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Renal fibrosis (RF) is the common pathological manifestation and central
treatment target of multiple chronic kidney diseases with high morbidity and
mortality. Currently, the molecular mechanisms underlying RF remain poorly
understood, and exploration of RF-related hub targets and pathways is urgently
needed. In this study, two classical RF rat models (adenine and UUQO) were
established and evaluated by HE, Masson and immunohistochemical staining.
To clear molecular mechanisms of RF, differentially expressed genes (DEGs)
were identified using RNA-Seq analysis, hub targets and pathways were
screened by bioinformatics (functional enrichment analyses, PPl network,
and co-expression analysis), the screening results were verified by gRT-PCR,
and potential drugs of RF were predicted by network pharmacology and
molecular docking. The results illustrated that renal structures were severely
damaged and fibrotic in adenine- and UUO-induced models, as evidenced by
collagen deposition, enhanced expressions of biomarkers (TGF-B1 and a-SMA),
reduction of E-cadherin biomarker, and severe renal function changes
(significantly decreased UTP, CREA, Ccr, and ALB levels and increased UUN
and BUN levels), etc. 1189 and 1253 RF-related DEGs were screened in the
adenine and UUO models, respectively. Two key pathways (AGE-RAGE and
NOD-like receptor) and their hub targets (Tgfbl, Collal, Nlrc4, Casp4, Trpm2,
and Il18) were identified by PPl networks, co-expressed relationships, and gRT-
PCR verification. Furthermore, various reported herbal ingredients (curcumin,
resveratrol, honokiol, etc.) were considered as important drug candidates due
to the strong binding affinity with these hub targets. Overall, this study mainly

Abbreviations: Casp4, caspase 4; Collal, collagen alpha-1chain, Alpha-1; Il18, interleukin-18Tgfb1,
transforming growth factor beta-1; Nlrp3, NOD-like receptor thermal protein domain associated
protein 3; Nlrc4, NLR family CARD domain-containing protein 4; Trom2, transient receptor potential
cation channel subfamily M member 2.
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identified two key RF-related pathways (AGE-RAGE and NOD-like receptor),
screened hub targets (Tgfbl, Collal, Nlrc4, Casp4, Trpm2, and Il18) that

involved
pyroptosis,

etc.,

inflammation,
and provided

ECM formation, myofibroblasts generation, and
referable drug candidates (curcumin,

resveratrol, honokiol, etc.) in basic research and clinical treatment of RF.
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Introduction

Renal fibrosis (RF), associated with excessive accumulation of
extracellular matrix (ECM) proteins and myofibroblasts, is a
common consequence of various progressive kidney diseases and
also the principal process of chronic kidney disease (CKD) to
end-stage renal disease (Humphreys, 2018; Nastase et al., 2018).
CKD is mainly caused by hypertension, diabetes, chronic
pyelonephritis, autoimmune diseases, prolonged acute renal
disease (Ammirati, 2020), and has been considered a serious
public health problem with a global prevalence of 13.4%
(11.7-15.1%) (Lv 2019). With such high
morbidity of CKD, the risk of RF has been increasing and

and Zhang,

long-term RF causes irreversible damage to renal structure
and function, resulting in increased mortality in patients with
CKD and a great burden on society (Nogueira et al., 2017; Zhao
et al., 2020). Studies have shown that the formation of RF exists as
a complicated pathological mechanism involving inflammation,
oxidative stress, apoptosis (Rayego-Mateos and Valdivielso,
2020). When the kidney injury occurs, inflammatory cells are
rapidly recruited and release lots of profibrotic mediators (TNF-
a, IL-6, and IL-1P, etc.), tubular epithelial cells and fibroblasts
have to accumulate myofibroblasts and excessively product
ECMs (collagens, fibronectin, proteoglycans, laminin, and
endothelin), which finally cause glomerulosclerosis
tubular atrophy of RF (Liu, 2011; Meng, 2019). Nowadays, RF
has joined the scientist’s attention and it is an urgent and unmet

and

clinical need to understand the molecular pathogenesis of renal
fibrosis.

Recently, the majority of molecular studies of RF are mainly
concentrated in some common drug therapeutic targets (TGF-
B1, CTGF, NOX4 and Smad3, etc.), as well as well-established
RF-related pathways (HIF, TGF-p/Smad, PI3K-Akt and NF-«xB
pathways, etc.) (Liu, 2011; Liu et al., 2017; Rayego-Mateos and
Valdivielso, 2020). For instance, TGF-p1 was recognized as a key
fibrotic disease causative factor in RF progression, its specific up-
regulation can induce the synthesis of ECM (collagens,
proteoglycans, and glycoproteins) by activation of TGF-B/
Smad pathway (Okuda et al, 1990; Hu et al, 2018). So far,
though, the molecular mechanisms implicated in RF are still
poorly understood, hence, it is of great importance to investigate
more potential pathophysiological molecular mechanisms
underlying the usual development of RF. To study the
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biopathology of RF, animal models are required. According to
previous studies, the chemical toxicity of drugs and obstructive
mechanical damage cause genetic alterations in the kidney,
the

in

supporting exploring of molecular and cellular

mechanisms RF  pathogenesis. Unilateral ureteral
obstruction (UUQO) and adenine-induced chronic renal failure
(ACREF) are two classic RF models that can respectively represent
obstructive nephropathy and pharmacotoxic nephropathy
(Kashioulis et al., 2018; Martinez-Klimova et al., 2019). These
two animal models of RF have good reproducibility and have
widely used in basic research of RF currently, and yet, their
molecular mechanisms of RF at genomic levels need to be further
investigated.

Therefore, in this study, the adenine- and UUO-induced rat
models of RF were established and their pathological changes
by (HE),

immunohistochemical and Masson staining, differentially

were observed hematoxylin-eosin
expressed genes (DEGs) were identified using RNA-Seq
transcriptome analyses, and the protein-protein interaction
(PPI) network, gene co-expression correlation analysis, Gene
Ontology (GO) functions and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways of DEGs were further analyzed, the
DEGs were verified by quantitative reverse transcription-
polymerase chain reaction (qQRT-PCR) and potential drug
of DEGs

pharmacology analysis and molecular docking, which might

prediction were performed by network
further increase a deeper understanding of potential molecular
mechanisms of RF and offer more novel therapeutic targets,
pathways and drug candidates against RF. All operation

workflow were shown in Figure 1.

Materials and methods
Animal experimentation

60 Male SD rats (180-200 g, 8 weeks old) were purchased
from SLAC Laboratory Animal Co. Ltd (Certificate No: SCXK
(Shanghai)  2017-0005) and housed under
environmental conditions (22 + 2°C, 55-60% relative
humidity, and 12 h light/ 12 h dark cycle) with free access to
tap water and food in SPF grade animal room. All rats were kept

standard

for 7 days for proper acclimatization. Great care was taken to
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FIGURE 1

Workflow of exploring molecular mechanisms of RF based on RNA-Seq, bioinformatics, network pharmacology and molecular docking

methods, including the adenine and UUO models.

minimize their suffering and this study was approved by the
Animal Ethics Committee of Zhejiang Chinese Medical
University (Animal Ethics No: 20190902-04).

In this study, adenine (chemical) and UUO (surgical) models
were established to investigate potential molecular mechanisms
of RF as comprehensively as possible. In the establishment of the
adenine model, 20 SD rats were randomized to adenine (n = 10,
model) and control (n = 10, control) groups. During the
experiments, 22g adenine powder  (Sigma-Aldrich,
WXBC9818v, United States) was dissolved in 100 ml saline to

prepare 2.2% adenine suspension. Rats in the adenine group were

intragastrically administered with 220 mg/kg per day for 3 weeks.
And in the control group, SD rats were given normal saline per
day for 3 weeks. In the establishment of UUO model, 20 SD rats
were randomly divided into UUO (n = 10, model) and sham (n =
10, control) groups. In the UUO group, with isoflurane
anesthesia, UUO surgery was carried out and followed these
steps: 1) the incision was made in the left abdominal cavity and
the left ureter was exposed, 2) ligation of proximal and distal
segments of the left ureter with 4-0 silk thread at both ends. 3)
the ligated ureter was laid back in place and wounds were
sutured. In the sham group, sham-operated rats were
manipulated similarly, but their ureters were not ligated. After
the operation, rats in two groups were fed with the conventional
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diet for 2 weeks. To observe renal function, 24-h metabolic
changes of blood and urine of SD rats in the sham, UUO,
control, and adenine groups were detected by HITACHI
Automatic Aralyzer (Hitachi Limited, 3100, Japan), including
urea total protein (UTP), urine urea nitrogen (UUN), urine
creatinine (CREA), creatinine clearance (Ccr), serum albumin
(ALB), blood urea nitrogen (BUN), and serum creatinine (Scr).
At the end of the experiment, all SD rats were euthanized to
collect their renal tissues for further experiments.

Histopathology and
immunohistochemistry

To evaluate the characteristics of the adenine and UUO
(HE),
immunohistochemical staining were performed. Firstly, renal

models, hematoxylin and eosin Masson, and

tissues fixed in 4% formalin were embedded in paraffin and
then cut into 4 pm-thick sections. Then, in HE staining, sections
were stained with hematoxylin and eosin  using
ST5010 Autostainer (Leica, Wetzlar, Germany). In Masson
staining, sections were stained by Masson Stain Kit (G1340,
Solarbio, China). In immunohistochemical staining, tissue

sections were blocked with serum and incubated overnight at
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4°C using the following primary antibodies: alpha-smooth
muscle actin (a-SMA, 1: 50 dilution, ab5694, abcam,
Cambridge, United Kingdom), E-cadherin (1: 50 dilution,
abl416, United Kingdom), and
transforming growth factor-betal (TGF-f1, 1: 50 dilution,
ab215715, United Kingdom). After
primary antibody incubation, sections were incubated with a

abcam,

Cambridge,

abcam, Cambridge,
biotinylated secondary antibody (horseradish peroxidase, 1:
100 dilution) for 1h at room temperature and then stained
with  3,3’-diaminobenzidine  tetrahydrochloride ~ (DAB).
Fourthly, all HE, and
immunohistochemical staining were photographed by a Nikon

sections in Masson,

Eclipse 80i microscope (Nikon, Tokyo, Japan). Finally,
quantitative analyses of Masson staining (collagen deposition)
and immunohistochemistry (a-SMA, E-cadherin, and TGF-p1
staining density) were performed using Image-]J software
(Version 1.49, National of Health, Bethesda,
United States) and the Image-Pro Plus software (Version 6.0,

Institutes

Media Cybernetics, Silver Spring, United States), respectively.

RNA sequencing analysis

To explore potential molecular mechanisms of RF, RNA-seq
analyses of the adenine and UUO models were performed.
Firstly, three individual renal tissues of rats in the control,
adenine, sham, and UUO groups were randomly selected to
extract total RNAs using Trizol reagent (Invitrogen, Carlsbad,
CA, United States), respectively. Then, the total RNA amount
and purity of each sample was quantified using NanoDrop ND-
1000 (NanoDrop, Wilmington, DE, United States). The RNA
integrity was assessed by Bioanalyzer 2100 (Agilent, CA,
United States) with RIN number >7.0, and confirmed by
electrophoresis with denaturing agarose gel. Poly (A) RNA
was purified from 1pg total RNA using Dynabeads Oligo
(dT) 25-61005 (Thermo Fisher, CA, United States) and
fragmented into small pieces using Magnesium RNA
Fragmentation Module (NEB, cat. e6150, United States). Then
the cleaved RNA fragments were reverse-transcribed to create the
cDNA by SuperScript™ II Reverse Transcriptase (Invitrogen, cat.
1896649, United States). The average insert size for the final
cDNA library was 300 + 50 bp. At last, DNA sequencing from the
cDNA library was performed on an Illumina Novaseq™ 6000
(LC-Bio Technology CO., Ltd., Hangzhou, China) following the
vendor’s recommended protocol.

Data preprocessing and identification of
DEGs

To identify DEGs of RF, the raw data from RNA-seq results in
the adenine and UUO models were normalized and summarized
to obtain clean reads. After removing the low-quality bases and
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undetermined bases, the reads were mapped and merged to
reconstruct the comprehensive transcriptomes. After the final
transcriptome was generated, the expression levels of all
transcripts were estimated and gene expression levels were
performed by calculating FPKM. The levels of each gene
expression difference (fold change, FC) were calculated and
compared with a false discovery rate (FDR) correction by using
the “DESeq2” package of R software (Version 4.1.1, Lucent
Technologies, Bell Laboratories, New Jersey, United States). The
genes conforming to |log2 FC| > 2 and FDR value <0.05 were
defined as DEGs and visualized by volcano plot and heatmap
through “ggplot2” package of R software (Version 4.1.1, Lucent
Technologies, Bell Laboratories, New Jersey, United States).

Identification of RF-related DEGs

To screen RF-related DEGs in the adenine and UUO models,
RF-related genes were collected from the GeneCards (https://
www.genecards.org/) and OMIM (https://omim.org/) databases.
Then, DEGs in the adenine and UUO models were respectively
intersected with RF-related genes to obtain their RF-related
DEGs using the “VennDiagram” package of R software
(Version 4.1.1, Lucent Technologies, Bell Laboratories, New
Jersey, United States).

Functional enrichment analysis

To further explore the underlying molecular mechanisms of
RF, the biological functions and pathways of RF-related DEGs
were analyzed. In biological functions, the gene ontology (GO)
function of RF-related DEGs was analyzed using by the
ggplot2” and “enrichplot”

» o«

“org.Hs.eg.db”, “clusterProfiler,
packages of R software (Version 4.1.1, Lucent Technologies,
Bell Laboratories, New Jersey, United States), including
analyses of cellular component (CC), molecular function
(MF), and biological process (BP). In pathways, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses of RF-related DEGs were performed
through the Metascape website (https://metascape.org/).

Protein-protein interaction network
construction and gene co-expression
correlation analysis

To explore protein interaction and gene co-expression
relationships among RF-related DEGs, PPI network and gene
expression correlation analyses were performed. Firstly, PPI
networks of RF-related DEGs in the adenine and UUO
models were constructed using the STRING database (https://
string-db.org/). The organism species was set as “Rattus

frontiersin.org
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norvegicus” with a correlation degree set as > 0.40. Then, PPI
networks were visualized by Cytoscape 3.8.2 software (Shannon
et al, 2003). Moreover, in gene co-expression correlation
analysis, the correlation plot was analyzed based on the
Pearson correlation test in the ‘corrplot’ package of R software
(Version 4.1.1, Lucent Technologies, Bell Laboratories, New
Jersey, United States).

Quantitative real-time PCR

To preliminarily verify the data of RNA-sequencing, a total of
24 renal samples (six samples in each group) from control,
adenine, sham, and UUO groups were selected for qRT-PCR
analysis, respectively. Firstly, total RNA was extracted from the
renal sample by TRIzol reagents (Invitrogen, Carlsbad, CA,
United States) following the manufacturer’s instructions. Then,
reverse transcription of RNA to cDNA was performed with
SuperScript™ IV Reverse Transcriptase reagents (ThermoFisher
Scientific Inc, Waltham, MA, United States). Finally, cDNA was
amplified by Applied Biosystems Step One Plus Real-Time PCR
System (Thermo Fisher Scientific, Inc, MA, United States)
following these procedures: a holding stage (95°C in one cycle
of 30s), a cycling stage (95°C in 40 cycles of 5s and 60°C in
40 cycles of 30 s), and a melting curve stage (start at 55°C, increase
by 0.5°C every 30 s until 95°C). All primer sequences were shown in
Supplementary Table S1 and mRNA levels were calculated by the
2724C€T method. Moreover, to ensure the accuracy of PCR
validation, deviation plot of RF-related DEGs in RNA-seq was
produced using the “ggpubr” package of R software (Version 4.1.1,
Lucent Technologies, Bell Laboratories, New Jersey, United States).

Drug prediction of RF-related DEGs

To offer drug candidates for the treatment of RF, drug
prediction of RF-related DEGs were performed by network
pharmacological analysis. Firstly, small molecule drugs and
active ingredients of traditional Chinese medicine were collected
from Drugbank (https://www.drugbank.ca/) and HERB (http://
herb.ac.cn/) databases, respectively. Then, the “Disease-pathway-
gene-drug” interaction network was constructed and visualized
using Cytoscape 3.8.2 software (Shannon et al., 2003).

Molecular docking analysis

To investigate the interaction and binding activities of targets
with predicted drugs, molecular docking analysis was performed.
All protein 3D structures of targets were downloaded from the
PDB database (http://www.rcsb.org) and the ligand files of
predicted drugs were obtained from the PubChem platform
(http://pubchem.ncbinlm.nih.gov/), including Tgfbl (PDB ID:
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1KLA), Trpm2 (PDB ID: 6PUS), Trpv2 (PDB ID: 6U84), Agt
(PDB ID: 5F9S), NIrp3 (PDB ID: 7ALV), 1118 (PDB ID: 3WO02),
Mapk10 (PDB ID: 30Y1), and Casp4 (PDB ID: 6NRY). After the
optimization of the protein structure and small molecule ligands,
molecular docking was completed by Autodock Vina 1.2.
0 software (Eberhardt et al, 2021) and the binding effects
were analyzed by Discovery studio visualizer software
(Version 2020; BIOVIA, United States), including the docking
conformation, binding energy, and intermolecular interactions
(such as hydrophobicity, -7 stacking, hydrogen bonding, etc.).

Statistical analysis

Statistical analyses were performed by SPSS software (Version
26.0, SPSS, Chicago, United States). One-way ANOVA test with
least-significant difference (LSD) method was performed among
three or more groups and all data were given as mean
values tstandard deviation (SD). The results of p < 0.05 were
considered statistically significant. Boxplots were produced by
OriginPro Software (Version 2021; OriginLab, Northampton,
MA, United States) and every point represented one sample.

Results

Functional, pathological and
immunohistochemical characteristics of
renal tissues in the adenine and UUO
models

As shown in Figure 2A, renal function indices were
significantly changed in the adenine group compared with the
control group (p < 0.05 or p < 0.01 vs. control level), including
downregulation of UTP, CREA, Ccr, and ALB levels and
upregulation of UUN, BUN and Scr levels. In Figure 2B, renal
function indices were significantly changed in the UUO group
compared with the sham group (p < 0.05 or p < 0.01 vs. sham
level), including downregulation of UTP, CREA, Ccr, and ALB
levels and upregulation of UUN and BUN levels. In Figure 2C,
renal morphology in the control group and sham group exhibited
normal glomeruli, tubules, and interstitial tissues, in contrast,
that in the adenine group and UUO group demonstrated tubular
and glomerular atrophy, multifocal interstitial fibrosis, and
lumen dilation. In Figure 2C, collagen deposition in the
adenine group and UUO group was significantly higher than
that in the control group (p < 0.05 vs. control level) and sham
group (p < 0.05 vs. sham level), respectively. In Figure 2D, the
protein expressions of TGF-B1 and a-SMA in the adenine group
and UUO group were significantly higher than those in the
control group (p < 0.05 vs. control level) and sham group (p <
0.05 vs. sham level). The protein expression of E-cadherin in the
adenine group and UUO group was significantly lower than that
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in the control group (p < 0.05 vs. control level) and sham group
(p < 0.05 vs. sham level). These findings suggested the successful
establishment of two RF models (adenine and UUO).

Identification of RF-related DEGs in the
adenine and UUO models

As shown in Figure 3A and Supplementary Table S2,
according to the cutoff criteria of |log2 FC| > 2 and
FDR  <0.05, 2928 DEGs (2011 upregulated
917 downregulated genes) in the adenine model and

and
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FIGURE 2

Renal function parameters, pathological characterization and immunohistochemical changes of RF-related adenine and UUO models. (A)
Renal function parameters of rats in the control and adenine groups. (B) Renal function parameters of rats in the sham and UUO groups. (C) HE
staining (200x), Masson staining (200x). and collagen deposition in the control, adenine, sham, and UUO groups. (D) Immunohistochemical staining
(400x) and staining intensity of TGF-p, a-SMA, and E-cadherin in the control, adenine, sham, and UUO groups. All data showed mean + SD, *p <

0.05 and **p < 0.01 compared to the control group, #p < 0.05 and *#p < 0.01 compared to the sham group.

2714 DEGs (2089 upregulated and 625 downregulated genes)
in the UUO model were identified. In Figure 3B, the top
100 DEGs in the adenine model were obtained, including
Tgtbl, Trpv2, A2m, and Trpvé, etc. And the top 100 DEGs in
the UUO model were shown in the heatmap (Figure 3B),
including Egf, Slcl6a4, Slc22a2, and Slcl6alo,
Figure 3C, the overlap between DEGs in the adenine model
and RF-related genes dataset contained 1189 RF-related DEGs,
and the overlap between DEGs in the UUO model and RF-
related genes dataset contained 1253 RF-related DEGs. Detailed
information of DEGs in the adenine and UUO models was
provided in Supplementary Table S2.

etc. In
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FIGURE 3

DEGs of RF in adenine and UUO models. (A) Volcanic maps showed DEGs in the adenine and UUO models, respectively. Red represented high
expressed genes, green represented low expressed genes, and gray represented no different genes. (B) Heatmaps showed the top 100 DEGs with
FDR value <0.05 in the adenine and UUO models, respectively. Red areas represented highly expressed genes and blue areas represented lowly
expressed genes. (C) Venn diagram showed the intersection genes between RF-related genes and DEGs in the adenine and UUO models.

Functional enrichment analyses of RF-
related DEGs in the adenine and UUO
models

As shown in Figures 4A, 5A, RF-related DEGs in the adenine
and UUO models shared similar GO functions. Among them, the
biological process module revealed that the RF-related DEGs were
mainly enriched in external encapsulating structure organization,
extracellular matrix organization, and positive regulation of cell
adhesion, etc. The cellular component module showed that the RF-
related DEGs were mainly involved in collagen—containing
extracellular matrix, membrane raft, and external side of plasma
membrane, etc. The molecular function module indicated that the
RF-related DEGs were mainly associated with receptor ligand
activity, extracellular matrix structural constituent, and collagen
binding, etc. In Figures 4B, 5B, RF-related DEGs in the adenine
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and UUO models also shared similar KEGG pathways, including
ECM-receptor interaction, NOD-like receptor pathway, AGE-
RAGE pathway in diabetic complications, and Toll-like receptor
pathway, etc. Detailed information of the GO and KEGG analyses
was provided in Supplementary Tables S3, S4.

Establishment and analysis of PPI
networks

As shown in Figures 6A,B, 31 (AGE-RAGE pathway) and 30
(NOD-like receptor pathway) RF-related DEGs with protein
interaction was found in the adenine model, respectively. In
Figures 6C,D, 29 (AGE-RAGE pathway) and 37 (NOD-like
receptor pathway) RF-related DEGs with protein interaction
were found in the UUO model, respectively. According to the
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FIGURE 4

GO function and KEGG pathways enrichment results of RF-related DEGs in the adenine model. (A) Bubble charts of GO enrichment analysis, the
Y axis displayed biological process, cellular component, and molecular function modules, the X axis represented gene ratio, count (the size of the
nodes) indicated gene number, and gvalue (the intensity of the color) referred to -log10 p-value. (B) Bubble charts of 30 KEGG significant pathways
with p < 0.05, the Y-axis displayed pathways, the X-axis represented gene ratio, count (the size of the nodes) indicated gene number, and FDR

value (the intensity of the color) referred to -logl0 p-value.

cytoHubba plugin’s degree ranking, in the adenine model, the
top 10 RF-related DEGs were obtained in the AGE-RAGE
pathway (Tgfbl, Collal, Il1b, and Agt, etc.) and NOD-like
receptor pathway (Il6, Caspl, Nlrp3, and Nlrc4, etc.). In the
UUO model, the top 10 RF-related DEGs were obtained in the
AGE-RAGE pathway (Tgfbl, Collal, Il1b, and Agt, etc.) and
NOD-like receptor pathway (Casp4, 1118, Nlrp3, and Nlrc4,
etc.). Detailed information was provided in Supplementary
Table S5.

Correlation analysis of RF-related DEGs

As shown in Figure 7, in the adenine and UUO models, the
highly positive or negative co-expressed relationships occurred
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among the RF-related DEGs in both AGE-RAGE pathway and
NOD-like receptor pathway. Further screening by the gene
number of correlation coefficient >0.7, in the adenine model,
top 10 positive co-expressed DEGs (Tgfb1, 116, Collal, and Piml1,
etc.) and top 3 negative co-expressed DEGs (Agt, Mapk10, and
Col4a3) were found in the AGE-RAGE pathway (Figure 7A), and
top 10 positive co-expressed DEGs (Nlrc4, Trpm2, Nlrp3, and
1118, etc.) and top 3 negative co-expressed DEGs (Casr, Mapk10,
and NIrp6) were found in the NOD-like receptor pathway
(Figure 7B). Moreover, in the UUO model, top 10 positive co-
expressed DEGs (Tgtbl, Cybb, Icam1, and Casp3, etc.) and top
3 negative co-expressed DEGs (Agt, Mapk10, and Col4a3) were
found in the AGE-RAGE pathway (Figure 7C), and top
10 positive co-expressed DEGs (Nlrc4, Casp4, Caspl, Trpm2,
and Trpv2, etc.) and top 3 negative co-expressed DEGs (Casr,
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Mapk10, and Nlrp6) were found in the NOD-like receptor
pathway (Figure 7D).

Verification of the RF-related DEGs in the
adenine and UUO models

As shown in Figure 8A, compared with the control group,
11 DEGs (Collal, Tgfbl, Casp4, Caspl2, Nlrc4, Nlrp3, 1118,
Trpm2, Trpv2, Lpl, and Olrl) were significantly up-regulated and
seven DEGs (Agt, Col4a3, Mapkl0, Casr, Acadm, Mel, and
Cyp8bl) were significantly down-regulated in the adenine
group (p < 0.05 or p < 0.01 vs. control level), which was
consistent with the result of DEGs expressed trends in RNA-
seq (Figure 8B). In Figure 8C, compared with the sham group,
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seven DEGs (Colial, Tgfbl, Casp4, Casp12, 1118, Trpv2, and Fas)
were significantly up-regulated and five DEGs (Agt, Col4a3,
Mapk10, Casr, and Egf) were significantly down-regulated in
the UUO group (p < 0.05 or p < 0.01 vs. sham level), which was
consistent with the result of DEGs expressed trends in RNA-seq
(Figure 8D).

Potential drug prediction of RF

As shown in Figure 9A, the drug network from the
Drugbank database consisted of 47 nodes (two model nodes,
two pathway nodes, eight drug target nodes, and 35 active drug
nodes) and 96 edges. In both adenine and UUO models, RE-
related DEGs (Tgfbl, Collal, Nlrc4, and Trpv2, etc.) in the

09 frontiersin.org


https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1035772

Cai et al.

10.3389/fmolb.2022.1035772

FIGURE 6

The PPI networks of RF-related DEGs in the adenine and UUO models. The intensity of the color from yellow to red indicated degree values
(number of genetic links) from low to high, and top 10 RF-related DEGs were displayed in the center of the network. (A) The PPl network of RF-related
DEGs from the AGE-RAGE pathway in the adenine model. (B) The PPI network of RF-related DEGs from NOD-like receptor pathway in the adenine
model. (C) The PPI network of RF-related DEGs from the AGE-RAGE pathway in the UUO model. (D) The PPI network of RF-related DEGs from

the NOD-like receptor pathway in the UUO model.
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AGE-RAGE pathway and NOD-like receptor pathway could be
modulated by various drug candidates. Among them, Tgfb1 was
modulated by six drugs (terazosin, foreskin fibroblast
(neonatal), and hyaluronidase, etc.), Collal by five drugs
(halofuginone, vonicog alfa, and clove oil, etc.), and Nlrc4 by
two drugs (Fostamatinib and Indomethacin). In Figure 9B, the
TCM network from the HERB database consisted of 115 nodes
(two model nodes, two pathway nodes, 11 drug target nodes,
39 active drug nodes, and 61 reference nodes) and 262 edges. In
both adenine and UUO models, RF-related DEGs (Tgtbl,
Collal, 1118, Casp4, and Trpm2, etc.) in the AGE-RAGE
and NOD-like could be
modulated by various drug candidates. Among them,

pathway receptor pathway
Tgtbl was modulated by thirty drugs (resveratrol, taxol,
puerarin, and quercetagetin, etc), Collal by two drugs

(dihydrotanshinone I and honokiol), 1118 by four drugs
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(curcumin, sinomenine, honokiol, and epigallocatechin 3-
gallate), Casp4 by cannabidiol, and Trpm2 by carvacrol.
Detailed information was shown in Supplementary Table Sé.

Verification of “targets-predicted drugs”
interaction by molecular docking

As shown in Figure 10, the affinity energies of all protein-
ligand complexes were the stable conformation due to binding
free energies < -5 kcal/mol. Furthermore, 2D diagrams cleared
that these targets and herbal ingredients in the protein-ligand
complexes existed the strong non-bond interactions that
regulated ligand binding and protein activity, involving the
formation of hydrogen bonding, hydrophobic bond, van der
waals, 7-7 interaction, and m-alkyl interaction etc.
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Corrplots of the correlation analysis between the RF-related DEGs. Red and green denoted positive and negative correlation, respectively. Every
correlation coefficient was represented, and the darker the color, the higher the correlation coefficient. Top 10 DEGs with the number of positive
correlation coefficient >0.7 were labeled red and top 3 DEGs with the number of negative correlation coefficient >0.7 were labeled blue. (A) The
corrplot of RF-related DEGs from the AGE-RAGE pathway in the adenine model. (B) The corrplot of RF-related DEGs from NOD-like receptor
pathway in the adenine model. (C) The corrplot of RF-related DEGs from the AGE-RAGE pathway in the UUO model. (D) The corrplot of RF-related

DEGs from NOD-like receptor pathway in the UUO model.

Discussion

Renal fibrosis (RF) is a disease with the pathological
characterization of glomerulosclerosis and tubulointerstitial
fibrosis in the clinic and common outcome of various chronic
kidney diseases caused by diabetes mellitus, obesity, HIV
infection, hypertension, etc. (Liu, 2011; Humphreys, 2018). It
is widely considered that the inhibition of RF plays a critical role
in improving the prognosis of all chronic kidney diseases and
delays the process of end-stage renal disease, which causes the
explosion of molecular mechanisms and treatment strategies of
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RF (Liu, 2011). Therefore, the investigation of molecular
mechanisms in RF is crucially important to understand the
pathological mechanisms of RF and offers more options (new
investigative targets and pathways) in drug research of RF. The in
vivo results indicated that both adenine- and UUO-induced rat
models were successfully built, as demonstrated by severe renal
function changes (significantly decreased UTP, CREA, Ccr, and
ALB increased UUN and BUN
glomerulosclerosis, dilation, collagen deposition,
enhanced expressions of biomarkers (TGF-fl1 and a-SMA),
and reduction of E-cadherin biomarker (Figure 2). RNA-seq

levels and levels),

lumen
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FIGURE 8

Verification of RF-related DEGs using qRT-PCR. (A) The gene expressions of Agt, Collal, Col4a3, Tgfbl, Mapk10, Casp4, Caspl2, Casr, Nlrc4,
Nlrp3, 1118, Trpm2, Trpv2, Acadm, Mel, Lpl, Olrl, and Cyp8bl in the adenine model. (B) Deviation plot of RF-related DEGs in (A) was represented to
ensure that gene expression trends in gRT-PCR and RNA-seq were consistent. (C) The gene expressions of Agt, Colial, Col4a3, Mapkl0, Tgfbl,
Casp4, Caspl2, Casr, 1118, Trpv2, Egf, Fas in the UUO model. (D) Deviation plot of RF-related DEGs in (C) was represented to ensure that gene
expression trends in gqRT-PCR and RNA-seq were consistent. Data showed mean + SD, *p < 0.05 and **p < 0.01 compared to the control group, *p <

0.05 and ##p < 0.01 compared to the sham group.

results presented that 1189 and 1253 RF-related DEGs were
identified in the adenine and UUO models, respectively
(Figure 3C). GO analysis (Figures 4, 5) showed that RF-
related DEGs were mainly enriched in various functions
(collagen binding, collagen—containing extracellular matrix,
and cell adhesion, etc.) that were associated with ECM
production in RF. And KEGG analysis (Figures 4, 5) indicated
that adenine and UUO models existed with 95 and 109 pathways,
respectively, in which AGE-RAGE and NOD-like receptor
pathway existed potential research value in RF due to their
correlation with renal cells injuries (fibrosis, inflammation and
apoptosis) in CKD (Yang et al., 2019) but unclear roles in RF-
related reports until now. After screening by PPI and gene co-
expressed relation (Figures 6, 7), top RF-related DEGs (Tgfbl,
Collal, Mapk10, Nlrc4, Nlrp3, Casp4, Trpm2, Trpv2, and 1118,
etc.) in these two pathways were initially identified as key targets
due to the further verification by qRT-PCR (Figure 8).

As the important members of AGE-RAGE pathway,
Tgtbl was known as the predominant profibrotic factor that
drived glomerular and tubulointerstitial fibrosis in different types
of kidney diseases (Lopez-Herndndez and Lopez-Novoa, 2012),
and Collal was a crucial fibrotic gene in ECM formation and
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fibroplasia of RF (Hosper et al., 2013). Previous works presented
that overexpressed Tgfbl could induce upregulation of collagen
genes (Collal, Col3al, and Coldal, etc.) to stimulate ECM
accumulation (collagens, fibronectin, and endothelin, etc.) in
various renal cells (fibroblasts, tubular cells, glomerular
mesangial cells and epithelial cells, etc.) (Livingston et al,
2022), which was mainly associated with the activation of
TGF-B/Smad and AGE-PAGE pathways (De Vriese et al,
2003; Ma and Meng, 2019). In this study, RNA-seq
(Supplementary Table S2) and qRT-PCR (Figure 8) results
that mRNA of Tgfbl
Collal were significantly increased in both adenine and UUO

also demonstrated levels and
models of RF, and immunohistochemical analysis (Figure 2D)
showed that protein expression of TGF-Pl was significantly
increased. According to these results and previous studies (De
Vriese et al., 2003; Meng et al., 2016; Ma and Meng, 2019), it was
hypothesized that overexpressed Tgfbl could bind to the plasma
(like  Tgfbrl), Smad2/
3 phosphorylation, promote formation of a transcription
complex (Smad2/3-Smad4) that translocated to the nucleus,

membrane  receptor trigger

and further upregulated downstream gene expressions (like
Collal), which activated TGF-B/Smad and AGE-RAGE
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Potential drug prediction of renal fibrosis (RF) using network pharmacology analysis. (A) “Disease-pathway-gene-drug” interaction network of
adenine and UUO models in the Drugbank database. The diseases were labeled by lake blue, pathways by orange, genes by purple, and drugs by
green. (B) "Disease-pathway-gene-drug-reference” network of adenine and UUO models in the HERB database. The diseases were labeled by lake
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pathways of RF and promoted collagen accumulation
(Figure 2C), myofibroblast generation with overexpressed a-
SMA (Figure 2D) and epithelial-mesenchymal transition
(EMT) 2D).
Tgtbl and Collal were closely related to the occurrence and

with  underexpressed E-cadherin  (Figure
progression of RF, as a result, had become the hub targets of
AGE-RAGE pathway.

Moreover, in the NOD-like receptor pathway, RF-related
DEGs (Nlrc4, Nlrp3, Casp4, Trpm2, 1118, and Il1b, etc.) were
significantly upregulated (Supplementary Table 52), all of which
were reported to be associated with pyroptosis (Zhang and
Wang, 2019; Wen et al., 2022). Among them, Nlrc4 served as
a sensor for Caspl activation, promotes Caspl-mediated
pyroptosis of HK-2 cells, and aggravated RF in diabetic
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animals by accelerating inflammatory cell infiltration and
pyroptosis-associated  protein  (gsdmd caspase-1)
expression (Wen et al., 2022). Casp4 was related to activation

and

of inflammatory response, tubular injury and interstitial fibrosis
under pathological conditions of RF, and its inhibition
significantly blunted TGF-P1, fibronectin, and collagen I
expressions in the obstructed kidney of UUO mice (Miao
et al,, 2019). 1118 played an important role in the progression
of RF infiltration,
myofibroblasts formation, and the expression of inflammatory
cytokines 2018).
Trpm?2 ablation significantly attenuated RF in UUO mice via
inhibiting  TGF-P1-induced fibrosis
accompanied by the reduction of fibrotic genes such as a-

via modulating inflammation cells

and chemokines, etc. (Liang et al,

and inflammation,
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FIGURE 10
Molecular docking analysis of hub targets and ingredients.

SMA and Collal (Wang et al., 2019). In this study, qRT-PCR
(Figure 8) further confirmed that mRNA levels of RF-related
DEGs (Nlrc4, Casp4, 1118 and Trpm2, etc.) were markedly
increased in the NOD-like receptor pathway, and thus
pathologic process of RF might be driven by a pyroptosis-
related mechanism. Furthermore, Nlrc4, Casp4, 1118 and
Trpm2 were expected to become hub targets of NOD-like
receptor pathway.

Obviously, AGE-RAGE and NOD-like receptor pathways
played a crucial role in the pathological process and
treatment of RF, involving in triggering inflammation,
ECM formation (collagen,
myofibroblasts transdifferentiation, and pyroptosis, etc.
Moreover, in the adenine and UUO models, a highly

elastin, and fibronectin),

positive co-expressed  relation  (correlation
coefficient >0.8) occurred between Tgfbl and Collal in
the AGE-RAGE pathway (Figures 7A,C), among Nlrc4,
Casp4, 1118 and Trpm2 in the NOD-like receptor pathway
(Figures 7B,D), which was confirmed by qRT-PCR (Figure 8).

Collectively, these six RF-related DEGs and two pathways

gene

were finally identified as hub therapeutic targets in basic drug
research of RF.

Furthermore, this study offered various potential drug
candidates for the treatment of RF (Figures 9, 10). In
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Figure 9, as an important target, Tgfbl could be treated by
various drug candidates, including curcumin, resveratrol,
honokiol, cannabidiol, etc. Among them, curcumin could
significantly decrease expression levels of Tgfbl, weaken
phosphorylation of Smad2 and Smad3, PI3K, AKT, and
NF-kB to inhibit TLR4/NF-kB, PI3K/AKT and TGF-p/
Smads pathway, which attenuated EMT, the inflammatory
response and tubulointerstitial fibrosis of UUO rats (Li et al.,
2011; Wang et al.,, 2020). Resveratrol excellently curbed the
process of RF by decreasing Tgfbl and antagonizing the
hedgehog pathway to inhibit EMT process and ECM
deposition in UUO rats (Bai et al, 2014). Honokiol
ameliorated RF by suppressing the secretion of pro-fibrotic
factors (Collal, Tgtbl, and fibronectin) (Chiang et al., 2011).
Meanwhile, curcumin, resveratrol, or honokiol might stably
bind to the active pockets of Tgfbl, Casp4, Agt, Collal, and
1118 and regulated their activity by the strong non-bond
interactions (Figure 10). Herein, the top three drug
candidates (curcumin, resveratrol, and honokiol) has been
extensively studied in RF and seemed to helpfully ameliorate
RF by synergistically regulating gene expression levels or
protein activation of Tgfbl, Agt, Collal, and I118, and then
effectively inhibiting activation of AGE-RAGE and NOD-like
receptor pathways.
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Certainly, the roles of hub targets (Tgfbl, Collal, Nlrc4,
Casp4, 1118 and Trpm2) and pathways (AGE-RAGE and NOD-
like receptor) were not fully elucidated, and their identification
was just the beginning of exploring the internal complex
mechanisms of RFE. Moreover, the other RF-related DEGs
(Trpv2, Olrl, Mapkl0, and Agt, etc.) also had potential
research values in exploring molecular mechanisms of RF. For
example, Trpv2 was top 100 DEGs in heatmap (Figure 3B) and its
mRNA levels were increased by 1-fold in the adenine model and
23-fold in the UUO model (Figure 8). However, the roles of these
DEGs in molecular mechanisms of RF are not reported and thus
not temporarily classified as hub targets in this study. In our
future work, it is hope that more hub targets and pathways will be
explored and screened by various research techniques, including
the establishment of more animal models, expansion of the
sample size and scope of sequencing (miRNA, IncRNA,
circRNA), and bioinformatics methods like weighted gene co-
expression network analysis, etc.

Conclusion

This study provided six hub therapeutic targets, two key
pathways, and various predicted drugs for the basic research
and clinical treatment of RF. The in vivo data indicated that
glomerulosclerosis, severe collagen deposition, enhanced
expressions of biomarkers (TGF-f1 and a-SMA), reduction
of E-cadherin biomarkers, and significant renal function
changes (significantly decreased UTP, CREA, Ccr, and ALB
levels and increased UUN and BUN levels) occurred in both
adenine- and UUO-induced models. RNA-seq data exhibited
that 1189 and 1253 RF-related DEGs were identified in the
adenine and UUO models, respectively. Bioinformatics
analysis illustrated that two key pathways (AGE-RAGE and
NOD-like receptor) might exert a pivotal role in pathological
process and treatment of RF by affecting inflammation,
collagen synthesis, EMT process and pyroptosis of various
renal cells. In these pathways, RF-related DEGs existed the
strong protein interactions and gene co-expression
relationships, and six RF-related DEGs (Tgfbl, Collal,
Nlrc4, Casp4, Trpm2, and Il118) were considered as hub
therapeutic targets. Furthermore, a quantity of reported
herbal ingredients (curcumin, resveratrol, honokiol, etc.)
were predicted to co-regulate many RF-related DEGs like
Tgfbl and inhibit AGE-RAGE and NOD-like receptor
pathways to improve RF and delay the progression of CKD
to ESRD. Further studies are required to investigate and verify
the molecular mechanisms of RF, especially the AGE-RAGE
and NOD-like receptor pathways. Taken together, we
analyzed the pathological and molecular mechanisms in
two RF models (adenine and UUO), which provided a
direction and shed light on basic and drug research of RF.
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