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Background: Lung adenocarcinoma (LUAD) is the most common type of lung

cancer and is a global public health concern. One-carbon (1C)metabolism plays

a crucial role in the occurrence and development of multiple cancer types.

However, there are limited studies investigating 1C metabolism in LUAD. This

study aims to evaluate the prognostic value of 1C metabolism-related genes in

LUAD and to explore the potential correlation of these genes with gene

methylation, the tumor microenvironment, and immunotherapy.

Methods: We identified 26 1C metabolism-related genes and performed a

Kaplan-Meier and Cox regression analysis to evaluate the prognostic value of

these genes. Consensus clustering was further performed to determine the 1C

metabolism-related gene patterns in LUAD. The clinical and molecular

characteristics of subgroups were investigated based on consensus

clustering. CIBERSORT and ssGSEA algorithms were used to calculate the

relative infiltration levels of multiple immune cell subsets. The relationship

between 1C metabolism-related genes and drug sensitivity to

immunotherapy was evaluated using the CellMiner database and

IMvigor210 cohort, respectively.

Results: The expression levels of 23 1C metabolism-related genes were

significantly different between LUAD tumor tissues and normal tissues.

Seventeen of these genes were related to prognosis. Two clusters (cluster

1 and cluster 2) were identified among 497 LUAD samples based on the

expression of 7 prognosis-related genes. Distinct expression patterns were

observed between the two clusters. Compared to cluster 2, cluster 1 was
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characterized by inferior overall survival (OS) (median OS = 41 vs. 60months,

p=0.00031), increased tumormutation burden (15.8 vs. 7.5 mut/Mb, p < 0.001),

high expression of PD-1 (p < 0.001) and PD-L1 (p < 0.001), as well as enhanced

immune infiltration. 1C metabolism-related genes were positively correlated

with the expression of methylation enzymes, and a lower methylation level was

observed in cluster 1 (p = 0.0062). Patients in cluster 1 were resistant to

chemotherapy drugs including pemetrexed, gemcitabine, paclitaxel,

etoposide, oxaliplatin, and carboplatin. The specific expression pattern of 1C

metabolism-related genes was correlated with a better OS in patients treated

with immunotherapy (median OS: 11.2 vs. 7.8 months, p = 0.0034).

Conclusion: This study highlights that 1C metabolism is correlated with the

prognosis of LUAD patients and immunotherapy efficacy. Our findings provide

novel insights into the role of 1C metabolism in the occurrence, development,

and treatment of LUAD, and can assist in guiding immunotherapy for LUAD

patients.
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Introduction

Lung cancer remains one of the most prevalent cancer types

and the most lethal cancer type worldwide (Siegel et al., 2022).

Lung cancer is divided into two main forms: non-small cell lung

cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC is

the most common type of lung cancer and accounts for 85% of all

cases (Duma et al., 2019; Wang et al., 2019). Lung

adenocarcinoma (LUAD) is the major histopathological

subtype of NSCLC and accounts for approximately half of all

lung cancer-related deaths (Travis et al., 2015; Behrend et al.,

2021). Although several treatments have been confirmed effective

in recent years, platinum-based chemotherapy, such as

pemetrexed, remains the principal therapeutic for NSCLC

(Schiller et al., 2002; Tan et al., 2016).

One-carbon (1C) metabolism, also known as folate

metabolism, is involved in multiple physiological processes,

such as biosynthesis, amino acid homeostasis, epigenetic

maintenance, and redox defense (Ducker and Rabinowitz,

2017). It has been identified that 1C metabolic enzymes are

upregulated in numerous cancer types (Mehrmohamadi et al.,

2014). MTHFD2 expression is associated with poor prognosis in

hepatocellular carcinoma and colorectal cancer (Liu et al., 2016;

Ju et al., 2019). SHMT2 has also been identified to play a role in

colorectal and lung cancer progression (DeNicola et al., 2015; Liu

et al., 2021). In addition, TYMS is overexpressed in several

cancers and is closely associated with a poor prognosis (Sasaki

et al., 2013; Fu et al., 2019; Agulló-Ortuño et al., 2020; Song S.

et al., 2021). Because of the essential role of 1C metabolism in

cancer, inhibition of folate metabolism is regarded as an

important therapeutic strategy in cancer. Several drugs

targeting 1C metabolic enzymes have been successfully

developed, such as methotrexate and pemetrexed (Ducker and

Rabinowitz, 2017).

It has been shown that 1C metabolism can affect the function

of immune cells, especially the activation of T cell (Ducker and

Rabinowitz, 2017). Immune cells play an important role in the

tumor microenvironment (TME). The TME includes diverse cell

types, including cancer cells, noncancerous cells, as well as many

other cellular and noncellular components (Duan et al., 2020).

The immune and non-immune cells within the TME have been

observed to regulate the proliferation, differentiation, and death

of tumor cells (Mu and Najafi, 2021). In recent years, numerous

studies have shown the effectiveness of targeting components

within the TME alone or in combination with other therapies,

including chemotherapy, radiotherapy, and immunotherapy

(Hirata and Sahai, 2017; Ozpiskin et al., 2019; Liu et al., 2020).

1C metabolism can support methylation reactions by

generating 1C units (also known as methyl groups). DNA

and RNA methylation has been widely considered to be the

best-characterized epigenetic modifications, and play an

important role in the occurrence and development of

tumors. DNA methylation occurs at the 5-position of

cytosine (5 mC), and transcriptionally regulates the

expression of target genes (Robertson and Jones, 2000).

RNA methylation mainly includes three types: N6-

methyladenosine (m6A), 5-methylcytosine (m5C), and N1-

methyladenosine (m1A) (Song P. et al., 2021). Methylation is a

reversible modification that is regulated by special enzymes,

including methyltransferase (writer), demethylase (eraser),

and methylation-dependent binding protein (reader) (Dai

et al., 2021).

Although 1C metabolism has been shown to have important

functions in the process of methylation and the resistance to
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pemetrexed, its role in the occurrence, development, and

treatment of LUAD remains unclear. In the present study, we

found that 1C metabolism is associated with the prognosis of

LUAD and the effect of immunotherapy. 1C metabolism-related

genes are potential biomarkers of prognosis of LUAD and can

help to guide immunotherapy in LUAD patients.

Materials and methods

Dataset source

RNA-seq profiles (Counts and FPKM format), somatic

mutation, DNA methylation, and phenotype data from The

Cancer Genome Atlas (TCGA) LUAD cohort were

downloaded from the UCSC Xena database (https://

xenabrowser.net/datapages/) (Goldman et al., 2020). Six

GSE datasets were downloaded from GEO database

(https://www.ncbi.nlm.nih.gov/geo/), including GSE3141,

GSE29013, GSE31219, GSE31210, GSE37745, and

GSE50081. After normalizing the datasets and removing

batch effects, the expression profile data was used for the

subsequent analysis.

One-carbon metabolism-associated gene
collection

Based on the findings of previous studies, 26 1C metabolism-

associated genes were identified (Sasaki et al., 2013;

Mehrmohamadi et al., 2014; DeNicola et al., 2015; Liu et al.,

2016; Ducker and Rabinowitz, 2017; Fu et al., 2019; Ju et al., 2019;

Agulló-Ortuño et al., 2020; Liu et al., 2021; Song S. et al., 2021).

These genes were used for further analysis, including PHGDH,

PSAT1, PSPH, FTCD, SHMT1, SHMT2, MTHFD2L, MTHFD2,

MTHFD1L, MTHFD1, GCAT, SARDH, DMGDH, GNMT,

BHMT, ALDH7A1, CHDH, TYMS, MTR, MTHFR, GART,

ATIC, ALDH1L1, ALDH1L2, DHFR, and MTFMT.

Gene expression and prognostic analysis

The expression level differences of 1C metabolism-associated

genes between 509 LUAD samples and 58 adjacent normal

tissues were tested using a Student’s t-test. A Kaplan-Meier

analysis based on the optimal cutoff point was performed

using R packages (“survival” and “survminer”) to evaluate the

clinical relevance of 1C metabolism-associated genes. A

univariate Cox proportional hazard regression analysis was

performed to identify the risk factors among these genes.

Genes with p < 0.05 in the Kaplan-Meier analysis or

univariate Cox proportional hazard regression analysis were

considered prognosis-related genes.

One-carbon metabolism-associated
gene-based clustering and least absolute
shrinkage and selection operator
regression

According to the results of the Kaplan-Meier analysis and

univariate Cox proportional hazard regression analysis,

7 prognostic genes in univariate analysis were actually

selected based on p-value and hazard ratios, including

TYMS, DHFR, MTHFD1L, MTHFD1, ATIC, GNMT, and

CHDH. K-means consensus clustering with these 7 genes

was performed to identify subgroups in TCGA cohort.

Consensus clustering was employed using the R package

“ConsensusCluster” (Yu et al., 2012). The details of this

process were set as follows: the number of repetitions =

1,000 bootstraps; resample rate = 0.8. LUAD patients were

gathered into cluster 1 (n = 248) and cluster 2 (n = 249).

Similarly, consensus clustering was also performed in GEO

cohort, and patients were divided into two clusters, including

cluster 1 (n = 397) and cluster 2 (n = 437). Kaplan-Meier

analysis was used to assess OS differences between the two

subgroups in TCGA cohort and GEO cohort, respectively.

The least absolute shrinkage and selection operator (LASSO)

regression was performed to identify the prognostic genes of 1C

metabolism. According to the result of LASSO regression,

7 prognostic genes were finally selected, including TYMS,

DHFR, MTHFD2L, MTHFD1, ATIC, GNMT, and CHDH. The

risk score of each patient was calculated through the equation:

risk score = sum of coefficients × expression level of prognostic

genes. The LUAD patients were identified as two subgroups

based on the median risk score, including high-risk group and

low-risk group.

Gene set enrichment analyses

To determine the different biological processes between the

two subtypes, a gene set enrichment analyses (GSEA) was

conducted in the Hallmark gene set “c5.all.v7.0.entrez.gmt” of

MSigDB using the R package “ClusterProfiler” (Yu et al., 2012).

The parameters were set as follows: number of permutations =

1,000 and p-value cutoff = 0.05.

Immune infiltrate analysis

The infiltration level of immune cells was calculated through

cell type identification by estimating relative subsets of RNA

transcripts (CIBERSORT) and single-sample gene set

enrichment analysis (ssGSEA) (Hänzelmann et al., 2013;

Newman et al., 2015). CIBERSORT (http://cibersort.stanford.

edu/) was used to assess the abundances of 22 immune cell types

based on the RNA-seq profile of LUAD. The relative abundance
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of 28 distinct leukocyte subsets was also calculated through

ssGSEA using the R package “GSVA”. In addition, the

immunoscore of each patient was also calculated through the

R package “estimate”.

Somatic mutations and DNA methylation
analysis

To assess somatic mutations between the different subtypes,

the somatic mutation profile of LUAD patients was downloaded

from the UCSC Xena Database (Goldman et al., 2020). The

somatic mutation data were further analyzed with the “maftools”

R package. Similarly, the DNA methylation profiles were also

downloaded from the UCSC Xena Database and analyzed with

the “limma” R package to identify differential methylation sites

(Goldman et al., 2020).

Drug sensitivity analysis

Drug sensitivity analysis was performed using the CellMiner

Database (Reinhold et al., 2012). The RNA-seq and compound

activity data from the DTPNCI-60 dataset was downloaded from

the CellMiner Database (https://discover.nci.nih.gov/cellminer/

home.do) and was further analyzed with R Software (version 4.1.

2). The correlation between 1C metabolism-associated genes and

drug sensitivity was calculated. The following selection criteria

were used: Food and Drug Administration approval of the

therapeutic or inclusion of the therapeutic in clinical trials,

and p < 0.05.

One-carbon metabolism-associated
gene-based immunotherapy response
prediction

To validate the value of 1C metabolism-associated genes in

immunotherapy prediction, the IMvigor210 cohort was used to

investigate the relationships between 1C metabolism-associated

genes and immunotherapy response (Mariathasan et al., 2018).

Data from 348 patients who were diagnosed with urothelial

cancer and treated with atezolizumab were downloaded from

the IMvigor210 cohort.

Statistical analysis

Statistical tests were carried out with R (version 4.1.2), SPSS

22.0 (IBM, NY, United States), and GraphPad Prism 9.0. For

quantitative data, statistical significance for normally- and

nonnormally-distributed variables were estimated using a

Student’s t-test and Wilcoxon rank-sum test, respectively.

Two-sided Fisher’s exact tests were performed to analyze

contingency tables. Survival analyses were performed using

the Kaplan-Meier method, and the log-rank test was used to

evaluate the difference between groups. A correlation analysis

was performed using a Pearson correlation test. Multivariate

analyses were conducted using a Cox regression model to identify

the independent risk factors. A p-value < 0.05 was considered

statistically significant.

Results

Expression of one-carbon metabolism-
associated genes

To evaluate the biological function of 1C metabolism-

associated genes in the occurrence and development of

LUAD, the expression pattern of 26 1C metabolism-associated

genes was assessed in LUAD and adjacent normal tissues.

Significant differences were observed in the expression levels

of 23 genes between LUAD and adjacent normal tissues

(Figure 1A). The expression level of 20 genes was upregulated,

including PSAT1, PSPH, FTCD, SHMT1, SHMT2, MTHFD2L,

MTHFD2, MTHFD1L, MTHFD1, GCAT, DMGDH, ALDH7A1,

CHDH, TYMS, GART, ATIC, ALDH1L1, ALDH1L2, DHFR and

MTFMT (Figure 1B). GNMT and MTHFR were significantly

reduced in LUAD compared to adjacent normal tissues

(Figure 1B). These results suggest that 1C metabolism-

associated genes have important biological roles in LUAD

development.

Prognostic value of one-carbon
metabolism-associated genes

We further investigated the prognostic significance of 1C

metabolism-associated genes in patients of LUAD in TCGA

cohort. The Kaplan-Meier analysis based on an optimal cutoff

shows that 17 genes were associated with OS, while nine genes

were unrelated to prognosis (Figures 2A–C). The nine genes

were identified as risk factors and included ATIC, GART,

MTHFD1, MTHFD1L, MTHFD2, PSPH, SHMT2, DHFR, and

TYMS (Figure 2A). Several other genes were considered

protective factors, such as CHDH, GCAT, GNMT,

MTHFD2L, MTHFR, MTR, SARDH, and SHMT1

(Figure 2B). A univariate Cox regression analysis was also

performed and 10 genes had a significant prognostic

correlation with OS. MTHFD2, MTHFD1L, MTHFD1,

TYMS, DHFR, and ATIC were risk factors, while SARDH,

CHDH, GNMT and MTHFR were protective factors

(Figure 2D). In GEO cohort, the Kaplan-Meier analysis

which was based on the optimal cut-off revealed that

23 genes were related to OS, including 13 risk factors and
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10 protective factors (Supplementary Figures S1A–C).

Univariate Cox regression analysis was also performed and

11 genes were observed associated with OS (Supplementary

Figure S1D). In addition, ROC curves were drawn to assess the

specificity and sensitivity of 1C metabolism related-genes. The

results indicated that the value at 1-, 5- and 10-year were 0.63,

0.67 and 0.74 in TCGA cohort, respectively (Supplementary

Figure S2A). The AUC value of 1-year, 5-year and 10-year in

GEO cohort were 0.64, 0.65 and 0.63 respectively

(Supplementary Figure S2B).

One-carbon metabolism-associated
gene-based consensus clustering

Consensus clustering was performed to investigate the

heterogeneity of 1C metabolism-associated gene in TCGA

cohort. A total of 497 patients with LUAD were clustered into

two subtypes. Cluster 1 (n = 248) was characterized by a high

expression of high-risk genes while cluster 2 (n = 249) was

identified by a high expression level of protective genes

(Figure 3A). These two clusters exhibited the opposite

FIGURE 1
Expression levels of one-carbon metabolism associated genes in normal and tumor samples. (A) Heatmap of one-carbon metabolism
associated genes expression level in each sample; (B) The expression difference of one-carbon metabolism associated genes between tumor and
normal samples. * means p < 0.05; ** means p < 0.01; *** means p < 0.001; ns means no significant difference.
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expression pattern. Cluster 1 was characterized by high

expression of PHSH, SHMT2, MTHFD2, MTHFD1L,

MTHFD1, TYMS, GART, ATIC, and DHFR, as well as low

expression of SHMT1, SARDH, GNMT, CHDH, MTR and

MTHFR (Figures 3B,C). A Kaplan-Meier analysis showed that

patients who were divided into the cluster 1 subgroup suffered

inferior OS (median OS: 41 vs. 60 months, p = 0.0003;

Figure 3D). Clinical characters between the two clusters were

also investigated. Tumor metastasis (p = 0.016), advanced stage

(p = 0.036), and smoking status (p < 0.001) were more frequently

observed in cluster 1 (Table 1). Similar results were also observed

according to LASSO regression and risk score model

(Supplementary Figure S3A–H). In addition, consensus

clustering was also performed in GEO dataset, and two

clusters were identified, including cluster 1 (n = 397) and

cluster 2 (n = 437) (Supplementary Figure S4A). Compared

with TCGA cohort, similar expression patterns in two clusters

were observed in GEO dataset (Supplementary Figures S4B,C).

Kaplan-Meier analysis also revealed that cluster 1 subgroup

exhibited an inferior OS in GEO cohort (median OS: 69 vs.

132 months, p < 0.0001; Supplementary Figure S4D).

Consensus clustering-based genetic
landscape and gene set enrichment
analyses

To further investigate the genetic landscape differences

between the two subtypes, somatic mutation data in LUAD

patients were used. In cluster 1, TP53 was the most

FIGURE 2
Kaplan-Meier survival curves and Univariate Cox regression analysis of one-carbon metabolism associated genes. (A) Kaplan-Meier survival
curves of nine genes associated with inferior OS; (B) Kaplan-Meier survival curves of eight genes associated with superior OS; (C) Kaplan-Meier
survival curves of nine genes not associated with OS; (D) Univariate Cox regression analysis of 26 one-carbon metabolism associated genes.
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commonly mutated gene—with a frequency of 63%—

followed by TTN, CSMD3, MUC16, and RYR2

(Figure 4A). In cluster 2, the top five mutated genes with

a relatively low mutation rate were TTN, TP53, MUC16,

KRAS, and RYR2 (Figure 4B). Although TP53 was one of the

most frequently mutated genes in both groups, the mutation

rate was significantly different between cluster 1 and cluster 2

(63% vs. 33%; Figure 4C). In addition, different mutation

frequencies of the same gene between the two clusters were

also observed for TTN, CSMD3, LRP1B, ZFHX4, and XIRP2

(Figure 4C), and the tumor mutation burden (TMB) of

cluster 1 was significantly higher than in cluster 2

(Figure 4D). GSEA analysis was used to investigate the

transcriptomic alterations between these two groups. The

most prominent gene ontology terms in cluster 1 were cell

cycle, cell cycle procession, chromosome segregation, mitotic

cell cycle, and nuclear chromosome segregation (Figure 4E).

Consensus clustering-based immune
infiltrate analysis

The infiltration level of immune cells in the TME has been

confirmed to play an important role in tumor progression and

immunotherapy. To evaluate the difference in immune cell

infiltration between the two subgroups, CIBERSORT and

ssGSEA were performed in TCGA cohort. The CIBERSORT

analysis showed that CD8+ T cells, activated CD4 T cells,

M0 macrophages, and M1 macrophages were significantly

upregulated in cluster 1, while memory B cells, CD4 memory

resting T cells, regulatory T cells, and monocytes were

downregulated (Figure 5A). The ssGSEA analysis revealed that

activated CD4 T cells, activated CD8 T cells, NK cells, effector

memory CD4 T cells, memory B cells, natural killer T cells, and

Type 2 T helper cells were significantly upregulated, and Type

17 T helper cells were significantly downregulated, in cluster 1

FIGURE 3
Consensus clustering for one-carbonmetabolism associated genes in LUAD patients. (A) The consensusmatrix shows patients with two distinct
one-carbon metabolism statuses; (B) Heatmap of one-carbon metabolism associated genes expression level in two clusters; (C) The expression
difference of one-carbon metabolism associated genes in two clusters; (D) Kaplan-Meier curves for overall survival in two clusters (Log-rank test). *
means p < 0.05; ** means p < 0.01; *** means p < 0.001; ns means no significant difference.
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(Figure 5B). Moreover, the expression of PD-1 and PD-L1 was

also upregulated in cluster 1 (Figures 5C,D). The correlation of

immune cells with 1C metabolism related-genes was also

evaluated, and we found that the infiltration level of

CD4 T cells was positively related to those genes

(Supplementary Figures S5A,B). However, there was no

difference was observed between the two clusters on the

immune score (Supplementary Figures 6A–D). CIBERSORT

and ssGSEA were also performed in GEO cohort. It showed

that the infiltration level of immune cells in cluster 1 was higher

than in cluster 2 (Supplementary Figures S7A,B).

Correlation analysis of methylation
enzymes with one-carbon metabolism-
associated genes

1C metabolism supports the biosynthesis and methylation of

DNA and RNA by transferring 1C units. To explore the

involvement of methylation with 1C metabolism-associated

genes, 49 methylation enzymes were selected from previous

studies (Zhang and Jia, 2018; Bohnsack et al., 2019; Chen and

Zhang, 2020; Zhang C. et al., 2021). In addition, we further

evaluated the correlation of methylation enzymes with 1C

metabolism-associated genes. The results revealed that the

expression of methylation enzymes was significantly positively

associated with 1C metabolism-associated genes, such as TYMS,

MTR, MTHFR, SHMT2, MTHFD2L, MTHFD2, MTHFD1L,

MTHFD1, GART, ATIC, PSAT1, PSPH, DHFR, and FTCD

(Figure 6A). We also investigated the difference in DNA

methylation levels between the two groups and observed a

significant downregulation of DNA methylation in cluster 1

(Figure 6B). In addition, a further differential analysis revealed

that hypermethylation of SEPT9 and KLF13 was found in cluster

1, and hypomethylation of HNRNPR was also observed

(Figure 6C).

One-carbon metabolism-associated
gene-based drug sensitivity analysis

To investigate the potential correlation between 1C

metabolism-associated genes and drug sensitivity in multiple

human tumor cell lines, a correlation analysis was performed in

FIGURE 4
Genomic alterations and Gene set enrichment analysis between cluster 1 and cluster 2. (A) Landscape of mutation profiles in cluster 1; (B)
Landscape of mutation profiles in cluster 2; (C) The six genes with the greatest variation in mutation frequency between cluster 1 and cluster 2; (D)
The difference of tumor mutation burden between cluster 1 and cluster 2; (E) Top fivemost significant altered KEGG pathways in cluster 1 compared
with cluster 2. *** means p < 0.001.
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the CellMiner™ database. Cells with the expression pattern of

cluster 1 were negatively associated with drug sensitivity to

gemcitabine, oxaliplatin, obatoclax, imiquimod, and vorinostat

(Figures 7Aa–e), and positively correlated to drug sensitivity to

6-mercaptopurine, vandetanib, copanlisib, AT-9283 and

byproducts of CUDC-305 (Figures 7Af–g). Cells with the

expression pattern of cluster 2 were negatively correlated

with drug sensitivity to etoposide, lapatinib, tepotinib, 6-

thioguanine, and uracil mustard (Figures 7Ba–e), but were

positively correlated with drug sensitivity to paclitaxel,

carboplatin, okadaic acid, pazopanib and alisertib (Figures

7Aa–e). Patients in cluster 1 were also insensitive to

paclitaxel and carboplatin, suggesting that patients in cluster

1 are likely resistant to gemcitabine, paclitaxel, oxaliplatin, and

carboplatin treatment.

One-carbon metabolism-associated
genes are positively correlated with
immunotherapy sensitivity

According to the results above, cluster 1 in the LUAD cohort is

resistant to chemotherapy but may be sensitive to immunotherapy.

We therefore explored the relationship between 1C metabolism-

associated genes and immunotherapy in the IMvigor210 cohort.

Consensus clustering was also performed, and two clusters (cluster

1 and cluster 2) were identified among patients in the

IMvigor210 cohort (Figure 8A). A Kaplan-Meier analysis showed

that for patients treated with immunotherapy, cluster 1 had a

superior OS compared with cluster 2 (median OS: 11.2 vs.

7.8 months, p = 0.0034; Figure 8B). The expression pattern of

cluster 1 in the IMvigor210 cohort was similar to that of cluster

FIGURE 5
Immune profile alterations between cluster 1 and cluster 2. (A) The difference of 22 immune cell types between cluster 1 and cluster 2; (B) The
difference of 28 immune cell types between cluster 1 and cluster 2; (C) The difference of PD-1 expression level between the cluster 1 and cluster 2;
(D) The difference of PD-L1 expression level between cluster 1 and cluster 2. * means p < 0.05; ** means p < 0.01; *** means p < 0.001; ns means no
significant difference.
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1 in the LUAD cohort (Figures 8C,D). A Kaplan-Meier analysis

revealed that high expression of DHFR, TYMS, GART, MTHFD2

and SHMT1 were correlated with a superior OS (Figure 8E). In

addition, the expression levels of TYMS, GART, and MTHFD2 in

patients with a complete or partial response were higher than for

patients with stable or progressive disease (Figure 8F). In addition,

ROC curves were drawn to assess the specificity and sensitivity of 1C

metabolism related-genes with the value of 0.69 (Supplementary

Figure S2C).

Discussion

1C metabolism has been shown to play a role in the

occurrence, development, and treatment of multiple cancers.

Many 1Cmetabolic enzymes have been observed upregulated in

cancer tissues compared with adjacent normal tissues, and are

closely associated with cancer prognosis. However, the

literature on 1C metabolism in LUAD patients is sparse. In

the present study, we evaluated the expression levels of 1C

metabolism-related genes and the correlation with LUAD

prognosis. Unsupervised clustering analysis was performed

to classify the samples into cluster 1 and cluster 2. We found

that cluster 1 was characterized by inferior OS, increased TMB,

high PD-1 and PD-L1 expression, as well as enhanced immune

infiltration. In addition, 1C metabolism-related genes were

positively correlated with the expression of methylation

enzymes, and lower methylation levels were observed in

cluster 1. Patients in cluster 1 were also resistant to

chemotherapy drugs, including pemetrexed, gemcitabine,

FIGURE 6
Correlation of one-carbonmetabolism associated genes withmethylation. (A)Correlation of 26 one-carbonmetabolism associated geneswith
49 methylation enzymes; (B) The difference of methylation level between cluster 1 and cluster 2; (C) Differential analysis of methylation sites
between cluster 1 and cluster 2. ** means p < 0.01.
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paclitaxel, etoposide, oxaliplatin, and carboplatin. We also

found that 1C metabolism-related genes were positively

correlated with immunotherapy sensitivity.

In our study, 1C metabolism-related genes were selected

according to previous studies. The expression levels of these

genes were evaluated, and twenty genes were upregulated in

FIGURE 7
Drug sensitivity analysis of one-carbon metabolism associated genes. (A) Drug sensitivity analysis based on Cluster 1 expression pattern. (a–e)
Five drugs with negatively related sensitivity, (f–j) Five drugs with positively related sensitivity; (B) Drug sensitivity analysis based on Cluster 2
expression pattern. (a–e) Five drugs with negatively related sensitivity, (f–j) Five drugs with positively related sensitivity.
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FIGURE 8
Association of one-carbon metabolism related genes with immunotherapy. (A) The consensus matrix shows patients with two distinct one-
carbon metabolism statuses; (B) Kaplan-Meier curves for overall survival in two clusters (Log-rank test); (C) Heatmap of one-carbon metabolism
associated genes expression level in two clusters; (D) The expression difference of one-carbon metabolism associated genes in two clusters; (E)
Kaplan-Meier survival curves of five genes associated with superior OS; (F) The expression difference of three one-carbon metabolism
associated genes between CR/PR group and SD/PD group. * means p < 0.05; ** means p < 0.01; *** means p < 0.001; ns means no significant
difference.
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tumor tissues, while two genes were downregulated. The

upregulated genes included PSAT1, PSPH, FTCD, SHMT1,

SHMT2, MTHFD2L, MTHFD2, MTHFD1L, MTHFD1, GCAT,

DMGDH, ALDH7A1, CHDH, TYMS, GART, ATIC, ALDH1L1,

ALDH1L2, DHFR, and MTFMT, while the downregulated genes

included GNMT andMTHFR. A Kaplan-Meier analysis revealed

that 17 genes were associated with prognosis. Among these genes,

nine genes were identified as risk factors while the other eight

genes were considered protective factors. A univariate Cox

regression analysis identified six risk-associated genes and four

protective genes. Consensus clustering was performed, and

497 LUAD patients were classified into two clusters. We

found that, compared with cluster 2, cluster 1 exhibited the

opposite expression pattern and a worse OS.

The genetic landscape of these two groups was also

investigated. We observed that somatic mutations were more

frequent in the high-risk group. The mutation rates of TP53,

TTN, CSMD3, LRP1B, ZFHX4 and XIRP2 were significantly

higher in the high-risk group compared with the low-risk

group. In addition, a heavier TMB was also observed in the

high-risk group. Furthermore, the GSEA results suggested that

the pathways, which were associated with cell cycle and

chromosome segregation, were significantly enriched in the

high-risk group. TP53 (p53) is one of the most common

tumor suppressor genes in human cancers. The p53 protein

plays an antitumor role by repairing DNA damage, regulating

metabolism, normalizing reactive oxygen species levels,

modulating expression of non-coding RNAs, and promoting

autophagy or ferroptosis (Duffy et al., 2017). TP53 mutations

were also positively correlated with PD-L1 expression, TMB, and

clinical benefit of PD-1 inhibitors (Dong et al., 2017). In addition,

mutant TTN, CSMD3, LRP1B was also positively correlated with

response rate to immunotherapy (Jia et al., 2019; Brown et al.,

2021; Lu et al., 2021). Therefore, LUAD patients in cluster 1 may

benefit from immunotherapy treatment.

To investigate the difference in the TME between these two

groups, CIBERSORT and ssGSEA were performed. The results

revealed that CD8+ T cells, CD4+ T cells, NK cells, Type

2 T helper cells and M1 macrophages were significantly

upregulated in the high-risk group, while regulatory T cells

were downregulated. Furthermore, the expression of PD-1 and

PD-L1 was significantly upregulated. The TME is closely related

to the occurrence and progression of tumors, and influences

immunotherapy efficacy (Dai et al., 2021). A previous study

suggests that CD8+ T cells, CD4+ T cells, NK cells and

M1 macrophages influence the clinical benefit of

immunotherapy, while Treg cells impair the immunotherapy

efficacy (Petitprez et al., 2020). In addition, PD-1 and PD-L1 have

also been considered as protective biomarkers for

immunotherapy (Petitprez et al., 2020). Previous studies

suggested that 1C metabolism was associated the development

of immune system (Ducker and Rabinowitz, 2017). The

activation of immune cells, especially T cells, required an

ample supply of 1C units (Ron-Harel et al., 2016). Therefore,

we speculated that 1C metabolism related genes may contribute

to the accumulation of folate in TME, which may support the

development and activation of immune cells. On the other way, it

also may be an underlying competitive absorption of 1C units

between the tumor cells and immune cells. Based on these results,

we speculate that patients in cluster 1 may benefit from

immunotherapy.

1C metabolism generates 1C units to support methylation

reactions. To investigate the relationship between 1C

metabolism and DNA and RNA methylation, we calculated

the correlation of enzymes in the 1C metabolism pathway

with 49 methylation enzymes, and the results suggested that

1C metabolism genes are generally positively correlated with

methylation enzymes, such as “writers”, “readers”, and

“erasers”. A previous review suggests that RNA

TABLE 1 Clinicopathological characteristics of subgroups.

Cluster 2 Cluster 1 P

Age 0.384

≥70 year 85 75

<70 year 160 167

Gender 0.262

Male 108 120

Female 141 128

Race 0.590

White 192 192

Black 27 24

Other 30 32

Stage 0.036

I 146 121

II 55 63

III 36 44

IV 7 18

T stage 0.070

T1 95 71

T2 119 148

T3 23 20

T4 10 8

N stage 0.079

N0 169 152

N1–N3 73 92

M stage 0.016

M0 167 164

M1 6 18

Smoking status <0.001
Non-smoker 47 24

Current smoker 44 74

Reformed smoker 152 142
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modifications, including m6A, m1A and m5C, plays an

important role in the occurrence and development of lung

cancer (Teng et al., 2021). Considering the function of DNA

methylation enzymes, we further evaluated the DNA

methylation levels between two subgroups and found low

methylation levels in the high-risk group. DNA

hypomethylation promotes the development of cancer

partly by activating oncogenic potential genes (Van

Tongelen et al., 2017). A differential analysis suggests that

hypermethylation occurs in SEPT9 and KLF13, while

hypomethylation occurs in HNRNPR. SEPT9 and KLF13

have been shown to be antitumor genes in previous studies

(Jiao et al., 2019; Yao et al., 2020). The hypermethylation of

these genes impairs expression and promotes tumor

development. HNRNPR contributes to the proliferation

and metastasis of gastric cancer (Chen et al., 2019),

whereby HNRNPR hypomethylation leads to tumor

proliferation and metastasis. According to these findings,

we speculated that 1C metabolism may play an important

role in both methylation and demethylation. On the one

hand, the high expression level of 1C metabolism related

genes accelerate the generation of 1C units in tumor cells. The

abundant methyl groups provide the needs of the methylation

of DNA, RNA and proteins, which have been proved by

numerous studies (Robertson and Jones, 2000; Van

Tongelen et al., 2017; Chen et al., 2019; Jiao et al., 2019;

Yao et al., 2020; Dai et al., 2021; Song P. et al., 2021). On the

other hand, high expressing 1C metabolism related genes can

absorb redundant methyl groups generated by

demethylation, thereby promoting the demethylation

process. Thus, we speculated that 1C metabolism related

genes may contribute to the redistribution of 1C units, by

which the important biological processes are influenced. In

addition, previous studies indicate that patient tumors with

low levels of DNA methylation and high expression of RNA

methyltransferases respond better to immunotherapy

(Emran et al., 2019; Zhang et al., 2021b). We therefore

hypothesized that patients in cluster 1 may benefit from

immunotherapy.

We further explored the potential correlation between 1C-

related gene expression and drug sensitivity in the CellMiner

database. Based on the expression pattern of cluster 1, tumor

cells exhibited lower sensitivity to gemcitabine and

oxaliplatin, but a higher sensitivity to 6-mercaptopurine.

However, tumors with a cluster 2 expression pattern were

sensitive to paclitaxel and carboplatin, while resistant to

etoposide and lapatinib. Gemcitabine, paclitaxel, etoposide,

oxaliplatin, and carboplatin are common drugs for the

treatment of NSCLC, however, only a subset of patients

benefit from these drugs (Hu et al., 2016; Cui et al., 2020;

Esim et al., 2020; Zhang et al., 2021a). Lapatinib is a dual

tyrosine kinase inhibitor that has been shown to have

promising antitumor effects in NSCLC (Huijberts et al.,

2020). 6-mercaptopurine is also an antitumor drug, and the

achievement of its therapeutic activity requires the enzymatic

conversion to thio-GMP to displace thio-GTP in RNA and

DNA (Karran and Attard, 2008). Pemetrexed plays an

important role in the treatment of LUAD and has a

response rate of 30% (Postmus, 2002). Pemetrexed’s

antitumor function is achieved by inhibiting three key

enzymes in the 1C metabolism pathway: thymidylate

synthase (TYMS), dihydrofolate reductase (DHFR), and

glycinamide ribonucleotide formyltransferase (GART). A

recent study indicates that MTHFD2 overexpression is

involved in resistance to pemetrexed (Yao et al., 2021). We

found these four genes to be significantly upregulated in

tumor tissues, especially in cluster 1, and were associated

with a poor prognosis. Therefore, we can reasonably deduce

that LUAD patients with high expression levels of 1C

metabolism-related genes may be inherently insensitive to

pemetrexed treatment. Likely as a result of the opposite

expression pattern of 1C metabolism-related genes in these

two groups, the opposite drug sensitivity pattern existed

among these two clusters. Patients in cluster 1 were

resistant to chemotherapeutic drugs, including pemetrexed,

gemcitabine, paclitaxel, oxaliplatin, and carboplatin. Thus,

patients in cluster 1 may benefit from immunotherapy.

We speculated that patients in cluster 1 could benefit from

immunotherapy. We therefore investigated the relationship

between 1C metabolism-related genes and immunotherapy in

the IMvigor210 cohort. DHFR, TYMS, GART, MTHFD2 and

SHMT1 were correlated with a superior OS to immunotherapy.

The expression levels of TYMS, GART, and MTHFD2 were also

higher in patients with a complete or partial response compared

with patients who had stable or progressive disease. Thus, we

speculated that 1C metabolism-related genes may play a role in

immunotherapy response and lead to a clinical benefit from

immunotherapy.

Several limitations exist in our study. Although the results

were substantiated in both TCGA and the IMvigor210 cohort,

they were not confirmed in LUAD patients who were treated

with immunotherapy because of the insufficient

transcriptome data from clinical trials. Consequently,

different data sets were used in this study. To reduce bias,

external validation in larger cohorts is required to validate

these findings. Lastly, in vivo and in vitro experiments are

needed to explore the potential mechanisms.

Taken together, our study demonstrates that 1C metabolism-

related genes possess potential as therapeutic targets as well as

biomarkers of prognosis of immunotherapy in LUAD. Based on

the expression pattern of 1C metabolism-related genes, LUAD

patients can be classified into two subtypes. Specific subtype

characteristics provide information for LUAD clinical

management and decision-making. Our findings provide new

insight into the mechanisms associated with poor LUAD

prognosis, predict efficacy of several therapeutic drug, as well
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as assist in identifying biomarkers for immunotherapy in LUAD

patients.
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SUPPLEMENTARY FIGURE S1
Kaplan-Meier survival curves and Univariate Cox regression analysis of
one-carbon metabolism associated genes. (A) Kaplan-Meier survival
curves of 13 genes associatedwith inferior OS; (B) Kaplan-Meier survival
curves of 10 genes associated with superior OS; (C) Kaplan-Meier survival
curves of 3 genes not associated with OS; (D) Univariate Cox regression
analysis of 26 one-carbon metabolism associated genes.

SUPPLEMENTARY FIGURE S2
ROC curves of 1C metabolism related-genes in TCGA, GEO, and
IMvigor210 cohort. (A) The 1-year, 5-year, and 10-year ROC curve in
TCGA cohort; (B) The 1-year, 5-year, and 10-year ROC curve in GEO
cohort; (C) The ROC curve in IMvigor210 cohort.

SUPPLEMENTARY FIGURE S3
Lasso regression and the establishment of risk score model. (A,B) Lasso
regression for 1Cmetabolism related-genes in LUAD patients; (C,D) The
establishment of risk score model in LUAD patients; (E) The expression
difference of one-carbonmetabolism associated genes in high- and low-
risk groups; (F) Kaplan-Meier curves for overall survival in two subgroups
(Log-rank test). * means p < 0.05; ** means p < 0.01; *** means p <
0.001; ns means no significant difference.

SUPPLEMENTARY FIGURE S4
Consensus clustering for one-carbon metabolism associated genes in
LUAD patients. (A) The consensus matrix shows patients with two
distinct one-carbon metabolism statuses; (B) Heatmap of one-carbon
metabolism associated genes expression level in two clusters; (C) The
expression difference of one-carbon metabolism associated genes in
two clusters; (D) Kaplan-Meier curves for overall survival in two clusters
(Log-rank test). * means p < 0.05; **means p < 0.01; *** means p < 0.001;
ns means no significant difference.

SUPPLEMENTARY FIGURE S5
Correlation of one-carbon metabolism associated genes with immune
cells. (A) Correlation of 26 one-carbon metabolism associated genes
with 22 immune cells; (B) Correlation of 26 one-carbon metabolism
associated genes with 28 immune cells.

SUPPLEMENTARY FIGURE S6
ESTIMATE analysis between cluster 1 and cluster 2. (A) The ESTIMATE
score between cluster 1 and cluster 2; (B) The Tumor purity between
cluster 1 and cluster 2; (C) The immune score between cluster 1 and
cluster 2; (D) The stromal score between cluster 1 and cluster 2. ns means
no significant difference.

SUPPLEMENTARY FIGURE S7
Immune profile alterations between cluster 1 and cluster 2. (A) The
difference of 22 immune cell types between cluster 1 and cluster 2; (B)
The difference of 28 immune cell types between cluster 1 and cluster 2.
* means p < 0.05; ** means p < 0.01; *** means p < 0.001; ns means no
significant difference.
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