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Main text

In 1789, the influential French chemist Antoine-Laurent Lavoisier described his view of

science and its langague in his book Traité élémentaire de chimie. According to the Robert

Kerr’s translation it states (Lavoisier, 1790): “As ideas are preserved and communicated by

means of words, it necessarily follows that we cannot improve the language of any science

without at the same time improving the science itself; neither canwe, on the other hand, improve

a science without improving the language or nomenclature which belongs to it.” This view

reminds us of Confucius’s earlier doctrine, the rectification of names (Steinkraus, 1980; Lau,

2000). Confucius believed that rectification of names is imperative. He explained (Steinkraus,

1980; Lau, 2000): “If language is incorrect, then what is said does not concord with what was

meant, what is to be done cannot be affected. If what is to be done cannot be affected, then rites

and music will not flourish. If rites and music do not flourish, then mutilations and lesser

punishments will go astray. And if mutilations and lesser punishments go astray, then the people

have nowhere to put hand or foot. Therefore the gentleman uses only such language as is proper

for speech, and only speaks of what it would be proper to carry into effect. The gentleman inwhat
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he says leaves nothing to mere chance.” Inspired by these views, we

make the analogy that the progress of science and the language used

to describe it are two entangled electrons. This entanglement

highlights the importance of introducing systemic names for

enzymes using EC classification and the ever-growing problem of

protein names (McDonald and Tipton, 2021). Here, we tackle one

specific case of iron-sulfur ([FeS]) enzymes. We show that the

language used to describe a conserved [FeS] enzyme of the

innate immune system, i.e., viperin or RSAD2, is now inadequate

and disentangled from its science. We discuss that the enzyme has

cellular functions beyond its antiviral activity and that eukaryotic

and prokaryotic enzymes catalyse the same chemical reactions. To

prevent bias towards antiviral activity while studying various

biochemical activities of the enzyme and using scientifically

incorrect terms like “prokaryotic viperins,” we rectify the

language describing the enzyme. Based on NC-IUBMB

recommendations, we introduce the nomenclature

S-adenosylmethionine (SAM) dependent Nucleotide Dehydratase

(SAND).

Firstly, considering the progress in understanding the biology

of the enzyme in humans (Figure 1), the name “viperin” is no

longer adequate and should be avoided. In 1997, Hua Z., et al.

found that in response to human cytomegalovirus infection, the

mRNA level of a novel protein was elevated in human cells (Zhu

et al., 1997). The gene related to this mRNA was named

cytomegalovirus-induced human gene-5 (cig-5). In 2001, Chin

and Cresswell showed that interferons (IFNs) induce the

expression of the protein product of cig-5 (Chin and

Cresswell, 2001). This induction restricted the replication of

human cytomegalovirus, and the protein was localised to the

cytoplasmic face of the endoplasmic reticulum (ER) (Chin and

Cresswell, 2001). Because, at the time, nothing was known about

the chemistry of the enzyme, an abbreviation based on the

cellular localisation and antiviral activity was introduced,

“viperin” (virus inhibitory protein, endoplasmic reticulum-

associated, interferon-inducible) (Chin and Cresswell, 2001).

Subsequent studies showed that the expression of the protein

affects the life-cycle of many RNA and DNA viruses, including

Influenza (Wang et al., 2007), HIV-1 (Nasr et al., 2012), Hepatitis

C (Wang et al., 2012; Ghosh et al., 2020), Zika (Van der Hoek

et al., 2017; Panayiotou et al., 2018), and tick-borne encephalitis

(Panayiotou et al., 2018), among others. However, for each virus,

different mechanisms were proposed (Figure 1A). For example,

the enzyme affects lipid rafts (lipid microdomains on the cellular

membrane and enriched in cholesterol and sphingolipids (Ripa

et al., 2021)) and inhibits influenza virus (Wang et al., 2007) or

HIV-1 (Nasr et al., 2012) release. In the case of the Hepatitis C

virus, viperin expression appears to interfere with the binding of

the viral nonstructural protein NS5A with host hVAP22 (Wang

et al., 2012) or promotes proteasomal-dependent degradation of

viral NS5A (Ghosh et al., 2020). In the case of Zika and tick-

borne encephalitis viruses, the enzyme appears to induce

proteasomal degradation of the viral nonstructural protein

NS3 (Panayiotou et al., 2018). Finally, in the case of tick-

borne encephalitis virus and Dengue virus type-2, the enzyme

restricts viral RNA reproduction (Helbig et al., 2013; Upadhyay

et al., 2014).

Despite the established antiviral activity, many studies have

reported biological functions inconsistent with or unrelated to the

biology defined by the nomenclature “viperin”. Cresswell and

colleagues showed that the enzyme localises to lipid droplets

(Hinson and Cresswell, 2009) and enhances human

FIGURE 1
Human SAND has functions beyond its antiviral activity. (A) Various mechanisms of antiviral activity are proposed for human SAND. (B)
Expression of SAND affects the function and differentiation of various types of cells. HCV, hepatitis C virus; TBEV, tick-born encephalitis virus; DENV-
2, Dengue type-2 virus; NK, natural killer; IL, interleukin.
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cytomegalovirus infection (Seo et al., 2011). In addition to

interferons, lipopolysaccharides were found to induce protein

expression (Olofsson et al., 2005). The proposal of multiple

mechanisms of antiviral activity prompted us to postulate that

the protein’s enzymatic activity regulates metabolism to affect

various cellular processes causing broad-spectrum antiviral

activity (Ebrahimi, 2018) (Figure 1B). This effect of the enzyme

on metabolism suggests a cellular function beyond its antiviral

activity. Indeed, many studies corroborate this proposal and

demonstrate that human SAND has a role in modulating

metabolism, regulating the activity/maturation of the immune

cells, and inducing the expression of immune genes (Figure 1B).

For example, the activity of SAND modulates central carbon

metabolism (Ebrahimi et al., 2020c), regulates thermogenesis in

adipose tissues (Eom et al., 2019), inhibits thiolase activity of the

trifunctional enzyme complex (a mitochondrial enzyme complex

with three activities: enoyl-CoA hydratase, 3-hydroxyacyl-CoA

dehydrogenase, and 3-ketoacyl-CoA thiolase) (Dumbrepatil et al.,

2020), and modulates cholesterol metabolism (Tang et al., 2016;

Grunkemeyer et al., 2021). It is required for optimal T helper two cell

response (Qiu et al., 2009) and chondrogenic differentiation via

CXCL10 protein secretion (Steinbusch et al., 2019). It has a role in

the innate system (Ebrahimi et al., 2022) and modules immune cell

function and maturation e.g., expansion of natural killer cells

(Wiedemann et al., 2020), dendritic cell maturation (Jang et al.,

2018), B cell hyperactivity (Zhu et al., 2021), and polarisation of

macrophages (Eom et al., 2018). Additionally, the enzyme’s

expression induces the expression of many immune genes

(Zhang et al., 2014).

Secondly, the nomenclature RSAD2 should be revised to fully

describe the chemistry of the enzyme relevant to its biological

function. By 2010, it became clear that human SAND has a

CxxxCxxC motif coordinating a [4Fe-4S] cluster, similar to many

members of the radical S-adenosylmethionine (SAM) enzymes

(Duschene and Broderick, 2010; Shaveta et al., 2010). As a result,

the HUGO Gene Nomenclature Committee suggested the name

RSAD2 (radical-SAM domain containing 2) around this time. This

name can be easily confused with another radical-SAM enzyme of

unknown function (RSAD1), and it only partially describes the

SAM-dependent chemistry of the enzyme. In 2017, the structure of

mouse SANDwas solved (Fenwick et al., 2017), confirming that it is

a radical-SAM enzyme. It was shown that the cytosolic iron-sulfur

biogenesis machinery is required to deliver and insert the [4Fe-4S]

cluster into the enzyme (Upadhyay et al., 2017). The expression of

human SAND in E. coli changed the cells’ morphology, suggesting

the enzyme’s substrate is a metabolite common between eukaryotic

and prokaryotic cells (Nelp et al., 2017), and initial structural studies

proposed that the substrate is a nucleotide (Fenwick et al., 2017).

Subsequently, it was revealed that eukaryotic SAND could catalyse

the dehydration of CTP or UTP to 3ʹ-deoxy-3ʹ, 4ʹ-didehydro (ddh)

analogues (Figure 2A) (Fenwick et al., 2020). In human

macrophages, the enzyme was found to produce ddhCTP (Gizzi

et al., 2018; Ebrahimi et al., 2020b). This novel nucleotide analogue

metabolite may act as a chain-terminator to inhibit viral replication

(IC50 values ≥ 20 mM) (Gizzi et al., 2018). Subsequent studies

revealed that the expression of SAND and synthesis of ddhCTP in

HEK293 cells affects the cellular nucleotide pool and mitochondrial

function (Ebrahimi et al., 2020a). The enzyme in macrophages

modulates central carbon metabolism potentially by inhibiting the

NAD+-dependent activity of the glycolytic enzyme GAPDH

(Ebrahimi et al., 2020c) (Figure 2A). This function requires the

radical-SAM domain to produce ddhCTP since this nucleotide

analogue inhibits the NAD+-dependent activity of GAPDH

in vitro (Ebrahimi et al., 2020c). This immunometabolism

function of ddhCTP may regulate the immune response in

various ways (Ebrahimi et al., 2021, Ebrahimi et al., 2022).

Consistently, studies have shown that the expression of the

enzyme indeed primes the immune response (Zhang et al., 2014).

Finally, the use of the outdated nomenclature “viperin” can

introduce scientifically incorrect terms such as “prokaryotic viperin.”

Before 2017 little was done to isolate fungal and microbial SANDs

and characterise the chemical reaction catalysed by them. In 2017, a

thermostable fungal SAND from Thielavia terrestris was isolated

and characterised (Ebrahimi et al., 2017). It was hypothesised that

the fungal enzyme produces antiviral natural products and is a

suitable candidate for the biotechnological production of antiviral

lead molecules. The fungal SAND has promiscuous activity and

catalyses the dehydration of diverse nucleoside triphosphates

(NTPs), e.g., CTP, UTP, and 5-bromo-UTP, to their ddh

analogues via a mechanism requiring the transfer of an electron

and a proton (Figure 2B) (Ebrahimi et al., 2020b). Next, a number of

other groups characterised some microbial enzymes and showed

that they catalyse dehydration of various NTPs to their ddh

analogues (Bernheim et al., 2021; Lachowicz et al., 2021)

(Figure 2C). While the cellular function of these microbial

proteins is not fully understood, the chemical reaction catalysed

by SANDs can inhibit the activity of phage T7 RNA polymerase in

E. coli (Bernheim et al., 2021). These findings suggest that the

enzyme might have a cellular function and act as an antimicrobial/

antiviral defence system. The fungal enzyme was named TtRSAD2

(Ebrahimi et al., 2020b) due to the lack of a proper name, and studies

with bacterial enzymes (Bernheim et al., 2021) introduced a new

nomenclature, i.e., “prokaryotic viperin,” to describe prokaryotic

enzymes producing ddh analogues with antiviral activity (Bernheim

et al., 2021; Wein and Sorek, 2022). The term “prokaryotic viperin”

is not fit for purpose because it implies that bacteria and archaea

have endoplasmic reticulum, and interferons activate their immune

system. This assertion questions our fundamental understanding of

biology, i.e., prokaryotes do not have an endoplasmic reticulum and

interferon-mediated antiviral response.

A growing number of investigators are studying this new class of

enzymes across all domains of life (Figure 2D). Consequently,

different nomenclatures like RSAD2, viperin, prokaryotic viperin,

or viperin-like enzymes are being used by various investigators,

including us, to describe eukaryotic or microbial enzymes. As

discussed above, none of the existing nomenclatures accurately
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describe the cellular function or chemistry in prokaryotes or

eukaryotes. Additionally, using various terminologies for enzymes

performing the same chemical reaction is confusing. Hence, we

strongly suggest the classification of the enzyme as a nucleoside

triphosphate dehydratase (NTPD, EC 4.2.1) and the nomenclature

SAND describing the SAM-dependent chemistry across all domains

of life. This classification and abbreviation to rectify the naming of

an ancient iron-sulfur enzyme should help the increasing number of

investigators studying the cellular function or biotechnological

application of these enzymes and the discovery of new enzymes

performing novel chemistries.
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FIGURE 2
The nomenclature SAND (SAM-dependent Nucleotide Dehydratase) defines chemistry relevant to biology across all domains of life. (A) SAND
produces the nucleoside triphosphate analogue ddhCTP in humans. ddhCTP modulates metabolism affecting cell function and restricting viral
replication. (B) The proposed mechanism of dehydration of nucleoside triphosphates by SAND. The mechanism shows the transfer of a proton and
an electron from a conserved tyrosine. Alternatively, it is possible that proton transfer occurs via another amino acid residue. It is not clear if the
transfer of proton and electron occurs simultaneously (proton-coupled electron transfer). (C) SANDs from various organisms produce diverse ddh
analogues. (D) An increasing number of investigators study SANDs. The data were obtained from a search of nomenclature viperin and RSAD2 in the
title of articles. Google Scholar (scholar.google.com) andWeb of Science search engines were used. N, nucleobase; C, cytosine; A, adenine; 5′-dAH,
5′-deoxyadenosine, 5′-dA·, 5′-deoxyadenosyl radical.
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