs regulate plant

immunity genes and whether this cross-kingdom gene regulation

is altered under suppressive and non-suppressive soil conditions.

Bacterial sRNAs mediate the silencing
of plant mRNAs

Bacterial sRNAs of 50–100 nt regulate the expression of

protein coding host RNAs through imperfect base pairing of

short regions (15–20 nt) (Altuvia, 2007). Such regulation might

be achieved by either degradation of the resulting double

stranded RNA or by blocking translation through interference

with the ribosome binding site. High throughput sRNA

sequencing of phytopathogenic bacterial species has revealed

putative virulence-related sRNA candidates (Wiedenheft et al.,

2012; Wilms et al., 2012). For example, in Agrobacterium species,

228 sRNAs were predicted from four replicons among which

20 were experimentally validated with RNA gel blot analysis. One

113 nt sRNA encoded in the intergenic region of the Ti- plasmid

was expressed abundantly during virulence and potentially

regulated by the VirA/VirG system (Wilms et al., 2012).

VirA/VirG is a two-component system needed to induce

virulence gene expression in Agrobacterium sp. and is induced

by various plant signals, including acetosyringone (Stachel and

Nester, 1986). It is worth mentioning that Agrobacterium species

in the soil microbiome facilitate interkingdom gene transfer

between bacteria and plants, and as such, it will not be

surprising if silencing of plant genes by Agrobacterium sRNAs

is also found to occur. However, the plant microRNA pathway is

essential for Agrobacterium disease development (Dunoyer et al.,

2006) suggesting a role for RNA silencing in susceptibility to

Agrobacterium sp. A growing body of evidence also suggests that

non-coding bacterial RNAs have evolved ways of evading host

defence mechanisms (Zur Bruegge et al., 2017). A 115 nt long
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Xanthomonas sRNA was reported to regulate 63 genes related to

signal transduction, transcriptional, post-transcriptional and

virulence functions in pepper plants. (Schmidtke et al., 2013).

Recently, it has also been shown that rhizobacterial sRNAs

silence soybean genes involved in root/hair development

which would affect rhizobial infection and nodulation

formation (Ren et al., 2019). These studies suggest that

bacterial sRNAs present in the rhizosphere may cross to plant

tissues and regulate host genes. However, how this transfer to

plant tissue occurs remains unknown. From the perspective of

our disease suppression model, it would be interesting to

compare the expression of plant immunity genes in the two

different soils in concert with sRNA profiling. However, it would

be prudent to characterize the microbiome composition and

function beforehand. One approach would be to first compile

reference-like genomes of the bacterial species in suppressive

communities to determine the source of the sRNAs and then to

map these back to plant transcriptomic data to identify any

cleavage events. If disease suppression is driven by bacterial

sRNAs then we would expect the cleavage of plant immunity

genes in suppressive soils to be lower than in the non-suppressive

soils.

Although bacterial and fungal interactions are enormously

important in the agricultural, environmental andmedical sectors,

the specific molecular mechanisms that underlie their

interactions remains largely unknown. A recent study

provides some insight by providing biomolecular evidence

that the bacteria Pseudomonas picium modified histones of the

wheat pathogenic fungus Fusarium graminearum and reduced its

virulence due to the impact of phenazine-1-carboxamide (Chen

et al., 2018). However, there is currently a lack of evidence

concerning bacterial sRNAs based mediation on the silencing

of fungal sRNAs though, theoretically these interactions would

be expected to occur. However, the mechanisms and delivery

method for bacterial derived sRNAs to fungal pathogens remains

unclear. At this stage, it can only be hypothesized that after the

generation and maturation of bacterial sRNAs they might be

transported through EVs (extracellular vesicles), bound to

FIGURE 2
Schematic for possible ways of sRNA mediated gene regulation in wheat-rhizoctonia-microbiome interactions and possible effect of such
interactions in the context of disease suppressive soils. We proposed involvement of sRNAs from three components: i) plant host, ii). fungal
pathogen, iii). bacterial community, with possible multidirectional interactions. During the complex interaction of plant association with rhizosphere
community, Inter-kingdom signalling might happen in such a way that plant sRNAs (A) could be taken up by fungal (B) (Cai et al., 2018) and
bacterial (C) cells thereby mediating regulation of their genes (Teng et al., 2018). In the second case, fungal pathogens can secrete sRNA effectors
into host cells to suppress host immunity (Wang et al., 2017a) and bacterial transcripts. Although there is no direct evidence of fungal sRNAs silencing
bacterial genes, this concept may bear testing in suppressive soils as members of the bacterial community have been identified as key components
that contribute to the suppressive capacity of a soil. In the third case, bacteria can incorporate their sRNAs to modulate host genes (Ren et al., 2019)
and also can alter the expression of fungal genes (Chen et al., 2018). The possible effect of this inter-kingdom signalling in suppressive (SP) and non-
suppressive (NSP) soils could be as follows: 1. In SP; either bacterial or host sRNAs can decrease the expression of the fungal virulence genes resulting
in increased expression of plant immunity genes. In NSP soils the fungal cell may be free to secrete sRNA virulence factors that supress expression of
plant immunity (such as disease resistance proteins, WRKY transcription factors, s AP2/ERF factors as evident from previous studies (Wang et al.,
2017a; Wang et al., 2017b; Jian and Liang, 2019)) thereby increasing the disease symptoms. Although it is out of the scope of this paper, it is important
to consider intra-kingdom signalling within (A–C) that might play a role in fine tuning the composition and/or function of the microbiome along as
well as respond to environmental factors.
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Argonaute proteins of fungal cells or move out freely (Mendes

et al., 2013). Recent studies on -omics tools suggest the

involvement of several bacterial groups and some fungal

genera in disease suppressive activity to R. solani AG8 in

crops like wheat (Penton et al., 2014; Davey et al., 2021).

Whether sRNAs act as a mediator of gene regulation between

these bacterial and fungal communities is uncertain and deserves

further investigation. For example, it would be interesting to

determine whether regulation of fungal virulence genes is

mediated by bacterial sRNAs.

Figure 2 outlines the hypothesis concerning possible cross-

kingdom silencing and the possible cause and effect interactions

that occur in suppressive and non-suppressive soils. To be able to

identify and design efficient management options to reduce

disease incidence through disease suppressive microbiomes, it

is important to decode the fundamental questions pertaining to

plant and microbiome research.

Tools and techniques to study
rhizobacterial communities

Over 5 decades different techniques have been developed

to decipher rhizobacterial traits in the context of rhizosphere

competence ranging from single-gene mutagenesis techniques

to -omics technologies (Barret et al., 2011). 16S rDNA-seq or

shotgun DNA seq are the most commonly used techniques for

the detection and quantification of microbiome composition

and/or function. However, these methods have some

limitations such as underrepresentation of species due to

mismatches in primers (Schulz et al., 2017), low taxonomic

resolution due to high DNA sequence similarity of the 16S

rRNA genes (Janda and Abbott, 2007), and (typically) shorter

read lengths. Complex interactions in the rhizosphere can be

studied in terms of patterns in gene expression and regulation

obtained through RNA sequencing of both the host and

microbes (Galindo-González and Deyholos, 2016; Hayden

et al., 2018). Recent investigations have garnered more

interest in non-coding RNAs, operon structure and

antisense RNAs to analyse the functional genomics of soil

communities (Yoder-Himes et al., 2009). The investigation of

sRNAs for information on post transcriptional gene

regulation would provide a more extensive picture of gene

regulatory networks (Prasse et al., 2017). For example,

associated high quality metagenomics data (Thurber et al.,

2009; Jia et al., 2020) could be linked to sRNA sequencing data

to infer species associations between host and microbes at the

post transcriptional regulation level. Recently, sRNA sequence

data was directly used to (A) characterise host miRNA profiles

and (B) conduct metagenomic analyses of the bacterial

communities through homology in the bacterial sRNA

databases (Mjelle et al., 2020). Although less data is

available for sRNAs produced by soil microbes, similar

techniques could be implemented in soil microbiome

studies to complement DNA-based metagenomics data.

Currently, there are three databases available for sRNAs

deposited from different bacterial species; BSRD (Li et al.,

2013), SRD (Sassi et al., 2015), and sRNAdb (Pischimarov

et al., 2012). BSRD is a comprehensive list of published

bacterial sRNA sequences with annotation and expression

profiles, sRD is a database for sRNAs in Staphylococci while

sRNAdb is a database of sRNA sequences from Gram-positive

bacteria. These datasets may prove useful for preliminary

assessment of cross-kingdom signalling and helpful for

developing hypotheses prior to initiating wet laboratory

experiments.

sRNA-mediated regulation of gene
expression in the rhizosphere

Here, we present a concept to study sRNA-mediated

regulation of microbiome gene expression in the rhizosphere

to address the hypotheses outlined in Figure 2. Different

hypotheses could be established prior to designing sequencing

experiments. For example, we hypothesise there will be different

sRNA profiles of microbiomes originating from suppressive and

non-suppressive soils as well as contrasting host wheat root

transcriptomic profiles (Figure 3). Considering that

rhizosphere bacterial sRNAs are posited to silence targeted

wheat genes, then the initial step would be to generate

metagenomic profiles/reference-like genomes from the

rhizosphere microbiome coupled with sRNA sequencing.

Metagenomic and sRNA data could be used together to

develop sRNA expression profiles and wheat transcriptomes

utilized to generate wheat transcriptomic profiles. sRNA

expression profiles could be further investigated to identify

gene targets within the wheat root by utilizing a

corresponding transcriptomics dataset derived from wheat

grown in suppressive and non-suppressive soils. Genes

identified as differentially regulated could then be mapped to

the sRNA dataset to see whether sRNAs are likely regulators of

those genes.

The key question is how these findings can be expanded

beyond metagenomic, sRNA and metatranscriptomic datasets?

Given the availability of resources, such targeted analyses could

be further expanded by developing high-throughput degradome

sequencing of wheat (Kumar et al., 2017) which serves to capture

all degraded RNA products potentially cleaved by sRNAs.

Degradome sequencing is a high-throughput method

developed for transcriptome-wide detection of degraded

uncapped 5′ ends of polyadenylated RNAs and has been

widely used for mapping of sRNAs-mediated cleavage sites on

target genes (Yu et al., 2018). Furthermore, degradome

sequencing helps to offset the false positive or negative results

produced by sRNA computational tools. A regulatory network of
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sRNA: mRNA interactions can advance the understanding of

RNAi mediated gene functions within the system. As degradome

typically provides hundreds to thousands of possible sRNA:

mRNA interactions, the coupling of interesting functional

genes and their corresponding sRNAs could be further

validated experimentally in the laboratory by 5′RACE (Rapid

amplification of cDNA ends) (Regmi et al., 2021), mutagenesis

and/or transient co-expression tests in model plants (Wang et al.,

2017a).

For example, if wheat pathogenesis related genes are silenced

by Pseudomonas bacterial sRNAs (determined from sRNA

profiling, transcriptomics dataset/degradome dataset), then it

can be shown in the laboratory whether these interactions

occur in situ b RACE experiments have been shown to be a

reliable approach to show cross-kingdom RNAi in wheat (Wang

et al., 2017b; Jian and Liang, 2019) but remains a low-throughput

method of capturing sRNAs that mediated mRNA cleavage.

Further evidence for an interaction can be gained from

introducing mutations at the plant candidate cleavage site as a

control (Wang et al., 2017a). Another validation technique would

be assessing the interaction between sRNAs and their respective

target genes by transiently expressing them in a model plant such

as Nicotiana benthamiana (Wang et al., 2017b). These

approaches require a range of microbiology, genomics, and

plant molecular biology skills and as such provide an

opportunity for interaction among different fields of science.

Conclusion

The function and composition of the rhizosphere

microbiome is mediated by a wide range of molecules and

signals with bi-directional communication between the plant

and microbiome (Mendes et al., 2013). While hosts dictate

the shape of microbial communities through rhizodeposition

and secretion of various molecules, microbes also modulate

the environment of the plant and even reprogram the plant to

their advantage (Venturi and Keel, 2016). The current

understanding of cross-kingdom communication through

sRNAs involves several microbe-host systems (Huang

et al., 2019). However, more fundamental research is

required to decode inter-kingdom communication in

plant-microbiome interactions, Given the role of sRNA as

key messengers that regulate different cellular process and

functions, we believe the inclusion of sRNA studies in

rhizosphere microbiome research will serve to shed light

on some of the unanswered questions concerning disease

suppression such as:

FIGURE 3
Method to study interkingdom signalling mediated by sRNAs in a wheat-rhizoctonia-rhizosphere system. At least three different types of
sequencing approaches are required to test the proposed hypothesis: Plant host sRNAs that regulate the activity of bacterial and fungal genes, Fungal
sRNAs thatmediate the regulation of plant and bacterial mRNAs, and Bacterial sRNAsmediate the silencing of plant and fungalmRNAs. Metagenomic
profiling (to characterize microbiome properties within suppressive and non-suppressive soils), small RNA sequencing (to establish the source
and sRNA expression profiles in these two soils), and host + Rhizoctonia transcriptomics data (to compare the differential expressed genes identified
as potential sRNA targets). In this example, we hypothesise that sRNAs originating in the rhizosphere microbiomemay cross to plant tissues, thereby
silencing plant genes. Therefore, we would expect sRNA expression profiles to be different in SP and NSP communities with corresponding changes
to the transcriptomic profiles of wheat genes. Once the sRNA:mRNA pair predictions are made, validation of these target pairs using different
molecular tools such as degradome sequencing, 5′ RACE, mutagenesis tests, and transient co-expression tests can be conducted.
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1. What are the key functions shaping the suppressive

communities?

2. What is the role of the plant host in dictating and mediating

suppressive communities?

3. How do different rhizosphere microorganisms communicate

at intra-kingdom and inter-kingdom levels?

4. What is the role of the plant response, at a molecular level, to

reduced disease impacts in suppressive versus non-

suppressive communities?

Understanding the mechanisms shaping the microbiome

community in contrasting environments, in this case

suppressive and non-suppressive communities, provides a

range of opportunities to modulate these communities for the

benefit of agriculture through different avenues such as i)

modified farming practices to encourage the development of

suppressive soils by modification of the microbial communities,

ii) modification of host genetics/immunity to support disease

suppression, and iii) development of synthetic communities

conferring stable disease suppression.
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