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A Disintegrin and Metalloprotease 17 (ADAM17), also called tumor necrosis factor-ɑ
(TNF-ɑ) convertase (TACE), is a well-known protease involved in the sheddase of

growth factors, chemokines and cytokines. ADAM17 is also enrolled in hypertension,

especially by shedding of angiotensin converting enzyme type 2 (ACE2) leading to

impairment of angiotensin 1–7 [Ang-(1–7)] production and injury in vasodilation,

induction of renal damage and cardiac hypertrophy. Activation of Mas receptor

(MasR) by binding of Ang-(1–7) induces an increase in the nitric oxide (NO) gaseous

molecule, which is an essential factor of vascular homeostasis and blood pressure

control. On the other hand, TNF-ɑhas demonstrated to stimulate a decrease in nitric

oxidebioavailability, triggering adisrupt in endothelium-dependent vasorelaxation. In

spiteof theprevious studies, little knowledge is available about the involvementof the

metalloprotease 17 and the NO pathways. Here we will provide an overview of the

role of ADAM17 and Its mechanisms implicated with the NO formation.
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Introduction

Hyperstimulation of the renin-angiotensin system (RAS), mainly associated with other

cardiovascular risk factors, can induce a cascade of deleterious actions, such as an increase in

blood pressure (BP) (Melaku, 2018). Hypertension is a multifactorial disease that results from

the junction of genetic and environmental factors that present neuroendocrine, hemodynamic,

redox and inflammatory components, which combine with each other to induce functional

and structural changes in the cardiovascular system. (Prado et al., 2021).

The most active metabolite of the RAS is angiotensin II (Ang-II), which promotes

vascular injury and hypertension primarily through an interaction with the Ang-II type

1 receptor (AT1R) (Yang et al., 2017). During RAS hyperactivity, there is evidence of

increased activation of AT1R via Ang-II, which promotes translocation of ADAM17 to
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the cell membrane (Xu et al., 2017; Mukerjee et al., 2019). The

ADAM family represents one of the main groups of sheddase

proteases, which promotes proteolysis in the extracellular

domain of integral membrane protein, controlling the

biological activity of membrane proteins (Arribas and Borroto,

2002; Chow and Fernandez-Patron, 2007).

It has been described that ADAM-mediated cleavage may

contribute to the tissue remodeling and dysfunction, as well as

induction of inflammation. Thus, ADAM is related to the

development of cardiovascular diseases (CVD), including

atherosclerosis and hypertension, and may be a potential

pharmacological target in the treatment of these diseases.

(Kawai et al., 2021).

Among members of the ADAM family, ADAM17, also known

as tumor necrosis factor (TNF)-α converting enzyme (TACE), acts

as a metalloproteinase that cleaves the TNF-α precursor (Black et al.,
1997; Kawai et al., 2021). Furthermore, ADAM17 also cleaves the

active extracellular ectodomain of ACE2, releasing a soluble form of

this enzyme (Figure 1), whose pathophysiology importance is not

fully understood. (Melaku, 2018).

Membrane-bound ACE2 induces the production of Ang-

(1–7) from Ang-II in vessel walls and other tissues. The Ang-

(1–7) formed is involved in cardioprotective effects mediated by

its binding and activation of the MasR (Yang et al., 2017),

promoting the release of NO, decreased sympathetic activity

and baroreflex dysfunction, as well as reduced BP levels (Xu et al.,

2017). Thus, the ACE2-Ang-(1–7)-Mas axis counter-regulates

the classic RAS in tissues involved in the maintenance of BP and

homeostasis of the cardiovascular system (Rabelo et al., 2011).

ACE2 deficiency is associated with decreased NO

bioavailability mediated downregulation of aortic endothelial

nitric oxide synthase (NOS) expression (Rabelo et al., 2016).

Furthermore, impairment of the ACE2/Ang-(1–7)/Mas pathway

is associated with increased reactive oxygen species (ROS)

production due to elevation nicotinamide adenine

dinucleotide phosphate oxidase (NADPH oxidase) activity, as

well as increased NO degradation (Rabelo et al., 2008). It has

been shown that ADAM17 knockdown in the brain can restore

ACE2 activity and attenuate the development of hypertension,

suggesting that ADAM17-induced ACE2 cleavage is involved in

the development of neurogenic hypertension (Xia et al., 2013).

On the other hand, the inducible NOS (iNOS)/NO/cGMP/PKG

pathway has also been shown to activate ADAM17, a mechanism

that can limit inflammation (Chanthaphavong et al., 2012).

The role of nitric oxide in
hypertension

Nitric oxide synthesis and regulation

NO is a free radical, gaseous, lipophilic, and highly reactive

(Wu et al., 2021), that induces an important role in the regulation

of vascular homeostasis (Cyr et al., 2020). Numerous evidences

demonstrate that NO plays a central role in the maintenance of

BP. (Ahmad et al., 2018a).

The gaseous molecule is synthesized by three distinct

isoforms of the enzyme NOS, each with different functional

properties and expression patterns: iNOS, neuronal NOS

(nNOS) and endothelial NOS (eNOS). In general, these

proteins are involved in the synthesis of NO and

L-citrulline from oxygen (O2) and L-arginine. (Cyr et al.,

2020). This enzymatic conversion also requires cofactors

such as tetrahydrobiopterin (BH4) and NADPH (Ahmad

et al., 2018a).

Although eNOS is found primarily in vascular endothelial

cells, its expression has been shown in several other cells, such as

renal tubular epithelium, platelets, cardiac myocytes and certain

neurons in the brain (Cyr et al., 2020). Vasodilator agonists, such

as acetylcholine and bradykinin, induce an increase in

intracellular calcium and promote eNOS activation, increasing

NO production in endothelial cells (Ahmad et al., 2018a). The

NO formed in the endothelial cell diffuses into the smooth

muscle cell, activating guanylate cyclase (sGC) and producing

cyclic guanosine monophosphate (cGMP), which in turn

activates protein kinase G (PKG) which mediates intracellular

Ca2+ reduction, thus favoring smooth muscle relaxation (Reinero

et al., 2021).

The role of nitric oxide in vascular
dysfunction

The positive regulation of NO/sGC/cGMP pathway in

hypertension has been emerged as a promising therapeutic

mechanism to drecrease BP (Ahmad et al., 2018a). Reduced

bioavailability of NO contributes to vascular dysfunction in

hypertension (Li et al., 2015; Wang et al., 2022). The term

endothelial dysfunction (ED) is a disorder characterized,

anatomically, by intact endothelial cells (Di Daniele et al.,

2021), but with alteration in the production of endothelium-

derived factors, such as increased synthesis of ROS, abnormal

production of pro-inflammatory cytokines, like TNF-α and

interleukin-1 (IL-1), increased production of cyclooxygenase

(COX) derivatives, such as thromboxane A2 and

prostaglandins H2, E2, and F2α (Félétou, 2009; Bernatova,

2014; Kakabadze et al., 2021). In addition to attenuation of

endothelium-derived hyperpolarizing factor and decreased

production and action of NO.

In general, decreased NO bioavailability in hypertension is

associated with decreased synthesis by eNOS or increased

inactivation of NO by oxidative stress (Pinheiro et al., 2017).

One study has showed a reduced activity and expression of eNOS

in spontaneously hypertensive rats (SHR) (from 4 to 14 weeks),

but not in normotensive Wistar Kyoto (WKY) control, which

may contribute to the development of hypertension (Chou et al.,
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1998). Furthermore, in this genetic model of hypertension, it was

also shown that hyperactivity of NADPH oxidase and the

superoxide (O2
-) produced are associated with reduced NO-

dependent relaxation, ED, and vascular hypertrophy (Zalba

et al., 2000).

In some disease conditions, including hypertension,

activation of NADPH oxidase, especially NOX1 and

NOX2 isoforms, promotes the synthesis of ROS, which causes

the oxidation of BH4 to BH2, resulting in eNOS uncoupling (Li

et al., 2015; Wu et al., 2021). This uncoupling is characterized by

the discrepancy between NO production and eNOS levels, due to

changes in the action of this enzyme, with consequent production

of the O2
- ion instead of NO (Bouloumié et al., 1997; Montezano

and Touyz, 2012; Yuyun et al., 2018).

Nitric oxide and inflammation

Certain cytokines have been reported to act on endothelial cells,

contributing to reduced production and activity of vasodilator

mediators, such as NO (Sprague and Khalil, 2009). As cells of

the immune system are activated in hypertension, they produce

cytokines which act on the adjacent tissue to promote the synthesis

of ROS derived fromNADPH oxidase (NOX1 and NOX2) (Manea,

2010). In the vasculature, for example, cytokine-stimulated ROS

synthesis induces NO inactivation and attenuation of endothelium-

dependent relaxation (Griendling et al., 2021).

It has been reported an increase in arginase expression in

endothelial cells and acute inflammatory cells, with consequent

reduction in L-arginine concentration, the substrate of eNOS

(Cyr et al., 2020). Furthermore, TNF-α has also been shown to

decrease eNOS mRNA levels in human endothelial cells

(Yoshizumi et al., 1993).

TNF-α has already been shown to stimulate ROS production

in endothelial cells, smooth muscle cells, and neutrophils (Madge

and Pober, 2001; Sprague and Khalil, 2009). On the other hand,

the ROS formed activates transcription factors, such as nuclear

factor Kappa-B (NF-κB), which will modulate the gene

expression of adhesion molecules, chemokines, and pro-

inflammatory cytokines (Theofilis et al., 2021), that induce the

activation and infiltration of more immune cells, such as

macrophages, contributing to target organ damage,

characteristic of hypertension (Griendling et al., 2021).

The action of cytokines, such as IL-1β, on macrophages

stimulates the production of large amounts of NO by iNOS

(Szabo, 1995). Increased expression of iNOS in SHR cultured

smooth muscle cells has also been demonstrated (Wu et al.,

1996). Large volumes of NO react with O2
− to produce

peroxynitrite, which can inhibit the activity of eNOS and sGC

(Xia and Zweier, 1997; Leo et al., 2015).

It has been shown that the production of NO by iNOS has an

effective role in the exacerbation of inflammation, which can

promote an increase in leukocyte cytotoxicity during the

inflammatory process, and also in the regulation and increase

of COX-2, which is the enzyme that produces the mediators of

inflammation (Hunter, 2002; Ye et al., 2008).

Nitric oxide interventions in hypertension

Blocking the NO production pathway using pharmacological

tools such as the NOS inhibitor NG-nitro-L-arginine methyl-

ester (L-NAME) has been used to study the importance of NO in

hypertension (Ahmad et al., 2018a). Some studies demonstrate

that inhibition of NO synthesis through oral administration of

L-NAME produces arterial hypertension (Baylis et al., 1992; Seth

FIGURE 1
(A) Structure of ADAM metallopeptidase domain 17 (ADAM17). The structure of ADAM17 can be divided into six domains, all of which have
distinct functions. CANDIS: Conserved ADAM-seventeen Dynamic Interaction Sequence. (B) Shedding of cell surface proteins induced by ADAM17.
ADAM17 function is regulated by phosphorylation of the cytoplasmic domain by intracellular kinases such as protein kinase C (PKC), Polo-like kinase
2(PLK2), Mitogen Activated Protein Kinase (MAPKs). Various substrates, including receptors, cytokines and growth factors are targets of this
protease, undergoing cleavage and release in the soluble form.
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et al., 2016), as well as cardiac remodeling, such as left ventricular

hypertrophy and myocardial fibrosis, in addition to aortic wall

thickening and aortic collagen deposition (Bunbupha et al.,

2015). Corroborating previous reports, Jin et al. (2017) also

demonstrated that L-NAME promoted cardiac dysfunction

accompanied by reduced eNOS expression and NO

bioavailability (Jin et al., 2017).

An important mechanism of L-NAME-induced

hypertension is oxidative stress, since in this model the

uncoupling of eNOS is evidenced, leading to an overwhelming

generation of vascular O2
- (Maneesai et al., 2018). According to

Boonprom et al. (2017), the molecular mechanism related to

cardiac fibrosis of L-NAME hypertensive rats involves the

activation of oxidative stress (Boonprom et al., 2017). It has

already been described that the lipid peroxidation was elevated in

L-NAME-induced hypertension (Kumar et al., 2010; Kumar

et al., 2012). In addition, significantly decreased levels of

catalase (Cat), glutathione peroxidase (GPx) and superoxide

dismutase (SOD) were evidenced in cardiac and aortic tissue

(Sawant and Bodhankar, 2016) and erythrocytes (Kumar et al.,

2012) of rats with L-NAME hypertension (Bunbupha et al.,

2015).

Pro-inflammatory phenotypic alterations are also described

in hypertension induced by NOS inhibition by L-NAME,

including increased expression of vascular cell adhesion

molecule-1 (VCAM-1) and intercellular adhesion molecule-1

(ICAM-1) in the vascular wall (Luvara ̀ et al., 1998). Elevated
transforming growth factor beta 1 (TGF-β1) plasma levels and

renal TGF-β1 expression have also been reported, indicating that

the raise in TGP-β1 expression may be related to renal and

FIGURE 2
Role of ADAM17-mediated shedding and nitric oxide (NO). The Angiotensin-II (Ang-II) binding into Ang-II type 1 receptor (AT1R) induces the
calcium concentration increase, which promotes nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) stimulation and increases
the production of superoxide anion (O2

-), which interacts with NO to produce peroxynitrite. Reactive species oxidize BH4 to BH2 causing eNOS
uncoupling. The binding of Ang-II into its receptor causes desintegrin and metalloprotease 17 (ADAM17) moving to the membrane and its
activation directly. ADAM17 also can be activated by reactive oxygen species (ROS) and MAP kinase family (MAPK). Once the ADAM17 is in the cell
surface it induces shedding of diverse membrane-anchored proteins such as the angiotensin converting enzyme type 2 (ACE2), inhibiting the
conversion of Ang-II into Ang-(1–7). The heptapeptide binds into Mas receptor (MasR) which induces PI3K/AKT pathway stimulation and NO
formation through endothelial nitric oxide synthase (eNOS). Similarly, Ang-(1–7) is able to promote Ang-II type 2 (AT2R) receptor activation, which
stimulates the bradykinin (BK)-NO cascade by bradykinin type 2 receptor (B2R). The increase of inducible NOS (iNOS) promotes NO production,
which in the presence of high concentrations of O2

- induces peroxynitrite (ONOO−) formation, further contributing to the uncoupling of eNOS. In
addition, decreased levels of the endogenous antioxidants superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (Cat) were
observed. The pro-inflammatory binding of tumor necrosis factor α (TNF-α) into its receptor stimulates NADPH oxidase and ROS formation. O2

-

induces nuclear factor Kappa-B (NF-κB) promotion and decreasing eNOS, activation of adhesion molecules and enhance of TNF-α pathway. This
figure also shows that the activation of toll-like receptor 4 (TLR4) stimulates the transcription of iNOS and consequent activation of guanylate cyclase
(sGC), cyclic guanosine monophosphate (cGMP), protein kinase G (PKG) pathway. It promotes the maturation and translocation of ADAM17 to cell
surface, with consequent shedding of TNF-α receptor and decreasing of inflammation development.
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vascular changes induced by NOS suppression in the L-NAME

model (Bunbupha et al., 2021). In this same model, increases in

cardiac expression and serum levels of cytokines, such as

interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and TNF-α
were also demonstrated (Miguel-Carrasco et al., 2008;

Bunbupha et al., 2015), as well as the overexpression in

vascular and cardiac tissue of the protein iNOS (Bunbupha

et al., 2015; Leo et al., 2015).

RAS overactivation may be involved in vascular and renal

dysfunction, mediated by hypertension induced by NO

biosynthesis inhibition. These abnormalities have been

associated with increased serum angiotensin converting

enzyme (ACE) activity as well as upregulation of AT1R

expression in the kidney (Bunbupha et al., 2021). Research

has shown increased ACE activity in both heart and aortic

tissue in L-NAME hypertension, demonstrating a relationship

between ACE activity and NO synthesis in this model of

hypertension (Sawant and Bodhankar, 2016).

In addition, L-NAME administration increases Ang-II levels

and promotes cardiac AT1R overexpression, and these effects are

associated with left ventricular wall hypertrophy and fibrosis

(Sonoda et al., 2017; Gao et al., 2018). In addition, exogenous

Ang-II has also been documented to reduce L-arginine transport

in aortic endothelial and renal cells of mice, which in turn can

induce a reduction in NO availability and support the

hypertension development (Rajapakse et al., 2014).

As previously described, NO is involved in several functions,

such as regulating BP, vascular tone, smooth muscle proliferation as

well as being involved in the inflammatory process (Machha and

Schechter, 2011; Shreshtha et al., 2018). An important source of NO

in the cardiovascular system is eNOS, but a variety of endogenous

and exogenous stressors can alter the production of NO, in addition

to increase its degradation (Cyr et al., 2020). These stressors, such as

RAS overactivation, oxidative stress and inflammation, contribute to

an imbalance that favors an increase of ROS and consequent

reduction in NO bioavailability, which promotes endothelial

dysfunction and increase in blood pressure (Figure 2).

Role of ADAM17-induced shedding
and inflammation in hypertension

ADAM17 posses a great dissemination and It is involved

acting as a sheddase by proteolytic cleavage of several cell surface

proteins enroled in the inflammation progression, involving

proteins of the signal transduction, control of cell adhesion,

and release of growth factors and various cytokines (Hao

et al., 2004; Garton et al., 2006; Iwata et al., 2009). The TNF-

ɑ, cytokine receptors (IL-6 receptor (IL-6R), macrophage colony

stimulating factor I (M-CSFRI) and TNF-receptor I and II (TNF-

RI and TNF-RII) are among themost studied cytokines/receptors

as targets for ADAM17 shedding (Müllberg et al., 1993; Black

et al., 1997; Garton et al., 2001; De Queiroz et al., 2020).

TNF-ɑ has pro-inflammatory effects which are related with

activation of TNFR1, and it increased in human serum was

associated to be a signal in the hypertension development in

patients with chronic kidney disease (Saulnier et al., 2014). The

deletion of TNFR1 gen in mice led to a rise in systolic BP in

response to Ang-II infusion (Chen et al., 2010). Another study

demonstrated that deletion of TNFR1 in subfornical organ

ameliorates sympathetic drive and heart failure in rats (Yu

et al., 2017), which can be due to inhibition of

TNFR2 shedding, leading to TNF-ɑ actions and increasing BP

induced by Ang-II (Chen et al., 2010). All together, these findings

indicate that selective activation or deletion of

TNFR1 contributes to a mechanism that may lower or

increase BP, respectively.

Studies have shown that the ADAM17-dependent TNF-ɑ

shedding involves a critical molecule called inactive rhomboid

protein 2 (RHBDF2, known as iRhom2). This protein is included

in the family of rhomboid protease of catalytically inactive serine

proteases. In mammals, two iRhoms were identified, iRhom1 and

iRhom2. The first one is ubiquitously expressed in many cells and

tissues, whereas iRhom2 is assumed to be expressed mostly in

cells of immune system (Babendreyer et al., 2020). This protein is

enrolled in ADAM17 maturation (Siggs et al., 2012), however the

underlying mechanism is still little explored (Li et al., 2017).

The metalloprotease 17 is synthesized with a pro-form with a

prevention of the catalytical domain of the sheddase. Once

ADAM17 is carried from the endoplasmic reticulum (ER) to

the Golgi complex (GC), the pro-domain is cleaved by pro-

protein convertases, such as furin. Then, the proteolytically

active, mature ADAM17 is carried to the cell surface (Endres

et al., 2003). iRhoms are key controllers in this mechanism

likewise they are crucial for the transport of ADAM17 from

the ER to the GC (Adrain et al., 2012; Mcilwain et al., 2012;

Babendreyer et al., 2020).

Alterations evoked by ADAM17-induced cytokines shedding

and other membrane proteins, such as ACE2, may lead to

endothelium dysfunction (Kawai et al., 2021), which in turn,

induces vascular hemodynamics, endothelial damage, barrier

dysfunction, and dysregulation of vascular tonus control, thus

changing the vascular environment, leading to cardiovascular

incidents (Zhang et al., 1995; Zhang et al., 2020; Da Silva et al.,

2021).

The blood flow applies a continuous shear stress on the

endothelium. Biological levels of shear stress led to a

vasorelaxant, anti-thrombotic and anti-inflammatory

phenotype in endothelial cells. ED is associated with an

inflammatory response of the endothelium (Rajendran et al.,

2013). Inflammatory responses may be beneficial to remove

pathogens in the tissue or to initiate its repair. Nevertheless,

persistent inflammation provides ED, which can produce various

CVDs (Davignon and Ganz, 2004).

The relation between inflammation and hypertension have

been studied for more than two decades, however the precise
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pathophysiological mechanism involved in that association is

intricate and partly understood.

The activation of bradykinin receptor B1 (B1R)-mediated

signaling pathways, a very known peptide inductor of

inflammation, is associated in the pathogenesis of many

CVDs that are associated with or induced by inflammation

(Sriramula, 2020). Studies have showed that activation of B1R

in the PVN occasioned elevated neuroinflammation, ROS

production and sympathoexcitation, inducing to the

development of neurogenic hypertension in

deoxycorticosterone acetate-salt (DOCA)-treated mice

(Sriramula and Lazartigues, 2017). In addition, our

collaborators have demonstrated the evidence for ADAM17-

mediated ACE2 shedding in neurons (Xu et al., 2018). For the

first time, Parekh and Sriramula (2020) have showed that B1R

activation produced an ADAM17-mediated shedding and lower

ACE2 activity in neurons. Furthermore, the results support the

new concept that B1R is implicated in glutamate-mediated effects

on ADAM17 activity and cleavage of ACE2 (Parekh and

Sriramula, 2020).

In an interesting study using a mouse model of Ang-II-

induced hypertension without smooth muscle

ADAM17 participation, caused by gen deletion or systemic

pharmacological inhibition of ADAM17, the vascular

hypertrophy and perivascular fibrosis were reduced

(Takayanagi et al., 2016). The mechanism involved in this

effect has been associated to the mediation of ADAM17 in the

epidermal growth factor receptor (EGFR) transactivation

induced by Ang-II in vascular smooth muscle cells (Forrester

et al., 2016; Kawai et al., 2021). Furthermore, in vitro findings

have showed that ROS are also able to induce the activation of

ADAM17 in platelets, and this effect would illustrate a limiting

mechanism for platelet function (Brill et al., 2009). Also, the

production of ROS mediated by NADPH oxidase 4 (NOX4) is

required to induce ADAM17 expression and following induction

of cardiac hypertrophy (Zeng et al., 2013).

Our research group has used an antioxidant approach with

the lipoic acid (LA) to demonstrate that LA was able to reduce

BP and improves baroreflex sensitivity in renovascular

hypertensive rats (Queiroz et al., 2012). In addition, using

Neuro2A cells (neuroblastoma cell line) and a DOCA-salt

model of hypertension, the antioxidant therapy preserved

ACE2 compensatory role by breaking the feedforward cycle

between oxidative stress and ADAM17 especially due to the

oxidative stress decreasing. Thus, ADAM17 could be a new

target to preclude the development of neurogenic

hypertension (De Queiroz et al., 2015). Moreover Zeng

et al. (2019) documented that NADPH oxidase, such as

Nox1/4 subunits inhibitor GKT137831 inhibited

hypertensive cardiac remodeling, and it reduced the

expression of ADAM17 and pro-inflammatory cytokines

such as TNF-α, IL-1β and IL-6 in abdominal artery

coarctation-induced hypertensive rats (Zeng et al., 2019).

The findings described in this topic demonstrate the critical

role of ADAM17. This metalloprotease needs to be in the active

form to induce the shedding of multiple proteins related to

inflammation such as cytokines, adhesion molecules and

cytokines receptors. The activation and transportation of

ADAM17 to the membrane surface is elicited by iRhom

proteins, especially iRhom2. In addition, the cytokine TNF-ɑ

is recognized to promote inflammation and BP increasing by its

binding in TNF-ɑ receptors. On the other hand, It is already

known that brain or vascular inflammation promotes increase of

BP. This mechanism involves ROS production,

ADAM17 activation and ACE2 dysfunction with a injury in

Ang-(1–7) formation and deleterious effects, including

hypertension development.

Role of ADAM17-induced shedding
and nitric oxide in hypertension

In hypertension induced by chronic inhibition of NO

synthesis, it has been described that Ang-(1–7) can attenuate

BP elevation and target organ damage in L-NAME-treated SHR

(Benter et al., 2006). It was also described that activation of the

MasR by Ang-(1–7) causes a vasorelaxant effect through the

eNOS-NO-cGMP-PKG pathway, which contributes to the

decrease in BP in SHR (Zhang et al., 2019). However, ACE2,

the Ang-(1–7) producing enzyme, deficiency is associated with

lower NO bioavailability through a reduction in aortic eNOS

expression (Rabelo et al., 2016).

In addition, the vasoprotective effects of Ang-(1–7) are also

related to the maintenance of NO availability due to the

reduction in ROS (Heitsch et al., 2001). Benter et al. (2008)

observed that Ang-(1–7) promotes inhibition of NADPH oxidase

NOX4 and prevents renal vascular dysfunction in diabetic

hypertensive rats (Benter et al., 2008). Another study

documented that chronic infusion of Ang-(1–7) attenuated

the increase in the expression of gp91phox, a catalytic subunit

of the NADPH oxidase, in a dose-dependent manner in SHR

brain (Jiang et al., 2013). Moreover, indicators of oxidative stress

were evidenced in both the aorta and plasma of mice with MasR

gene deletion, this was demonstrated by the higher levels of

thiobarbituric acid reactive substances, upregulation of

gp91phox and reduction in SOD and catalase activities in this

animal model (Xu et al., 2008).

It has also been reported that reduced levels of NO can reduce

the formation of Ang-(1–7) (Rajapakse et al., 2019). Interestingly,

one study suggests that NO is a permissive factor for macula

densa renin release (Castrop et al., 2004) and that exogenous (NO

donor) and endogenous NO inhibit the ACE from human serum

and cultured endothelial cells (Persson et al., 2000). Based on

these results, Rajapakse et al. (2019) suggested that NO can act

through activating a cardioprotective pathway of the RAS, by

increasing the production of Ang-I, but reducing the conversion

Frontiers in Molecular Biosciences frontiersin.org06

da Silva et al. 10.3389/fmolb.2022.1032177

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1032177


of Ang-I to Ang-II. In this sense, more Ang-I may be available for

the synthesis of Ang-(1–7) (Rajapakse et al., 2019). In addition,

studies have showed that NO directly interacts with AT1R,

promoting its inhibition as showed in vascular smooth muscle

cells (Ichiki et al., 1998; Ahmad et al., 2018a). Also, the increase of

the exogenous NO precursor induced an upregulation in the

eNOS/NO/cGMP pathway and diminished the Ang-II levels in a

model of cardiac hypertrophy in rats (Ahmad et al., 2018b).

A correlation between NO and ADAM17 has been

documented, as it was evidenced in research that exogenous

NO donor reduces ADAM17 activity, as shown by the decrease of

substrates released by ADAM-17 in murine endothelial cells

(Bzowska et al., 2009). This reduction in NO-induced

ADAM17 activation possibly involves nitrosylation of the

thiol group on cysteine residues in the inhibitory prodomain

of this enzyme (Zhang et al., 2000; Xu et al., 2016).

The mechanisms of ADAM17 activation still remain

controversial, however, some evidence points to ROS,

NOX4 and MAP-kinase family proteins as possible activators

(Brill et al., 2009; Kuan et al., 2013; Zeng et al., 2013). Some years

ago, NO was revealed as an activator of TACE, as shown by

Chanthaphavong et al. (2012) that demonstrated the nitric oxide

synthase (iNOS) stimulating factors such as lipopolysaccharide

(LPS), through the Toll-like four receptor (TLR4), induce iNOS

transcription, which culminates in the production of NO in

hepatocytes. This lipid-soluble molecule binds to sGC which

promotes the formation of cGMP and activation of PKG, which

in turn promotes the phosphorylation and activation of

ADAM17 (Chanthaphavong et al., 2012).

NO also plays an important role in activating ADAM17.

Studies have showed that increases in Ca2+ concentrations can

also induce NOS activation and promote NO release, which has

the ability to inhibit the cytochrome oxidase enzyme of the

electron transport chain and ultimately leads to formation of

ROS, activating ADAM17 (Dada and Sznajder, 2011).

The activation of ADAM17 is related with the up-regulation of

iRhom2, likewise the phosphorylation of ADAM17 and iRhom2,

which are also dependent of NO/cGMP/PKG pathway. These

conclusions indicate that the increase of iNOS/NO expression

includes the rapid shedding of TNFR1 to limit the TNF-ɑ

signaling (Chanthaphavong et al., 2012; Deng et al., 2015). Due

to a central and tissue specific regulator of ADAM17, recently

iRhom2 has arisen as a novel target protein for a specific

inhibition of ADAM17 (Geesala et al., 2020).

TNF-ɑ signaling also has been associated with a growth of

salt appetite and sodium reabsorption stimulation in renal

tubules by a mechanism that involve the suppressing of NOS,

becoming a critical factor to induce hypertension (Ramseyer and

Garvin, 2013; Zhang et al., 2014; Rudemiller and Crowley, 2016).

In addition, TNF-ɑ knockout mice showed a growth in eNOS

formation and prevented an increase in BP of Ang-II-induced

hypertension mice in comparison with the wild type animals

(Sriramula et al., 2008; Rodriguez-Iturbe et al., 2017).

In addition to NO, other endogenous gaseous mediators have

revealed to modulate ADAM17 level/expression, such as the gas

hydrogen sulfide (H2S). Studies have showed that H2S eliminates

the both mRNA and protein TNF-α-induced TACE expression.

H2S was able to prevent TNF-α-induced endothelial damage

through a protective mechanism mainly mediated by

downregulation of ADAM17 activity with following

suppression of soluble TNF-α shedding and the cytokine

monocyte chemoattractant protein (MCP-1) release in the

endothelial cells medium. These findings show the protective

role of H2S, especially as inhibitor of inflammatory and pro-

atherogenic processes (Perna et al., 2013).

As mentioned earlier, NO is involved in diverse physiological

mechanisms, including the pathways that promote BP reduction.

NO releasing can be evoked by MasR activation induced by Ang-

(1–7), which is formed, especially, by ACE2, inducing in turn,

reduction in BP. This convertase enzyme could be negatively

modulated by ADAM17. Studies have demonstrated that NO

could inhibit ACE expression and also ADAM17 activity.

Conversely, ROS, NOX4 and other MAP kinases were able to

activate ADAM17, in addition to Ang-II binding into AT1R.

Furthermore, NO produced by iNOS would induce the cGMP/

PKG pathway, promoting ADAM17 phosphorylation and its

activation. The active form of ADAM17 is able to induce

TNFR1 shedding and limit the TNF-ɑ actions in that

receptor. Nevertheless, these actions persist controversial

(Figure 2).

Future directions of ADAM17 as a
therapeutic target in hypertension

ADAM17 orchestrates many different signaling pathways

linked to hypertension and other CVDs as showed in this review.

ADAM17 has showed to induce neointimal hyperplasia in

vasculature (Takaguri et al., 2011). The TACE expression is

increased in atherosclerosis (Canault et al., 2006) and in the

left ventricle after Ang-II infusion (Patel et al., 2014) and that

ADAM17 polymorphism is associated with cardiovascular

mortality (Morange et al., 2008; Takayanagi et al., 2016).

Therefore, the metalloprotease 17 presents itself as a possible

therapeutic target to the treatment of hypertension.

Ludwig et al. (2005) identified an ADAM17 inhibitor, named

GW280264X, which has showed to block the constitutive release

of mIL-6R, CX3CL1/fractalkine, and chemokine C-X-C ligand 16

(Ludwig et al., 2005). Recently, another study has developed a

new ADAM17 inhibitor composed of a zinc-binding dithiol

moiety, SN-4, which showed a specif binding to ADAM17,

avoiding TNF-α shedding (Tateishi et al., 2021). Together, the

studies demonstrate possible future TACE inhibitors. These

effects would induce a decrease in inflammation and a

consequent improvement in hypertension. In addition,

inhibition of other ADAM17 activators for instance ROS, as
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showed by our group using lipoic acid or a SODmimetic, tempol,

were able to prevent the hypertension development in a DOCA-

salt hypertension model (De Queiroz et al., 2015).

ADAM17 also triggers BP through a CNS-dependent

mechanism. DOCA-salt hypertensive rats exhibited an

ADAM17 increase in the hypothalamus, with a consequent

reduction in ACE2 expression and activity in the brain,

inducing a BP enhance, inflammation and autonomic

dysfunction. So, knockdown of ADAM17 in the brain can

blunt the development of hypertension (Xia et al., 2013).

Furthermore, in the brain of hypertensive patients ADAM17-

mediated ACE2 shedding seems to be stimulated by Ang-II,

suggesting the participation of ADAM17 in neurogenic

hypertension in human (Xu et al., 2017; Kawai et al., 2021).

Studies also have showed limitations to reveal the ADAM17 as a

therapeutic target in hypertension. The increase of

ADAM17 showed an essential role in the signal transduction for

cardiovascular remodeling associated with ER stress however not for

hypertension in Ang-II-treatedmice (Takayanagi et al., 2016). Other

findings have demonstrated that TNF-ɑ has associated with

reduction in BP and strong inflammation. These opposite effects

probably are due to the biding into two different receptors

TNFR1 and TNFR2. Thus, the exact receptor subtype in

ADAM17 downstream pathway to induce TNF-ɑ shedding still

controversial (De Queiroz et al., 2020).

As shown along this manuscript, the protein iRhom2 acts as a

key molecule in the ADAM17 activation and transportation to

cell surface membrane. For this reason, the inactive rhomboid

protein also becomes a possible pharmacological target to the

treatment of hypertension, however more studies are need to

address this question.

Conclusion

Here we briefly reviewed the role of ADAM17 shedding and

nitric oxide. Both metalloprotease and gaseous molecule have

showed central roles in the hypertension increase and promotion

of other cardiovascular diseases. NO is the main gaseous

molecule released from the vascular endothelium, which

induces vasodilation mainly by NO/sGC/cGMP/PKG pathway.

ADAM17, also named TACE, is involved in the shedding of

many inflammatory cytokines and also in ACE2 cleavage. This

last peptide is critical in the conversion of Ang-II into Ang-(1–7),

which promotes the anti-hypertensive effects through the

binding into MasR or AT2R, equally inducing NO releasing.

ADAM17 can be activated by ROS, NOX4 and MAP-kinase

family proteins. Furthermore, the activation of ADAM17 is

associated with the up-regulation of iRhom2, which is

phosphorylated by a NO/cGMP/PKG-dependent mechanism.

This last mechanism was observed in hepatocytes, which

suggest us to study it in a cardiovascular model of

hypertension. Therefore, once ADAM17 is expressed in the

membrane, it stimulates the shedding and pro-hypertensive

effects. However, the ADAM17 inhibition by ROS decreasing,

downregulation of some MAP-kinases, or upregulation of Ang-

(1–7)/MasR pathway, inducing NO formation, produces

reduction in hypertension development.
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