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Exposure to Pb is widely spreading and has far-reaching negative effects on

living systems. This study aimed to investigate the toxic effects of Pb, through

biochemical profiling and the ameliorative effects of quercetin against Pb-

toxicity. Twenty-five male Wistar albino mice were divided into the following

five groups. The CON-group received normal saline; the Pb-group received

PbAc; the Pb + Q-CRN group received lead acetate followed by quercetin; the

Q-CRN group received quercetin; and the CRN group received corn oil. After

4 weeks, the mice were euthanized. It was speculated that Pb significantly

increased the levels of serine, threonine, and asparagine and decreased the

levels of valine, lysine, and glutamic acid in the plasma of Pb-group, thus

impairing amino acid metabolism. However, in the Pb + Q-CRN group, the

level of these six amino acids was restored significantly due to the ameliorative

effect of quercetin. The presence of lipid metabolites (L-carnitine, sphinganine,

phytosphingosine, and lysophosphatidylcholine) in mice serum was confirmed

by ESI/MS. TheGPx, SOD, GSH, andCAT levels were significantly decreased, and

the MDA level was significantly increased, thus confirming the oxidative stress
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and lipid peroxidation in the Pb group. The antioxidant effect of quercetin was

elucidated in the Pb +Q-CRN group. Expression of CPT-I, CPT-II, LCAT, CROT,

CACT, andMTR geneswas significantly upregulated in the liver of Pb goupmice.

Hence, the findings of this study proved that Pb exposure induced oxidative

stress, upregulated gene expression, and impaired the lipid and amino acid

metabolism in mice.
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1 Introduction

Metabolomics is the study of metabolites and metabolism

occurring in an organism. Metabolomics can also be defined as

the metabolite composition or the metabolomes in the organism,

organ, tissue, or cell (Turi et al., 2018). Metabolomics is one of the

branches of “omics” science. The omics science has several branches,

including genomics, proteomics, transcriptomics, inomics,

phenomics, and metabolomics (Chakraborty et al., 2022). The

definition of metabolomics is the quantitative and qualitative

characterization of smaller molecules that show some changes in

response to stimuli from external and internal sources, having a

molecular weight of less than 1,000–1,500 Da (Belhaj et al., 2021).

From genomics to proteomics, the information provided signifies

the occurrence in the cell (that affects phenotype, epigenetic

regulation, and post-translational modifications). However, on

the other hand, metabolomes help capture the physiology or

pathophysiology of the host and its response to the environment

(Manzoni et al., 2018). Metabolomics is widely used in different

disciplines and is a valuable tool in the investigation of biomarkers

(Klein and Shearer, 2016; Zhang et al., 2016), drug discovery (Lu and

Chen, 2017; Mercier et al., 2018), conformation of

biotransformation pathways (Ren et al., 2016; Zhang et al., 2016),

and pathogenesis of diseases (Ren et al., 2016; Würtz et al., 2016).

Metabolomics studies not only help in the identification of

endogenous substances in biological samples such as blood,

urine, etc. but also help explain the differences among different

conditions by performing statistical analysis. Toxicology, nutrition,

clinical trials, and pharmacology-like fields have already utilized

metabolomics studies for different purposes (Brignardello et al.,

2017; Korsholm et al., 2017).

Lead (Pb) is a bluish–grey metal present in the crust of the

Earth. For many years, Pb has been employed in a variety of

industrial, agricultural, and home purposes (Kumar et al., 2020).

Nowadays, mankind is more exposed to Pb due to human-

induced activities such as oxide synthesis for pigments and

paints, burning of fossil fuels, production of lead-acid

batteries, mining, and different manufacturing processes

(Rehman et al., 2018; Briffa et al., 2020). Some other sources

of lead exposure are lead industries, mining, ceramics, petrol

pumps, printing press, lead pipes, cosmetics, toys, jewelry, and

soil (Qader et al., 2021). The human body is exposed to Pb via

inhalation and ingestion routes of contaminated food and water.

After entering the body, Pb is absorbed through the intestinal

route and distributed to different tissues via blood supply. It is

accumulated in the soft tissues (brain, liver, spleen, and lungs),

bone, and blood in the body (Abd El-Hack et al., 2019). When Pb

enters the body, it interacts with proteins and inhibits calcium

action, amide, and sulfhydryl enzymes. The main route of its

toxicity is oxidative stress in the liver, resulting in the suppression

of antioxidant enzymes such as catalase, superoxide dismutase

(Chakraborty et al., 2022), glutathione reductase (GR), and

glutathione peroxidase (GPx) (Ramah et al., 2019; Rozier and

Liebelt, 2019). The GSHmolecule has the sulfhydryl group–SH in

its structure to whom Pb has a greater affinity (Vacchi-Suzzi

et al., 2018; Balali-Mood et al., 2021). Lead increases the level of

reactive oxygen species (superoxide (O2-), hydroperoxide

(−O−O−H), and hydrogen peroxide (H2O2) and leads to

alteration in lipid metabolism, DNA damage, gene expression,

membrane integrity, and different physiological processes

(Balali-Mood et al., 2021). Lead can also interfere with the

synthetic pathway of heme, and thus it is also responsible for

anemia (Rehman et al., 2018; Javorac et al., 2021).

Quercetin [2-(3,4-dihydroxyphenyl)-3,5,7-

trihydroxychromen-4-one] is a bioflavonoid compound that

contains many phenol rings. It can be obtained from plants

and is also found in many fruits and vegetables (Figure 1). The

beneficial effects of quercetin are associated with its structure

(Akinmoladun et al., 2020). It is known for its antihypertensive,

anti-obesity, anti-atherosclerotic, anti-inflammatory,

vasodilatory, and anti-hypercholesterolemia activities. The

molecular formula of quercetin is C15H10O7, and its chemical

structure is also shown in Figure 1. It has unsaturated and

phenolic hydroxyl groups that are responsible for its strong

antioxidant activity. The anti-inflammatory and antioxidant

properties of quercetin are responsible for its role in the

treatment and prevention of cancer and cardiovascular

diseases (Yang et al., 2020). Quercetin has strong antioxidant

activity due to which it is widely used in traditional Chinese and

botanical medicine (Xu et al., 2019). Quercetin, by following

different pathways, can prevent the biological system from the

damage induced by reactive oxygen species (ROS) (Taşlı et al.,

2018). Quercetin’s antioxidant action is primarily demonstrated

by its effects on ROS, GSH, signal transduction pathways, and
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enzymatic activity (Xu et al., 2019). It is also thought that by

inhibiting lipid peroxidation, quercetin can prevent several

degenerative diseases (Akinmoladun et al., 2020).

This study aims to determine the effect of Pb toxicity on

serum metabolomes of lipid and amino acid metabolism in the

mouse model. The gene expression of CPT-I, CPT-II, LCAT,

CROT, CACT, and MTR has been investigated by qRT-PCR. In

this study, after Pb toxicity, the post-treatment with quercetin

blended in corn oil helps in determining the ameliorative effect of

quercetin against lead toxicity impaired metabolism through

biochemical profiling.

2 Methodology adopted

2.1 Chemicals and assay kits

Lead acetate (PbAc) (Merck & Co., New Jersey, United States),

quercetin (BEARS ORGANICS, LLC, Mapleton, Utah,

United States), glutathione (GSH) (Catalog Number; E-EL-

R2491, Elabscience Biotechnology Inc. Houston, Texas,

United States), superoxide dismutase (SOD) (Catalog Number;

E-BC-K020, Elabscience Biotechnology Inc. Houston, Texas,

United States), catalase (CAT) (Catalog Number; E-BC-K106,

Elabscience Biotechnology Inc. Houston, Texas, United States),

glutathione peroxidase (GPx) (Catalog Number; E-BC-K096,

E-EL-R2491, Elabscience Biotechnology Inc. Houston, Texas,

United States), malondialdehyde (MDA) (Catalog Number;

E-EL-0060, Elabscience Biotechnology Inc. Houston, Texas,

United States), TRIzol reagent (Biobasic BS410A-MA18DR0J,

Markham, Ontario, Canada), SYBR Green Master Mix reagents

(Thermo Fisher Scientific, Waltham, Massachusetts, United States),

cDNA Synthesis Kit (Thermo Scientific RevertAid First-Strand

cDNA Synthesis Kit) (Thermo Fisher Scientific, Waltham,

Massachusetts, United States), and methanol (HPLC-grade). All

standards (purity 95%) for the amino acid analyzer (AAA) were

purchased from Sigma-Aldrich (St. Louis, Missouri, United States).

2.2 Preparation of solutions

Lead acetate was available in white powder form. The

solution of PbAc was prepared in distilled water as it was

soluble in water. The dose of PbAc (120 mg/kg) was

FIGURE 1
Sources and molecular structure of quercetin.
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calculated for individual mice and then dissolved in 0.5 ml of

distilled water. Quercetin was available in the form of a coarse

powder. It was insoluble in water. For its administration to mice,

it was blended in corn oil after calculating the quercetin

(50 mg/kg) dose for individual mice. Both PbAc and Que are

administered by the oral gavage route to mice.

2.3 Experimental design

The study was conducted on 25 Wistar albino mice aged

9 weeks and weighing 30 ± 5 g. During the experimental study,

animals were kept in the animal house of Government College

University, Faisalabad (GCUF), Pakistan, and acclimatized for

7 days. Mice remained in a well-ventilated and air-conditioned

animal room under standard conditions of temperature, 25 ±

2°C, a dark light cycle of 12–12 h, and relative humidity of 50 ±

5%. Mice were fed a pellet diet and would have ad libitum access

to water. The experimental protocols of this study were followed

by the guidelines of “The Institutional Review Board of GCUF”

and ethical standards and procedures for research on

experimental animals with an authorized reference number

Ref. No. GCUF/ERC/32. After acclimatization for 1 week,

25 mice were randomly divided into five groups. The first

group received normal saline and was designated as the CON

group. The second group was exposed to PbAc at a dose of

120 mg/kg by oral gavage and was designated as the Pb

group. The third group was first exposed to PbAc (120 mg/kg)

and then treated with quercetin (50 mg/kg) blended in corn oil by

oral gavage and designated as the Pb + Q-CRN group. The fourth

group was treated with quercetin 50 mg/kg blended in corn oil by

oral gavage and was designated as the Q-CRN group. The fifth

group received corn oil by oral gavage to investigate any

interference in the biochemical profiling due to the

administration of corn oil and was designated as the CRN

group. The doses of PbAc (120 mg/kg) (Highab et al., 2020)

and quercetin (50 mg/kg) (Mert et al., 2019) were adjusted based

on the reports available in the literature. Quercetin was not

soluble in water, so it was blended in corn oil to administer it as

suggested in previous studies (Mert et al., 2019; Mirzakhani et al.,

2020). All the treatments were given to mice daily via oral gavage

for 4 weeks in the morning. After 28 days, the mice were starved

overnight. After anesthetizing the mice, they were euthanized by

dislocating the cervical bone. This method is ethically acceptable

for killing rodents such as mice, rats, squirrels, etc. After

euthanizing the mice, whole blood was taken out of their

bodies through cardiac puncture for serum and plasma

separation for biochemical analysis. The liver was obtained

after the dissection of mice for the evaluation of mRNA

expression and antioxidant activity. The liver and whole blood

were stored in the refrigerator at 4°C. However, the separated

plasma and serum were preserved at −20°C and −80°C,

respectively, for further analysis.

2.4 Estimation of biomarkers of oxidative
stress and lipid peroxidation

The liver of mice was obtained and placed in clean polythene

bags, washed with ice-cold 0.01M phosphate buffer saline solution

(pH 7.4), which was prepared by dissolving one PBS tablet in 200ml

of distilled water. According to the instructions of the manufacturer,

each tablet yields 0.01M PBS, with a pH of 7.4. This step was

repeated thrice to ensure the complete removal of blood and other

contaminants present. The liver was thenminced, and approximately

1 g was taken out for analysis. The tissue and PBS were homogenized

using a manual tissue homogenizer in such a way that the ratio of

tissue to PBS was 1:9. To ensure the breakdown of tissues, the

resulting homogenized solution was further sonicated, following

which the homogenate was centrifuged for 10 min at 10,000 × g

and 4°C to separate the debris. The supernatant of liver tissues was

collected and used for the estimation of lipid peroxidation

(malondialdehyde) and oxidative stress markers (GSH, SOD,

CAT, and GPx) using their corresponding ELISA kits according

to the manufacturer’s instructions (Irshad et al., 2021).

2.5 Evaluation of mRNA expression of
impaired lipid and amino metabolism
linked gene transcripts

The expression of CPT-I, CPT-II, LCAT, CROT, CACT, and

MTR genes was evaluated by qRT-PCR. First, the total RNA pellets

were isolated by utilizing the TRIzol reagent (Biobasic BS410A-

MA18DR0J) from the liver tissue homogenates that were preserved

at 4°C. Then, cDNA was synthesized using the Thermo Scientific

RevertAid First-Strand cDNA Synthesis Kit. After the RT reaction,

qRT-PCR steps were carried out by filling qRT-PCR plates and

making up the volume of each well by 20 μL by using the SYBR

Green Master Mix reagents (Thermo Scientific). The primers were

designed by Custom DNA Oligos-Eurofins Genomics, and the

sequences of the primers are listed in Table 1. The prepared

qRT-PCR plate was run on qRT-PCR at thermal cycles of 95°C

for 10 min, followed by 40 cycles (denaturation for 15 s at 95°C and

annealing for 30 s at 60°C) using a real-time PCR machine. The β-
actin genewas selected as an internal reference or housekeeping gene

to normalize the gene expression levels. Fold changes in selected

genes were calculated by the 2- ΔΔCt method.

2.6 Detection and quantification of amino
acids by amino acids analyzer

For plasma separation, the whole blood that was taken in an

EDTA tube was centrifuged at 2000 rpm for 20 min at 4°C. The

separated plasma collected in the Eppendorf tube was stored

at −20°C and used for amino acid analysis with the help of the

Biochrom Amino Acid Analyzer (AAA).
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2.6.1 Deproteinization of the blood sample

The deproteinization of plasma was carried out with 5-

sulfosalicylic acid by following the manufacturer’s instructions

(Kim et al., 2017). The separated plasma was mixed with a 3%

5-sulfosalicylic acid (3 g of 5-SSA in 100 ml of distilled water)

solution in a ratio of 1:1. The sulfosalicylic acid leads to the

precipitation of proteins in plasma. The contents of the tube

TABLE 1 List of primers employed in qRT-PCR analysis of targeted genes.

Gene name Gene symbol Primer (59–39) Target size (bp)

β-actin β-Actin Forward CCCATCTATGAGGGTTACGC 150

Reverse TTTAATGTCACGCACGATTTC

Carnitine palmitoyl transferase I CPT I Forward ATCCACCATTCCACTCTGCT 107

Reverse TGTGCCTGCTGTCCTTGATA

Carnitine palmitoyl transferase II CPT II Forward CTGTCCACCAGCACTCTGAA 111

Reverse GCAACCTATCCAGTCATCGT

Ecithin–cholesterol acyltransferase LCAT Forward CTCCTTCTGGCTCCTCAATG 171

Reverse TCCTCTGTCTTTCGGTAGCAC

Carnitine O-octanoyltransferase CROT Forward AGACGGAAGGGAGATGGAG 168

Reverse AAGATGTGAAGGTAGATGCTGCT

Mitochondrial carnitine/acylcarnitine carrier protein CACT Forward TTCTCCACTGCTGCTCCTG 100

Reverse CCTGTCTGCTCCCATTCAG

5-methyltetrahydrofolate-homocysteine methyltransferase MTR Forward GGTTCGGTTGAAGAAGAGGA 112

Reverse TATTACAGCCCAGCACCACA

FIGURE 2
Schematic representation of serum separation and sample pretreatment for metabolite acquisition by MS/MS.
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were mixed immediately and then allowed to stand for 30 min at

4°C, following which, the Eppendorf tube was then centrifuged at

10,000 × g at 4°C for 5 min until a clear supernatant was obtained.

2.7 Qualitative analysis of lipid
metabolomes by MS/MS

The whole blood was centrifuged at 3,500 × g for 10 min at 4°C,

and the serum was collected. The serum was then stored at −80°C

before the metabolomics analysis. The serum sample was pretreated

by adding 600 μL of cold methanol to 200 μL of the serum and

shaking vigorously. The mixture was stored for 10 min, followed by

centrifugation at 12,000 × g for 10 min at 4°C. The supernatant was

then filtered through 0.22-μm polytetrafluoroethylene polymer

(PTFE) filters before injection into an ion trap mass

spectrometer for tandem mass spectrometry (MS/MS). Serum

separation and sample pretreatment for metabolite acquisition by

ESI-MS are shown in Figure 2. The general conditions for sample

analysis by MS/MS are shown in Table 2. The qualitative analysis of

serum metabolomes by MS/MS was performed at the National

Institute of Biotechnology and Genetic Engineering (NIBGE),

Faisalabad, Pakistan.

2.8 Statistical analysis

The results were estimated as mean ± SD. One-way ANOVA

was used to determine the significant difference between the

groups when the value of probability was considered as (p < 0.05)

by using GraphPad Prism 5 (GraphPad Software Inc, La-Joya,

CA, United States). The graphical data were represented as

mean ± SD.

3 Results

3.1 Effect of PbAc on biomarkers of
oxidative stress and lipid peroxidation

The findings of our study represented a significant (p < 0.05)

decrease in SOD, GSH, GPx, andCAT levels after the intoxication of

mice with PbAc as compared to the CON group (Figure 3). We also

determined a significant (p < 0.05) elevation inMDA levels after the

intoxication of mice with PbAc as compared to the CON group

(Figure 3E). The most effective method for this restoration of the

antioxidant system is the use of naturally occurring antioxidants. In

the present study, the natural flavonoid quercetin was used. In the

Pb + Q-CRN group, the findings showed that when Pb-intoxicated

mice were treated with quercetin blended in corn oil, the levels of all

the above-mentioned biomarkers were restored significantly (p <
0.05) as compared to those of the PbAc exposure group. Thus, our

study confirmed the tendency of PbAc to cause oxidative stress and

lipid peroxidation in mice and the ameliorative effect of the

bioflavonoid quercetin in treating oxidative stress and lipid

peroxidation. The level of MDA was also significantly increased

in the corn oil group, thus confirming the effect of corn oil on lipid

peroxidation.

3.2 Effect of PbAc on gene expression of
impaired lipid and amino metabolism

We observed that when the diseased group of mice exposed to

PbAc was compared with the CON group for determining the

expression of carnitine palmitoyltransferase-I (CPT-I), carnitine

palmitoyltransferase-II (CPT-II), lecithin–cholesterol

acyltransferase (LCAT), carnitine O-octanoyltransferase (CROT),

mitochondrial carnitine/acylcarnitine carrier protein (CACT), and

5-methyltetrahydrofolate-homocysteine methyltransferase (MTR)

genes, it was found that a significant (p < 0.05) upregulation in

the expression of these genes in the Pb exposed group was observed

as compared to that of the CON group (Figure 4). However, the

findings confirmed that the overexpression of these genes was

reduced significantly (p < 0.05) in the Pb + Q-CRN group as

compared to the diseased Pb group. This also confirmed the

beneficial effect of quercetin against Pb toxicity in mice.

3.3 Effect of PbAc on the area percent of
amino acids in mouse plasma

When the diseased group of mice exposed to PbAc was

compared with the CON group for determining the

TABLE 2 General conditions for sample analysis by MS/MS.

Instrument Linear ion trap mass spectrometer model;
LTQ XL (Thermo Electron Scientific,
United States) equipped with electrospray
ionization source

Solvent Methanol

Mode of injection Direct insertion method

Flow rate 9.8 μL/min

Mode of ionization Both negative and positive scan ion modes

Capillary voltage 4.7 kV

Capillary
temperature

278°C

Sheath gas flow rate 17 units

Auxiliary gas flow
rate

Six units

Scanning mass range 50–2000°m/z

Fragmentation
(MS/MS)

Various peaks were selected for fragmentation, using
collision-induced dissociation (CID) energy ranging from
20–30

Software Xcalibur 2.0.7
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difference in the area percent of serine, threonine, and

asparagine amino acids, it was found that Pb exposure

significantly (p < 0.05) increased the area percent of serine

(Figure 5A), threonine (Figure 5B), and asparagine amino

acids (Figure 5C) as compared to the CON group. However,

the levels of valine (Figure 5D), lysine (Figure 5F), and

FIGURE 3
Effect of intoxication of Pb on the liver (A) GSH, (B) SOD, (C) CAT, (D) GPx, and (E) MDA and the ameliorative effect of Que. The levels of GSH,
SOD, CAT, GPx, andMDAweremeasured at the end of the experiment in the hepatic tissue homogenate. The level of significancewas set at p < 0.05,
and the data were analyzed using one-way ANOVA followed by Tukey’s test to compare all pairs of columns. The results were expressed as mean ±
SD. Abbreviations: GSH: glutathione; SOD: superoxide dismutase; CAT: catalase; GPx: glutathione peroxidase; MDA: malondialdehyde; CON:
control group; Pb: lead group; Pb + Q-CRN: lead and quercetin blended in corn oil group; Q-CRN: quercetin blended in corn oil group; CRN: corn
oil group; ANOVA: analysis of variance.
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glutamic acid (Figure 5F) amino acids were significantly (p <
0.05) reduced in the Pb group. However, the level of the

above-mentioned amino acids was restored in the Pb +

Q-CRN group when compared to the diseased Pb

group, showing the beneficial effect of quercetin against

Pb toxicity.

FIGURE 4
Bar diagram represents the effect of PbAc on mRNA expression of the (A) CPT I, (B) CPT II, (C) LCAT, (D) CROT, I CACT, and (F) MTR genes in
different mice groups, i.e., CON, Pb, Pb + Q-CRN, Q-CRN, and CRN groups, respectively. The quantitative analysis was carried out at the end of the
experiment of 28 days. The significance level was set at (p < 0.05) by using one-way ANOVA followed by Tukey’s test to compare all pairs of columns.
Each error bar represents the mean ± SD. Abbreviations: CPT I carnitine palmitoyltransferase I; CPT II: carnitine palmitoyltransferase II; LCAT:
lecithin–cholesterol acyltransferase; CROT: carnitine O-octanoyltransferase; CACT: mitochondrial carnitine/acylcarnitine carrier protein; MTR: 5-
methyltetrahydrofolate-homocysteine methyltransferase; CON: control group; Pb: lead group; Pb +Q-CRN: lead and quercetin blended in corn oil
group; Q-CRN: quercetin blended in corn oil group; CRN: corn oil group; ANOVA: analysis of variance.
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3.4 Effect of PbAc on serum lipid
metabolomes

In this study, the qualitative analysis of serum samples of

two important groups was performed. The first was the

diseased group that was exposed to Pb only, and the

second was the treated group, to whom, after Pb exposure,

the mice were treated with quercetin blended in corn oil. Four

important lipid metabolites were identified from both the

positive and negative modes of the full MS/MS scan. The

FIGURE 5
Effect of intoxication of PbAc on area percent of (A) serine, (B) threonine, (C) asparagine, (D) valine, I(E) lysine, and (F) glutamic acid in the plasma
of differentmice groups, i.e., CON, Pb, Pb +Q-CRN,Q-CRN, and CRNgroups, respectively. The quantitative analysis was carried out at the end of the
experiment of 28 days. The significance level was set at (p < 0.05) by using one-way ANOVA followed by Tukey’s test to compare all pairs of columns.
Each error bar represents the mean ± SD. Abbreviations: Ser: serine; Thr: threonine; Asn: asparagine; Val: valine; Lys: lysine; Glu: glutamic acid;
CON: control group; Pb: lead group; Pb + Q-CRN: lead and quercetin blended in corn oil group; Q-CRN: quercetin blended in corn oil group; CRN:
corn oil group ANOVA: analysis of variance.
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compounds detected in both the Pb and Pb + Q-CRN groups,

their molecular formula, molecular weight, precursor m/z,

and product ion m/z are elaborated in Table 3.

3.4.1 L-Carnitine
L-Carnitine belongs to the fatty acid β-oxidation which is a

sub-pathway of lipid metabolism. The molecular weight of

carnitine is 162. In the MS/MS spectrum, it showed its peak

at 160.75, confirming its presence in the serum sample in the

negative ion mode of the MS/MS spectrum. The peak of carnitine

is shown on the extreme right side of the graph. After the removal

of a water molecule, the carboxylic group and ethanoic acid

carnitine showed their fragment peaks at m/z of 142.9, 117, and

103.08, respectively, as represented in Figure 6.

3.4.2 Phytosphingosine
Phytosphingosine belongs to the sphingolipid

metabolism, which is a sub-pathway of lipid metabolism.

The molecular weight of phytosphingosine is 317. In the

MS/MS spectrum, we observed a peak at 318, which

confirmed its presence in the serum sample in the positive

ion mode of the MS/MS spectrum. After the removal of a

single water molecule and 2-hydroxyethyl amine,

phytosphingosine showed its fragment peak at an m/z of

300 and 256, respectively, as represented in Figure 6.

3.4.3 Sphinganine
Sphinganine belongs to sphingolipid metabolism, which is a

sub-pathway of lipid metabolism. The molecular weight of

sphinganine is 302. In the MS/MS spectrum, the peak was

observed at 303, which confirmed its presence in the serum

sample in the positive ion mode of the MS/MS spectrum. After

the removal of a water molecule, the peak was observed at an m/z

of 285. The MS spectrum also showed sphinganine fragments

after the removal of the alkyl chain of 8, 9, 13, and 14 carbons and

showed its peak at m/z of 190.3, 176.3, 119.92, and 106,

respectively. The peak at 190.3 overlapped with another peak

at an m/z of 191.08, which was thought to be due to the presence

of an isotope. It also showed a fragment after the rearrangement

at an m/z of 150, as represented in Figure 6.

3.4.4 Lysophosphatidylcholine
Lysophosphatidylcholine (LysoPC) belongs to the lysolipid

metabolism, which is a sub-pathway of lipid metabolism. The

molecular weight of lysophosphatidylcholine (LysoPC) is 523. In

the MS/MS spectrum, its peak was observed at 546, which

confirmed its presence in the serum sample in the positive ion

mode of the MS/MS spectrum after the addition of a sodium

molecule. After the removal of a trimethylammonium ion, the

rest of the fragment molecule showed its peak at m/z of 487, as

represented in Figure 7. This peak was further fragmented into

full ms 3 as shown in Figure 7, and the product ion peaks of

LysoPC appear at the m/z of 341, 404, and 443.

4 Discussion

Exposure to Pb is widely spreading, and it has far-reaching

negative effects on the physiological mechanism. To date, only a

few studies have reported the metabolomics analysis of Pb

exposure. In these studies, plasma and urinary metabolites

were determined in the participants after occupational and

residential Pb exposure (Dudka et al., 2014; Eguchi et al.,

2018; Kelly et al., 2020). The current study exhibited the

potentially harmful effect of Pb on oxidative stress, gene

expression, and lipid and amino acid metabolism by inducing

Pb intoxication with the help of PbAc, and then the ameliorative

effect of plant-derived bioflavonoid compound quercetin against

Pb toxicity has also been demonstrated in the experimental male

Wistar albino mice.

The finding of this study demonstrated that the level of

SOD, GSH, GPx, and CAT was decreased in the Pb-

intoxicated mice group and was responsible for oxidative

stress in mice, as the same has also been reported in some

previous studies (Wang et al., 2013; Javorac et al., 2021). The

levels of SOD, GSH, GPx, and CAT were increased in the Pb +

Q-CRN group because of the antioxidant activity of

bioflavonoid quercetin as already reported in previous

studies (Crown et al., 2019; Akinmoladun et al., 2020). The

administration of corn oil to mice did not have any effect on

SOD levels (Haggag Mel et al., 2014).

TABLE 3 Compounds detected and confirmed in the serum sample of mice.

Compound Molecular
formula

Molecular
weight

Polarity Precursor ion
(m/z)

Product ion (m/z) Detected in

Pb
group

Pb + Q-CRN
group

Carnitine C7H16NO3 162 Negative 160.75 142.9, 117, and 103.08 ✓ ✓
Sphinganine C18H39NO2 302 Positive 303 285, 190.3, 176.3, 150,

119.92, and 106
✓ ✓

Phytosphingosine C18H39NO3 317 Positive 318 300 and 256 ✓ ✓
Lysophosphatidylcholine C26H54NO7P 523 Positive 546 487, 341, 404, and 443 ✓ ✓
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Blood Pb toxicity is also responsible for disturbing the heme

biosynthetic pathway. In the blood, Pb inhibits δ-aminolevulinic

acid dehydratase (ALAD), and thus the concentration of

aminolevulinic acid (ALA) is increased in the blood, which

leads to oxidative stress in the body (Qader et al., 2021). It

was presumed that the high level of ALA was responsible for

increasing the level of MDA in Pb-intoxicated mice (Wang et al.,

2013; Kasperczyk et al., 2015; Javorac et al., 2021). However, the

level of MDA was restored in the Pb + Q-CRN group because of

the antioxidant activity of bioflavonoid quercetin, as also

confirmed in previous studies (Crown et al., 2019;

Akinmoladun et al., 2020). There was also a significant

increase in the level of MDA in the CRN group because corn

oil was responsible for increasing lipid peroxidation in the mice,

as reported in a previous study (Haggag Mel et al., 2014).

CPT-I is present at the outer mitochondrial membrane

(Figure 8), and CPT-II is present on the inner mitochondrial

membrane (Figure 8), both of which are responsible for

catalyzing the reactions as described in Figures 9, 10

respectively (Wang et al., 2011; Joshi and Zierz, 2020).

CACT is located on the inner mitochondrial membrane. Its

function is the translocation of free carnitine and acylcarnitine

molecule as shown in Figure 8 (Wang et al., 2011; Joshi and Zierz,

2020). The expression of CPT-I, CPT-II, and CACT was

upregulated, strongly suggesting that the level of carnitine

would also be elevated in the mice serum. The findings of our

study were supported by those of a previous study that confirmed

that Pb exposure was responsible for DNA hypermethylation,

thus causing the upregulation of genes (Sun et al., 2017). The

level of carnitine and expression of these genes were also

upregulated in the findings of some other studies (Shen et al.,

2013; García-Sevillano et al., 2014a; Wang et al., 2015).

The LCAT gene is responsible for giving instructions for the

synthesis of the LCAT enzyme that removes cholesterol from

the tissues and blood of the body and synthesizes the LysoPC in

plasma as shown in the following reaction (Figure 11). The

expression of the hepatic LCAT gene was upregulated after lead

exposure (Sun et al., 2017). The findings of our study suggested

that the level of LysoPC would also be increased in serum

samples of mice after Pb toxicity, as it was also increased after

FIGURE 6
MS/MS spectrum of L-carnitine, phytosphingosine, and sphinganine in negative and positive ionmode, respectively. Eachm/z peak is circled by
a color similar to the color of the border of its structure.
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arsenic exposure in rat’s serum by disrupting the

transformation of LysoPC (García-Sevillano et al., 2013;

García-Sevillano et al., 2014a; García-Sevillano et al., 2014b;

Wang et al., 2015).

Sphinganine and phytosphingosine were also detected in the

serum samples of mice. In the lipid metabolic pathway,

sphinganine and phytosphingosine are part of sphingolipid

metabolism, which is related to the homeostasis of

phosphatidylcholine (PC) (Quinville et al., 2021). We

hypothesized that Pb exposure increases the level of

sphinganine and phytosphingosine by increasing sphingolipid

metabolism (Liu et al., 2021). The results of another study

concluded that Pb exposure was responsible for decreasing the

level of sphinganine and sphingosine in blood plasma (Kelly

et al., 2020). In another study, it was confirmed that exposure to

arsenic was responsible for elevating the levels of sphinganine

and phytosphingosine (Wang et al., 2015).

CROT encodes a member of the carnitine/choline

acyltransferase family. CROT is present in peroxisomes and is

involved in transesterification reactions. CROT plays an

important role in fatty acid beta-oxidation and lipid metabolism

(Okui et al., 2021). The expression of CROT was also upregulated in

this study, which was also confirmed by some other studies (Ren

et al., 2011; Carlson and Van Beneden, 2014; Sun et al., 2017).

MTR is the gene that provides directions for the synthesis of

the methionine synthase enzyme. Methionine synthase is

involved in the synthesis of methionine (Figure 12). The

living body utilizes this methionine in the synthesis of other

proteins and important compounds (Froese et al., 2019). The

expression of the MTR gene was also upregulated due to lead

toxicity (Wang et al., 2015; Sun et al., 2017).

The amino acids belonging to several interconnected amino

acid metabolic pathways that were significant in our study were

valine, serine, threonine, lysine, glutamic acid, and asparagine.

Some of these amino acids and their metabolic pathways were

significantly dysregulated by Pb exposure, as found in some

previous studies. The exact mechanism of lead toxicity on

amino acid metabolism still needs to be addressed. However,

a hypothesis is provided that the expected mechanism of Pb

toxicity is the chemical affinity of Pb with non-protein and

FIGURE 7
Full ms 2 and full ms 3 spectra of Lysophosphatidylcholine in positive ion mode. Each m/z peak is circled by a color similar to the color of the
border of its structure.
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protein thiols and the Fenton mechanism of generating free

radicals and compromising the antioxidant system in the living

system (Rubino, 2015). However, another study also found that

the dysregulation in the amino acid metabolic pathway is the

common response in both animal and human studies in response

to different toxins. They also suggest that it is an overall reaction

to various toxicants rather than a particular reaction to a

particular toxicant.

The metabolic pathway of these six amino acids is shown in

Figure 13. This study found that the exposure to Pb was

responsible for decrease in the level of valine (Kelly et al.,

2020). The serum valine level was significantly decreased after

exposure to arsenic, which also supported our findings (Wang

et al., 2015). The level of lysine had a negative correlation with the

Pb level in plasma (Kelly et al., 2020; Li et al., 2020). Exposure to

arsenic was also responsible for decreasing the level of lysine in

plasma (Martin et al., 2015). In our study, the results signified

that the level of glutamic acid had a negative correlation with the

Pb level in the plasma of mice (Kelly et al., 2020; Li et al., 2020). In

another study, the effect of methylmercury (MeHg) on

FIGURE 8
Schematic representation of the functions of CPT I, CPT II, andCACT inmitochondria. CPT I is present at OMM. CPT I attaches a long-chain fatty
acid, acyl CoA (palmitoyl-CoA and octadecenyl-CoA) to carnitine, and the resultant acylcarnitine is transported to themitochondrial matrix by CACT.
CACT is located at the IMM. Once inside themitochondria, acylcarnitine is again converted to free carnitine and Acyl CoA. This free carnitine is again
transported by CACT. The acyl CoA undergoes β-oxidation and is converted to acetyl CoA. The acetyl CoA can be converted into ketone bodies
or enter the TCA cycle. CPT I: carnitine palmitoyltransferase I; CPT II: carnitine palmitoyltransferase II; CACT: mitochondrial carnitine/acylcarnitine
carrier protein; OMM: outer mitochondrial membrane; IMM: inner mitochondrial membrane.

FIGURE 9
Illustrated the conversion of carnitine into acylcarnitine. This reaction is catalyzed by CPT I.
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FIGURE 10
Illustrated the conversion of acylcarnitine into carnitine. This reaction is catalyzed by CPT II.

FIGURE 11
Illustrated the conversion of cholesterol into cholesteryl ester. This reaction is catalyzed by LCAT.

FIGURE 12
Pathway for the synthesis of methionine from S-adenosyl methionine. The MTR gene is responsible for synthesizing the enzyme methionine
synthase that plays an important role in the synthesis of methionine amino acids.
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metabolomics was also determined, and the level of glutamic acid

was also decreased in this study (Reardon et al., 2019).

The Pb toxicity increased the level of serine in the plasma

of mice (Kelly et al., 2020). The serum serine level was

significantly increased after exposure to arsenic, which also

supported our findings (Wang et al., 2015). In another study,

the effect of methylmercury (MeHg) on metabolomics was

also determined, and MeHg was responsible for increasing the

level of serine in Sprague−Dawley rats (Reardon et al., 2019).

Pb toxicity was responsible for increasing the level of

threonine in the plasma of the mice. The effect of Pb

toxicity on threonine level was not explored previously;

however, in another study, MeHg was found responsible

for increasing the level of threonine (Reardon et al., 2019).

In our study, the results showed that the level of asparagine

had a positive correlation with the Pb level in the plasma of

mice (Kelly et al., 2020).

The increase or decrease in the level of amino acids leads

to an impairment in the metabolism of the respective amino

acid. When there is impairment in serine metabolism, then the

activation of T-cells and proliferation of several other immune

cells is compromised (Zhao et al., 2020). The increase in the

level of threonine leads to impairment in protein synthesis,

intestinal health and function, lipid metabolism, and

embryonic stem cell proliferation and differentiation

(Kliegman et al., 2020). Asparagine metabolism was also

disrupted due to Pb exposure, and thus its functions of

synthesizing proteins and neurotransmitters and

detoxification of ammonia were also compromised

(Lomelino et al., 2017). Valine is responsible for

synthesizing proteins and serves as the power supply in the

completion of various reactions. Pb toxicity impaired its

metabolism and ultimately the synthesis of various proteins

(Wolfe, 2017). Lysine is also responsible for synthesizing

proteins, peptides, and non-peptide molecules. The

impairment in its metabolism compromised its functions in

the body (Liao et al., 2015). Glutamic acid also played its role

in the body by synthesizing proteins, and the impairment in its

metabolism affected the protein synthesis in the body

(Kliegman et al., 2020).

FIGURE 13
Metabolic pathway of valine, serine, threonine, lysine, glutamic acid, and asparagine. After metabolism, the final product of these amino acids
enters the tricarboxylic acid (TCA) cycle.

Frontiers in Molecular Biosciences frontiersin.org15

Yaqoob et al. 10.3389/fmolb.2022.1029729

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1029729


5 Conclusion

This study investigated the toxic influences of Pb on lipid and

amino acid metabolism and oxidative stress, along with the beneficial

effect of quercetin. Thefindings indicated that Pb causes impairment in

lipid and amino acid metabolism and increased oxidative stress in the

liver. Although the exact mechanism of Pb toxicity against lipid and

amino acid metabolism is still unknown, however, it is speculated that

the impairment in lipid and amino acid metabolism was a general

response of a living system toward different toxicants. However, a

hypothesis is provided that the expected mechanism of Pb toxicity is

the chemical affinity of Pb with non-protein and protein thiols and the

Fenton mechanism of generating free radicals and compromising the

antioxidant system in the living system. It is also hypothesized that Pb

induces its toxic effect on the body through oxidative stress. Hence, the

coadministration of an anti-oxidant bioflavonoid quercetin with Pb

helped in reducing Pb toxicity because of its strong antioxidant activity.

Future perspective

To understand the exact mechanism of Pb toxicity in imparting

the lipid and amino acid metabolism, more investigations are

needed. This study focuses only on the effect of Pb toxicity on

bloodmetabolomics in mice; thus, there is a need to perform similar

studies on urinary metabolomics and humans also. The duration of

this study was 28 days; thus, further studies are required to study the

effect of long-term Pb exposure on metabolomics and thus confirm

its exact pathway of toxicity in impairment of metabolism.
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