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Proteostasis mechanisms significantly contribute to the sculpting of the

proteomes of all living organisms. ClpXP is a central AAA+ chaperone-

protease complex present in both prokaryotes and eukaryotes that facilitates

the unfolding and subsequent degradation of target substrates. ClpX is a

hexameric unfoldase ATPase, while ClpP is a tetradecameric serine protease.

Substrates of ClpXP belong to many cellular pathways such as DNA damage

response, metabolism, and transcriptional regulation. Crucially, disruption of

this proteolytic complex in microbes has been shown to impact the virulence

and infectivity of various human pathogenic bacteria. Loss of ClpXP impacts

stress responses, biofilm formation, and virulence effector protein production,

leading to decreased pathogenicity in cell and animal infection models. Here,

we provide an overview of the multiple critical functions of ClpXP and its

substrates that modulate bacterial virulence with examples from several

important human pathogens.
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Introduction and background

Caseinolytic protease is a drug target for antimicrobial
development

Antimicrobial resistance to common treatments continues to be one of the largest

threats to global public health. Therefore, new antibiotics with new modes of action are in

great demand. Molecular chaperones and proteases play a critical role in maintaining

cellular protein homeostasis (proteostasis). Dysregulation of these proteostasis

mechanisms has been shown to disrupt major cellular pathways and is lethal for

many organisms (Ingmer and Brondsted, 2009; Frees et al., 2013; Bhandari et al.,

2018). Due to their importance in proteostasis and the lack of preexisting resistance

associated with them, chaperones and proteases have recently emerged as promising

targets for the development of novel antimicrobial compounds (Raju et al., 2012a; Brӧtz-
Oesterhelt and Sass, 2014).
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Here, we discuss one such candidate for antibiotic targeting,

the caseinolytic protease (ClpP) that is conserved across many

kingdoms of life. ClpP is a serine protease that functions with

cognate unfoldase ATPases. In bacteria, it acts as one of the major

ATP-dependent cellular proteases along with Lon, HslUV, and

FtsH (Culp and Wright, 2017). ClpP functions in the removal of

damaged and unwanted proteins and also in the degradation of

regulatory proteins. Additionally, ClpP is integral to many

important cellular pathways across different bacterial species.

Its substrates include proteins involved in cell cycle regulation,

stress tolerance, virulence factor production, biofilm formation,

antibiotic tolerance, and metabolism (Gottesman, 2019; Kirsch

et al., 2021). Though it plays important roles across a variety of

bacterial pathogens, its influence varies between different species.

The role of ClpP in the pathogenesis of select species is explored

below along with a discussion on factors that determine its

substrates.

Overview of caseinolytic protease
structure

ClpP is a self-compartmentalizing serine protease. It is

composed of fourteen subunits that typically assemble into a

stack of two heptameric rings to create a hollow barrel-like

structure. Each protomer typically contains a Ser-His-Asp

catalytic triad facing the interior of the complex, forming the

catalytic chamber. A ClpP subunit is composed of three

subdomains or regions: N-terminal loops, the head domain,

and the handle region (Figure 1A). The N-terminal loops are

also called the axial loops, which line the entrance of the axial

pore of the tetradecameric complex and protrude from the apical

surface of ClpP (Figure 1A). The pore lining is comprised of

hydrophobic residues that are stabilized by interactions with the

head domain, whereas the axial protrusion is comprised of

hydrophilic or charged residues. The head domain forms the

main body of the degradation chamber, while the handle region

facilitates the interaction between the two heptameric rings by

intercalation. When ClpP is not associated with its cognate

ATPase, the N-terminal regions are typically disordered and

partially block the entrance to the degradation chamber

(Moreno-Cinos et al., 2019; Kahne and Darwin, 2021;

Mabanglo and Houry, 2022). This ensures that cellular

proteins are protected from uncontrolled proteolysis by the

catalytic residues within the ClpP degradation chamber. On

its own, the ClpP tetradecamer can degrade short peptides

that are small enough to pass through the axial pores.

Proteolysis of larger proteins requires the formation of a

complex with a Clp ATPase chaperone (Figures 1B,C) (Liu

et al., 2014).

Clp ATPase chaperones

A variety of Clp ATPases belonging to the Hsp100 class of the

AAA+ superfamily (ATPases associated with various cellular

activities) have been identified. These include ClpA, ClpB, ClpC,

ClpE, ClpL, and ClpX chaperones. They typically form a hexameric

structure with a central pore (Figures 1B). They usually contain an

FIGURE 1
ClpP and Clp ATPases general architecture. (A) Top view of
the E. coli ClpP cylinder (PDB ID: 1YG6). In the illustration on the
right, the N-terminal loop (silver), head domain (green), handle
region (blue) and catalytic triad (S, H, D) of the ClpPmonomer
are indicated (PDB ID 1YG6). (B) The association of a Clp ATPase
hexamer (PDB ID 6SFW) with a ClpP tetradecamer (PDB ID 6SFX).
Clp ATPase subunits (blue and grey) with their corresponding IGF
loops (orange) are shown. ClpP subunits (green) and their
hydrophobic pockets are denoted as brown circles. (C) General
schematic of the proteolytic degradation cycle mediated by ClpP
with its cognate Clp ATPase. Substrates are unfolded by the Clp
ATPase and then translocated in an ATP-dependent manner into
the ClpP catalytic chamber for proteolysis.
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N-terminal domain followed by one or more ATPase domains. As

such, the Clp ATPases serve two functions: selection and binding of

a substrate protein, followed by its unfolding and subsequent

translocation into the ClpP catalytic chamber (Olivares et al.,

2016) (Figure 1C).

With the exception of ClpB, all of the other Clp ATPases can

associate with a ClpP. The ability to do so is dependent on the

presence of ClpP recognition loops. These loops contain the IGF

tripeptide motif in gamma-proteobacteria, but they can be MGF

or LGF in other bacterial phyla (Amor et al., 2019). The 6 M/L/

IGF loops of the Clp ATPases dock onto specific hydrophobic

pockets on the surface of ClpP (Figures 1B). These hydrophobic

pockets are located near the outer edge of the apical surface

between the ClpP protomer subunits. The 6:7 Clp ATPase to

FIGURE 2
The diversity of ClpP substrate regulation. (A) The Clp ATPases and ClpPs of a select group of bacterial pathogens are shown. The
tetradecameric organization for the active form(s) of the ClpP protease for each of these species is also shown. (B) Shown is the mechanism of SsrA
tagging of nascent chains as means of targeting them for ClpP-mediated degradation. During translation of aberrant mRNAs lacking a stop codon,
the ribosome stalls, resulting in the recruitment of a charged alanine-SsrA RNA (tmRNA) to the A site of the ribosome. Following
transpeptidation of the charged alanine-residue to the nascent chain, the aberrant mRNA open reading frame is replaced with the RNA carried by the
tmRNA, resulting in the translation of the SsrA RNA coding sequence (yellow). This C-terminal tag placed on the stalled nascent chains acts as a
degron that is recognized by the Clp ATPase (e.g., ClpX or ClpA) enabling ClpP-mediated degradation.
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ClpP symmetry mismatch has been a topic of debate for decades.

However, recently three Cryo-EM structures of bacterial ClpXP

were solved which show that ClpX docks in an offset manner

from ClpP in a tilted position. This allows 6 of the 7 hydrophobic

pockets in ClpP to interact with the IGF loops of ClpX, thereby

leaving one hydrophobic pocket empty (Gatsogiannis et al., 2019;

Fei et al., 2020b; Ripstein et al., 2020). Consequently, this 6:

7 symmetry mismatch seems to be required for target substrate

unfolding and translocation into the ClpP catalytic chamber

(Figures 1C); however, the molecular basis and consequences

of this symmetry mismatch on ClpXP activity is not clear.

The number and type of Clp ATPases found in different

species varies even among closely related organisms (Figure 2A).

However, some trends have been observed. ClpX is the most

widespread ATPase and can be found in almost all bacteria. ClpA

is generally found among the Gram-negative proteobacteria.

ClpC is present in the firmicutes and actinobacteria groups, as

well as in species of cyanobacteria, while the presence of ClpE is

limited to some species of the firmicutes group (Kress et al.,

2009).

Diversity of caseinolytic protease
regulation

Substrate selection is not performed by the ClpP protease but

rather by its partner ATPase. The diversity of these ATPases

correlates with the diversity of substrates selected for proteolysis

by ClpP. For example, Bacillus subtilis (though not a pathogenic

bacterium) encodes the protease ClpP as well as three ATPases,

which have been well-characterized: ClpX, ClpE, and ClpC

(Figure 2A) (Gerth et al., 2004). These ATPases have all been

shown to act on heat-damaged protein aggregates for subsequent

ClpP-mediated turnover (Kruger et al., 1994; Derre et al., 1999;

Kruger et al., 2000). Unlike ClpX, both ClpE and ClpC are under

the transcriptional control of CtsR (class III stress gene

repressor), which negatively regulates their expression (Derre

et al., 1999; Kirstein and Turgay, 2005). ClpE is the most tightly

repressed of the three ATPases and is only expressed under

severe heat shock conditions (Miethke et al., 2006). Additionally,

ClpE is further regulated through its turnover by ClpCP (Gerth

et al., 2004).

As suggested above, a separation of functions is seen between

the Clp ATPase chaperones. ClpX appears to be constitutively

expressed and is available for maintenance of protein quality

control at all times during the cell cycle, specifically for the

removal of proteins whose translation has stalled (Flynn et al.,

2001). Other ATPases are dedicated for degradation of substrates

during stress, such as ClpC, which is the primary ATPase

responsible for the degradation of non-native proteins (Kruger

et al., 1994; Rouquette et al., 1996; Chatterjee et al., 2005). The

presence of multiple substrate-selecting ATPases appears to be

advantageous for the cell. Selective expression presumably allows

the cell to diversify its use of the ClpP protease to meet the

demands of the changes in the conditions imparted by a variety

of environmental stresses.

In addition to the control resulting from encoding for

multiple ATPases, cells possess the ability to modulate ClpP

substrate selection co-translationally. One prominent example is

the SsrA tagging system in prokaryotes, which is employed, for

example, when truncated mRNAs are generated during aberrant

or premature termination of transcription (Figure 2B) (Keiler

et al., 1996). At the centre of this system is a transfer-messenger

RNA (tmRNA), which is a tRNA that encodes for its own

message; the message codes for a hydrophobic 8–35 residues

long SsrA tag that is added to the C-terminus of incomplete

nascent chains. During translation of truncated mRNAs, tmRNA

binds to the A-site of a stalled ribosome and, subsequently, this

leads to the translation of the complete SsrA tag that is added to

the C-terminus of the nascent polypeptide (Keiler, 2015). In

Escherichia coli, this tag is AANDENYALAA-(COO-) (Keiler

et al., 1996), which is recognized by ClpX, leading to the

degradation of the protein by ClpXP (Flynn et al., 2001;

Farrell et al., 2007; Martin et al., 2008; Fei et al., 2020a).

Proteins labelled with an SsrA tag can also be degraded by

ClpAP, FtsH, and Lon (Gottesman et al., 1998; Herman et al.,

1998; Choy et al., 2007).

The selectivity of ATPase chaperones is modulated by

dedicated adaptors. Some adaptors are essential to ATPase

function, such as in the case of ClpC in B. subtilis, where the

binding of MecA, McsB, or YpbH adaptors (Schlothauer et al.,

2003; Frees et al., 2007) is required for the assembly of an active

hexameric chaperone (Kirstein et al., 2006). Recent data

suggests that ClpC in Staphylococcus aureus and B. subtilis

first assemble into a resting state comprised of a helical

decamer; however, upon binding to an adaptor, the decamer

reorganizes into an active hexameric state which can assemble

with the ClpP tetradecamer (Carroni et al., 2017; Morreale et al.,

2022). Other adaptors can modulate substrate selection but are

not essential for ATPase function. This is true of ClpX that

functions with several adaptor proteins. SspB (stringent

starvation protein B) is one such adaptor that modulates the

ClpX substrate pool by enhancing the degradation of SsrA

tagged substrates (Levchenko et al., 2000; Dougan et al.,

2003; Wah et al., 2003).

There is also diversity in the ClpP proteases themselves as

shown in Figure 2A. The E. coli ClpP protease provides a baseline

standard: a tetradecamer protein composed of two identical

heptameric rings, where each heptameric ring of the active

complex can associate with a Clp ATPase (Porankiewicz et al.,

1999). However, several pathogenic organisms have two paralogs

of ClpP encoded as: ClpP1 and ClpP2. For example, in

Pseudomonas aeruginosa, ClpP1 can form a functional

homotetradecamer protease, while ClpP2 cannot (Hall et al.,

2017). Rather, ClpP2 assembles into a heptameric ring to

associate with a ClpP1 heptamer. Thus, two active versions of
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the protease complex exist, ClpP114 and ClpP17P27 (Figure 2A)

(Hall et al., 2017). In Mycobacterium tuberculosis, ClpP114 and

ClpP214 homotetradecamers can form but are inactive. It is only

in the presence of activators that these subunits reassociate to

form a ClpP17P27 heterotetradecamer capable of proteolysis

(Akopian et al., 2012). Furthermore, the food-borne pathogen

TABLE 1 Bacterial proteins and virulence factors regulated by the ClpP system discussed in this review.

Pathway Pathogen(s) Protein(s) Function References

Cell growth and
division

S. aureus CodY Transcriptional repressor Frees et al. (2012)

S. aureus FtsZ Z-ring forming protein at site of cell division Michel et al. (2006)

S. aureus, S.
epidermidis

Spx Global transcription regulator Wang et al. (2010), Feng et al. (2013)

M. tuberculosis Whib1 Transcriptional repressor Raju et al. (2014)

Stress regulation S. aureus DnaK Heat shock chaperone Kirsch et al. (2021)

S. aureus PerR Regulator of peroxide inducible genes Kirsch et al. (2021)

S. aureus RecA DNA damage repair Kirsch et al. (2021)

L. pneumophila, S.
typhimurium

CsrA Global RNA binding protein Martinez et al. (2011), Ge et al. (2019)

L. pneumophila IHFB Transcriptional inhibitor of CsrA Ge et al. (2019)

S. typhimurium, E. coli RpoS General sigma S factor Pratt and Silhavy (1996), Schweder et al. (1996),
Iyoda and Watanabe (2005), Rice et al. (2015)

Peptidoglycan and
biofilm synthesis

S. aureus FemA, FemB, MurE,
MurC, PBP2

Members of the peptidoglycan biosynthesis
pathway

Feng et al. (2013)

P. aeruginosa AlgU Sigma factor that initiates the transcription of
genes involved in alginate production

Qiu et al. (2008)

P. aeruginosa MucA Regulator of alginate production Qiu et al. (2008)

Toxin-antitoxin system E. coli, S. aureus MazEF MazE is an antitoxin that inhibits the mRNA-
endoribonuclease toxin MazF

Donegan et al. (2010), Tripathi et al. (2014)

S. aureus TrfA Adaptor that mediates MazE degradation by
ClpCP

Panasenko et al. (2020)

E. coli ParDE ParD is an antitoxin that inhibits the DNA
gyrase inhibitor toxin ParE

Dubiel et al. (2018)

M. tuberculosis HigA1/HigB1 HigA1 is an antitoxin that inhibits the mRNA
endoribonuclease toxin HigB1

Texier et al. (2021)

M. tuberculosis SecB-like chaperone Chaperone that binds the C-terminal region
of HigA1 and assists in its folding

Bordes et al. (2016)

M. tuberculosis VapB20/VapC20 VapB20 is an antitoxin that inhibits the 23 S
rRNA endoribonuclease toxin VapC20

Winther et al. (2013)

M. tuberculosis RelB1/RelE1 RelB1 is an antitoxin that inhibits the mRNA
endoribonuclease toxin RelE1

Korch et al. (2009)

E. coli GrlR Regulator of T3SS genes expression Iyoda et al. (2006)

Virulence factors and
regulators

L. monocytogenes Listeriolysin O Hemolytic pore forming toxin Gaillot et al. (2000)

S. aureus Rot Repressor of toxins Fisher et al. (2018)

S. aureus Hla Pore-forming hemolysin alpha-toxin Jenul and Horswill (2019)

S. aureus TSST Toxic shock syndrome toxin Ju et al. (2021)

S. aureus SEC Enterotoxin C Ju et al. (2021)

S. aureus SED Enterotoxin D Ju et al. (2021)

S. aureus MgrA Autolytic activity regulator of the Agr
quorum sensing pathway

Schelin et al. (2020)

S. pneumoniae Pneumolysin Hemolytic pore forming toxin Kwon et al. (2003)

S. pneumoniae PsaA A virulence factor adhesin, also known as
pneumococcal surface antigen A

Kwon et al. (2003)

Transport and motility Y. pestis LcrF Transcriptional activator of the T3SS
apparatus

Schwiesow et al. (2015)

Y. pestis YmoA Regulator of expression of invasion proteins Jackson et al. (2004)

E. coli, S. typhimurium FliC Flagellin, a subunit of the flagellum filament Tomoyasu et al. (2002), Iyoda et al. (2006)

E. coli, S. typhimurium FlhD/FlhC Master regulators of flagellum biosynthesis Tomoyasu et al. (2003), Kitagawa et al. (2011)
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Listeria monocytogenes can form a functional ClpP214
homotetradecamer and ClpP17P27 heterotetradecamer while

the ClpP114 is inactive (Zeiler et al., 2013) (Figure 2A).

Additionally, in the anaerobic spore-forming gut bacterium

Clostridioides difficile, both ClpP114 and ClpP214
homotetradecamers assemble into a functional protease (Lavey

et al., 2019) (Figure 2A). Finally, in Chlamydia trachomatis,

neither ClpP1 nor ClpP2 can form a homotetradecamer but

rather associate with one another to create a ClpP17P27
heterotetradecamer capable of proteolytic activity (Pan et al.,

2019) (Figure 2A). Currently, little is known about the

advantages of producing multiple ClpP paralogs, however,

ClpP complex asymmetry, and ATPase binding and peptidase

specificity might provide additional levels of regulation for the

protease (Personne et al., 2013; Leodolter et al., 2015; Nagpal

et al., 2019).

Role of caseinolytic protease in
pathogen survivability

The pathogenicity of a bacterium is critically dependent on

its ability to survive in a host. ClpP is known to influence many

pathways involved in maintaining normal cellular functions.

Classic ClpP trapping experiments have been used to identify

substrates of ClpP (Flynn et al., 2003). In these experiments,

ClpPTrap, an active site serine mutant of the protease that is

unable to degrade proteins, is used. Substrates entering the

ClpPTrap will not be degraded but will be trapped inside the

ClpP cylinder and are subsequently identified by pulling down

ClpPTrap followed by mass spectrometry analysis to identify

trapped proteins. Using this approach in S. aureus, for

example, central transcriptional and stress regulatory proteins

were identified to be the main targets of the protease including

Spx (global transcription regulator), CodY (transcriptional

repressor) and FtsZ (essential Z-ring forming protein at site of

cell division) (Michel et al., 2006; Frees et al., 2012; Feng et al.,

2013; Panasenko et al., 2020) (Table 1). RecA (DNA damage

repair protein), PerR (regulator of peroxide inducible genes), and

DnaK (heat-shock protein 70) (Table 1) were also among the

substrates of S. aureus ClpP, highlighting the key role ClpP plays

in maintaining central biological functions such as DNA repair,

cell division, and protein homeostasis (Krysiak et al., 2017; Kirsch

et al., 2021). Additionally, the role of ClpP impacting pathogen

survivability was seen inM. tuberculosis, since ClpP depletion led

to a reduction in colony forming units both in vitro and in a

mouse model (Raju et al., 2012b). One essential substrate of M.

tuberculosis ClpP that was identified was Whib1 (Table 1), a

transcriptional repressor whose lack of turnover and subsequent

accumulation led to cell toxicity and thereby increased cell death

(Raju et al., 2014).

Below we discuss the role of ClpP and ClpX in pathways that

are pertinent to a pathogen’s ability to survive in a host organism.

Table 1 lists bacterial proteins that are discussed here, which are

regulated by the ClpP system in different pathogens.

Inhibiting caseinolytic protease disrupts
peptidoglycan and biofilm formation

Maintaining the integrity of the cell wall is vital for bacterial

survival, which is needed to prevent cytolysis when bacteria

encounter the turgor pressure of the host cell’s cytoplasm.

Loss of ClpXP activity has been linked to increased

susceptibility to cell wall stress in S. aureus. It is thought that

antibiotics targeting the cell wall result in protein damage and

misfolding, and lead to increased production of chaperones and

proteases to aid in protein turnover and repair (McGillivray et al.,

2012; Michiels et al., 2016). Thus, inhibiting ClpX or ClpP likely

hinders the clearance of such damaged proteins. This hypothesis

is supported by observations in S. aureus, since ΔclpP, ΔclpX, or
ΔclpC mutants showed an increase in peptidoglycan cross-

linking and thicker cell walls (Baek et al., 2014). Indeed, a

separate study purified ClpPTrap from S. aureus and identified

several enzymes involved in the peptidoglycan-synthesis

pathway such as FemA, FemB, MurE, MurC, and PBP2 (Feng

et al., 2013) (Table 1). While further research is required to better

define the specific pathways modulated by ClpP, these results

suggest that ClpP and its associated ATPases play an important

role in maintaining the integrity of the cell wall.

In addition to peptidoglycan regulation, clpP deletion has

been shown to dysregulate biofilm formation in P. aeruginosa

(Qiu et al., 2008), Staphylococcus epidermidis (Wang et al., 2007)

and S. aureus (Frees et al., 2004). For P. aeruginosa,

overproduction of alginate, a central component of biofilms,

leads to a mucoid phenotype, which indicates the onset of

chronic lung infection in cystic fibrosis. A global genome-wide

transposon mutagenesis screen for non-mucoid isolates of a

mucoid strain led to the identification of ClpX, ClpP1, and

ClpP2 as regulators of alginate production. Null mutants of

clpX, clpP1 or clpP2 resulted in reduced alginate production in

the non-mucoid strain, thereby implicating the role of Clp

proteins in biofilm formation. It was found that ClpXP is

required for the degradation of MucA, a negative regulator of

the sigma factor AlgU (Table 1). By preventing the repression of

AlgU by MucA, AlgU is available to bind the algD operon and

initiate the transcription of genes involved in alginate production

(Qiu et al., 2008).

Similarly, in an S. epidermidis ΔclpP strain, a decrease in

virulence and biofilm formation was observed in a rat model of

intravascular catheter-associated infection (Wang et al., 2007).

Further investigation attributed this effect to increased levels of

Spx, which also regulates exopolysaccharide production (Table1).

It is thought that increased Spx levels leads to defects in the

pathogen’s ability to initiate attachment, necessary for the early

stages of biofilm establishment (Wang et al., 2010). Interestingly,
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in S. aureus, clpP deletion appears to enhance biofilm formation

(Frees et al., 2004). However, S. aureus ΔclpPmutant CFU counts

in a mouse model 7 days post infection were significantly reduced

relative to wildtype S. aureus, suggesting that increased biofilm

formation cannot compensate for the reduction in ClpP-

mediated bacterial virulence and dissemination in the host

(Liu et al., 2017).

Inhibiting caseinolytic protease increases
vulnerability to temperature

ClpP deletion appears to decrease the effectiveness of a

pathogen’s innate stress responses against temperature

changes. For example, in Legionella pneumophila, the

causative agent of Legionnaires’ disease, ΔclpP mutants

exhibited growth deficiency at 42°C, as well as reduced

tolerance to heat shock treatment compared to the wild type

bacterium (Li et al., 2010). These cells presented incomplete

division and exhibited compromised colony formation. Similar

findings were seen in a Streptococcus pneumoniae clpP knockout

strain, where bacterial growth was severely impaired at 30°C,

37°C, and 43°C. Considering that this pathogen undergoes a

drastic change in temperature as it enters the host bloodstream

from the nasopharynx, it was thought that the survival of mice

challenged with ΔclpP S. pneumoniae was ameliorated due to the

role of ClpP in the heat shock response (Kwon et al., 2003;

LaBreck et al., 2017). Furthermore, ClpP was also required for

growth at 42°C in Campylocabter jejuni, a food-borne pathogen,

whereby a ΔclpP mutant displayed an increase in the levels of

misfolded protein aggregates (Cohn et al., 2007). Like S.

pneumoniae, C. jejuni must maintain proper proteostasis to be

able to overcome a drastic shift in temperatures during its life

cycle to survive in the environment, as well as in avian carriers

(42°C) and human hosts (37°C). Finally, in Salmonella

typhimurium, the etiological agent of gastroenteritis, ΔclpP
mutant growth was impaired in experiments subjecting the

bacterium to high and low temperatures, high salt, and low

pH conditions (Thomsen et al., 2002; Knudsen et al., 2014).

Overall, the above observations appear to implicate the role of

ClpP in removing misfolded proteins during abrupt temperature

variations, thereby promoting bacterial virulence and resilience

in the host.

Inhibiting caseinolytic protease increases
vulnerability to the host immune system

A common phenotype seen amongst pathogens that are

deficient in protein homeostasis mechanisms is a lowered

tolerance towards pH changes. Such pathogens are particularly

susceptible to the phagocytic macrophages, which are part of the

innate immune response. Upon the engulfment of a pathogen,

macrophages acidify the phagosome and produce reactive oxygen

species for bacterial killing (Westman and Grinstein, 2020). There

are many studies that implicate the role of ClpP in the viability of

intracellular pathogens following internalization by host cells. For

instance, it was shown that S. typhimurium (Yamamoto et al.,

2001), L. monocytogenes (Gaillot et al., 2000), L. pneumophila

(Zhao et al., 2016), S. aureus (Kim et al., 2020) and S. pneumoniae

(Kwon et al., 2004) deleted of clpP exhibited impaired growth in

macrophages, suggesting that ClpP is required for intracellular

survival. Further studies on S. pneumoniae indicated that ΔclpP
mutants exhibited increased sensitivity to oxidative stress and that

treatment of macrophages by the nitric oxide synthase inhibitor

S-methylisothiourea sulfate, led to a significant increase in ΔclpP S.

pneumoniae viability (Lee et al., 2010). In addition, ΔclpP S.

pneumoniae were found to stimulate apoptosis in dendritic cells

less than their wildtype counterpart (Cao et al., 2013). Dendritic

cells are antigen presenting cells that bridge the innate and

adaptive immune responses together and are crucial for

conferring long-term protection against pathogens (Banchereau

et al., 2000). Thus, disruption of this network along with resistance

against oxidative stress sheds light on the role of ClpP in

promoting S. pneumoniae survival in the host. Interestingly, a

similar observation was made for S. aureus, whereby a genome

wide transposon screen revealed that ΔclpP strains showed a

decrease in neutrophil lysis and that ClpP was necessary for

growth and survival in a zebrafish embryo infection model

(Yang et al., 2019). Therefore, ClpP seems to be implicated in

modulating host cell immunity, thus disrupting the function of this

protease in various intracellular pathogens confers protection

against disease in the host.

Caseinolytic protease regulates the type II
toxin-antitoxin system

The bacterial toxin-antitoxin (TA) system consists of a

constitutively active toxin and its cognate inhibitory, albeit

labile antitoxin. TA modules are highly complex with eight

systems characterized thus far (Types I-VIII) based on the

composition of the antitoxin (RNA or protein) (Singh et al.,

2021). During regular physiological conditions, the antitoxin is

stable and inhibits the function of the toxin. However, during stress

conditions, the antitoxin is degraded allowing the toxin to interact

with effector proteins or DNA rendering a bacterial cell in a

persistent dormant-like state. This is thought to assist the pathogen

in resisting assault from antibiotic treatments, phage infections,

and host immune defense mechanisms. (Harms et al., 2018; Singh

et al., 2021). In type II TA modules, proteases such as ClpP

stimulate this system by degrading the antitoxin, which causes

the unrepressed toxin to inhibit translation and DNA replication,

thereby promoting growth arrest (Page and Peti, 2016). One of the

most well-documented type II TA modules is the MazEF system,

which is comprised of theMazE antitoxin that inhibits the mRNA-
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cleaving endoribonuclease toxin MazF (Figure 3A; Table 1)

(Zhang et al., 2003). In E. coli, ClpAP was shown to degrade

MazE during starvation (Aizenman et al., 1996) to promote

persister cell formation and survival following antibiotic

treatment (Tripathi et al., 2014). In S. aureus, ClpCP degrades

MazE (Donegan et al., 2010) but requires the adaptor TrfA to

mediate this degradation (Figure 3A; Table 1) (Panasenko et al.,

2020). Nevertheless, the downstream effects are the same as for

FIGURE 3
ClpP regulates the type II toxin-antitoxin system. (A) TheMazEF toxin-antitoxin module. The MazE antitoxin (green) binds and inhibits the MazF
toxin (red). During stress, ClpAP (E. coli) or ClpCP in association with TrfA (S. aureus) degrades the MazE antitoxin. Free MazF, which is an mRNA
endoribonuclease, cleaves various intracellular targets leading to bacterial growth arrest. (B) The parDE toxin-antitoxin module. The RK2 plasmid
encodes for the ParD antitoxin (yellow) and the ParE toxin (purple) and harbors an antibiotic resistance cassette (orange). Following
asymmetrical cell division with unequal plasmid distribution to daughter cells, one of the progenies may not inherit any RK2 plasmid copies. Without
the ability to synthesize the ParD antitoxin de novo, the antitoxin is degraded by ClpAP leading to free ParE toxin, which causes growth arrest. (C) The
toxin-antitoxin-chaperone (TAC) module in M. tuberculosis. The SecB-like chaperone (grey) binds the C-terminal region (yellow) of the
HigA1 antitoxin (blue) and assists in its folding and stabilization. HigA1 in turn binds and inhibits the HigB1 toxin (light brown). During stress, the SecB-
like chaperone dissociates from HigA1 via an unknown signalling mechanism causing M. tuberculosis ClpXP to degrade the HigA1 antitoxin via the
recognition of the now unmasked C-terminal degron. Free HigB1 toxin induces growth arrest causing the bacteria to enter a state of dormancy.
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E. coli, whereby the mazEF module in S. aureus is stimulated

during oxidative and antibiotic stress to promote bacteriostasis (Fu

et al., 2009; Panasenko et al., 2020). Deletion of either gene in the

mazEF module or in the clpCP operon resulted in a significant

reduction in persister cell formation and viability following

antibiotic treatment (Schuster et al., 2015; Springer et al., 2016),

demonstrating the role of ClpP-mediated proteostasis during

stress.

The parDE system found in RK2 plasmids is another Type II

TA module in E. coli that promotes bacterial persistence

indirectly through plasmid maintenance in the bacterial

population (Figure 3B). This system is comprised of the

antitoxin ParD and the DNA gyrase inhibitor toxin ParE

(Jiang et al., 2002) (Table 1). Following unequal cell division,

a daughter cell may receive excess RK2 plasmids while the other

daughter cell would be devoid of any RK2 plasmids. Given that

these cells cannot synthesize the ParD antitoxin de novo, ClpAP

degrades the remaining inherited ParD antitoxin, thereby

causing ParE to inhibit DNA gyrase and promote growth

arrest or cell death (Karlowicz et al., 2016; Dubiel et al.,

2018). Maintenance of the RK2 plasmid ensures that the

antibiotic resistance cassette encoding for kanamycin,

ampicillin, and tetracycline found in this plasmid is retained

in the population, thus enabling bacterial resistance against

multi-drug treatments (Thomas et al., 1980; Villarroel et al.,

1983).

Recently, the role of ClpXP in the regulation of the rv1955-

rv1957 TA system inM. tuberculosis was elucidated (Texier et al.,

2021). The rv1955-rv1957 operon encodes for an atypical toxin-

antitoxin-chaperone (TAC) tripartite module consisting of

HigB1 (toxin), HigA1 (antitoxin) and a SecB-like chaperone

(Figure 3C; Table 1). The latter recognizes and binds a

C-terminal region of the HigA1 antitoxin and assists in its

folding (Bordes et al., 2016). In doing so, folded

HigA1 antitoxin binds and inhibits the HigB1 toxin,

preventing it from exerting its toxic effect. The C-terminal

region also encompasses the degron sequence by which ClpXP

recognizes HigA1 for degradation. Therefore, the binding of the

chaperone to the C-terminal region of HigA1 masks the degron

from recognition by ClpXP, thereby, inhibiting HigA1 turnover

(Texier et al., 2021). However, following stress and through an

unknown signalling mechanism, the SecB-like chaperone

disengages from HigA1. Subsequently, ClpXP recognizes the

C-terminal degron sequence on HigA1 and degrades it,

thereby freeing HigB1 to exert its downstream toxic effect

(Figure 3C) (Texier et al., 2021). The consequence of the

HigB1 toxin activity includes growth inhibition (Schuessler

et al., 2013). This TA module was shown to be upregulated in

cell persisters (Keren et al., 2011), during starvation (Betts et al.,

2002), DNA damage (Rand et al., 2003), hypoxia, and engulfment

by phagocytes (Ramage et al., 2009), allowing the pathogen to

withstand extreme environments. Such pathogens can become

reactivated when conditions are favorable (Wayne and Sohaskey,

2001) and cause disease relapse, thereby highlighting the crucial

role of this TA module during M. tuberculosis infection and its

regulation by ClpXP.

In a recent proteomic screen and follow-up in vitro

degradation assays, M. tuberculosis ClpCP was shown to

degrade the VapB20 and RelB1 antitoxins, which bind and

inhibit the VapC20 and RelE1 toxins, respectively (Ziemski

et al., 2021) (Table 1). VapC20 enables growth arrest by

cleavage of the Sarcin-ricin loop found on the 23 S ribosomal

RNA, thereby, inhibiting protein translation (Winther et al.,

2013). On the other hand, the RelE1 toxin is upregulated

post-macrophage engulfment and nitrogen starvation (Korch

et al., 2009; Korch et al., 2015). The activity of

RelE1 compromises the structural integrity of the

mycobacterial envelope and degrades mRNA, thereby,

inhibiting protein translation and altering the proteome.

Overall, ClpCP and ClpXP are essential in enabling cell

persistence of M. tuberculosis by regulating the steady-state

levels of antitoxins under a variety of environmental and

biological stresses.

The role of caseinolytic protease in
modulating virulence and
colonization

caseinolytic protease influences the
transition to virulent life cycle stages

ClpP plays an important role in facilitating the switch

between the different life stages of certain bacteria. Pathogens

such as L. pneumophila greatly rely on ClpP to transition between

a replicative phase (RP) and an effector secreting virulent

transmissive phase (TP) (Ge et al., 2022). One such regulator

of this transition is CsrA (Table 1), whereby its accumulation in

ΔclpP L. pneumophilamutants both inhibited the initiation of the

non-virulent phase and reduced invasiveness to Acanthamoeba

castellanii amoebae in vitro. Further investigation showed that

the temporally expressed IHFB (Table 1), the transcriptional

inhibitor of csrA, is degraded in a ClpP-dependent manner

during the non-virulent phase. Thus, ClpP appears to be

involved in regulating the transition both into and out of the

virulent stage of L. pneumophila (Ge et al., 2019).

A similar switch between two life stages also occurs in the

obligate intracellular pathogen C. trachomatis, which

transitions between elementary bodies (EBs) and reticulate

bodies (RBs). EBs are the non-dividing infectious form, while

RBs are the replicative non-infectious form (Elwell et al.,

2016). It was found that transcripts of clp genes (clpP1,

clpP2, clpX, and clpC) were greatly upregulated during the

RB stage of the pathogen, suggesting that they play a role in cell

cycle progression (Wood et al., 2019). A follow-up study

showed that a ΔclpP2 mutant disrupted the transition from
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the RB stage to the EB stage, while a ΔclpX mutant caused a

morphological defect in EBs and decreased their viability

(Wood et al., 2020).

Moreover, while no regulatory substrates were identified,

ClpP was found to be required for sporulation in C. difficile

(Bishop et al., 2022). The virulence and resilience of this

pathogen to environmental stresses is critically dependent on

spore formation (Shen, 2020). Spores formed from C. difficile

clpP1 and clpP2 null mutants were found to be generally heat

labile, morphologically abnormal, and they germinated

significantly less than their wildtype counterpart (Bishop

et al., 2022). Therefore, ClpP appears to be involved in

regulating the transition between different life stages of several

pathogens to modulate their virulence.

FIGURE 4
ClpP regulates toxin production. (A) Listeria monoctyogenes ClpXP2 transcriptionally increases the production of Listeriolysin O toxin for
phagolysosomal escape and propagation. (B) S. aureus ClpXP regulates the production of toxic shock syndrome toxin (TSST), enterotoxin D (SED),
enterotoxin C (SEC) and hemolysin alpha-toxin (Hla) through transcriptional control of the global master regulatormgrA and the agr quorum sensor.
Through an unknown target, S. aureus ClpXP stimulates the transcription ofmgrA and agr leading to RNAIII upregulation, which in turn inhibits
the repressor of toxins (Rot). The inhibition of Rot enables the production of Tsst, Sed, Sec, and Hla toxins. In addition, MgrA and RNAIII can directly
activate the production of Hla.
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Caseinolytic protease influences virulence
factor expression

ClpP can affect virulence by regulating the transcription of

specific virulence factors. In L. monocytogenes, it was found

that ClpP2 is required specifically for the expression of

Listeriolysin O (Table 1), a hemolytic toxin that forms

pores in phagocytic vacuoles, allowing the pathogen to

escape and propagate (Figure 4A) (Gaillot et al., 2000).

Untangling these pathways into a linear “cause and effect”

is a difficult task. However, it is likely that the reduced stress

resistance in ΔclpP2 L. monocytogenes was the cause of the

pathogen’s poor growth in mice, while reduced expression of

Listeriolysin O resulted in its inability to propagate and cause

infection. Similar transcriptional regulatory pathways have

been shown to be modulated by ClpP in S. pneumoniae,

whereby deletion of clpP reduced survival in infected mice

(Kwon et al., 2003). Transcriptional analysis revealed that

the ΔclpP mutants demonstrated decreased expression of

the hemolytic pore-forming pneumolysin toxin and the

adhesin pneumococcal surface antigen A (PsaA) (Table 1),

suggesting that ClpP is a positive regulator of these virulence

factors.

One of the most well-studied examples that implicates

ClpP within a complex regulatory network that controls

virulence factor expression stems from extensive studies on

S. aureus. The Agr quorum sensor in S. aureus controls the

expression of virulence factors ultimately through the

transcription of RNAIII, a regulatory RNA effector of the

agr regulon (Figure 4B). RNAIII in turn blocks the expression

of the repressor of toxins (Rot) and stimulates production of

toxins such as the pore-forming hemolysin alpha-toxin (Hla)

(Table 1). Repression of rot also allows the transcription of

virulence factor genes such as toxic shock syndrome toxin

(tsst), enterotoxin C (sec) and enterotoxin D (sed) (Fisher et al.,

2018; Jenul and Horswill, 2019; Ju et al., 2021) (Table 1). S.

aureus ΔclpXP mutants showed attenuated virulence in a

murine skin abscess model, whereby hemolysin alpha-toxin

protein and expression levels were reduced concomitant with a

reduction in agr and RNAIII transcripts (Frees et al., 2003;

Stahlhut et al., 2017). Therefore, this suggests that ClpXP

positively regulates hla expression through the agr locus

(Frees et al., 2003). Interestingly, in S. aureus clpXP null

mutants, expression of tsst, sed and sec were not affected

despite the reduction in Rot protein levels. However, the

global master regulator mgrA was downregulated (Schelin

et al., 2020) (Table 1). MgrA is known to modulate the

activity of more than 350 genes (Luong et al., 2006) and

can stimulate Hla production in a dual fashion-agr

dependent and agr independent (Ingavale et al., 2005).

Therefore, this implies that tsst, sed, and sec expression

might be postively regulated by ClpXP through the

upregulation of mgrA, but further investigation is required.

Caseinolytic protease influences virulence
factor transport systems

Virulence factors can be secreted into the extracellular

environment or directly into host cells. Typically, this is

accomplished through specialized transport and secretion

systems or both. These secretion systems (Types I-VII) use a

single energy-coupled step to transport proteins across

membranes and are important for injecting bacterial virulence

factors out into the extracellular environment or directly into

host cells, causing a signal transduction cascade. The

consequence of this may include disruption of essential

signalling pathways and cytoskeletal remodelling (Asrat et al.,

2015; Green andMecsas, 2016). Expression and turnover of these

bacterial secretion systems are regulated by ClpP in several

pathogens. Recently, clpP deletion in L. pneumophila was

shown to downregulate and upregulate an extensive array of

type IVB secretion system and effector proteins. These proteins

were differentially expressed depending on the life cycle stage of

the bacterium (replicative or transmissive). Notably, of the

428 differentially expressed proteins, 316 were found to be

modulated in a ClpP-dependent manner suggesting that ClpP

plays a major role in manipulating host cell machinery through

these secretion systems and effector proteins (Ge et al., 2022).

Additionally, ClpP appears to directly regulate Type III

secretion system (T3SS) genes in Yersinia pestis (Jackson

et al., 2004) (Figure 5). In this pathogen, expression of the

T3SS apparatus is mediated by the transcriptional activator

LcrF and is repressed by a histone-like protein termed YmoA

(Schwiesow et al., 2015) (Table 1). Deletion of clpP in Y. pestis

caused the pathogen to express a non-functional T3SS, which was

revealed to be, in part, due to the upregulation of YmoA.

Therefore, this suggests that YmoA is a target of ClpXP, and

that its proteolytic degradation enables LcrF to express the genes

found in the T3SS apparatus (Figure 5) (Jackson et al., 2004).

A similar mechanism involving the regulation of the T3SS by

ClpP was found in S. typhimurium (Figure 5). This bacterium

possesses two distinct T3SS apparatuses that are encoded by two

separate Salmonella pathogenicity islands (SPI-1 and SPI-2) for

invasion and pathogenesis, respectively (Pizarro-Cerda and

Cossart, 2006). There are several regulators that control these

islands; noteworthy are the two negative regulators: the sigma

factor RpoS (Rice et al., 2015) and the global RNA binding

protein CsrA (Martinez et al., 2011) (Table 1). ClpP deletion in S.

typhimurium showed that rpoS and csrAmRNA expression were

upregulated. Further, csrAmRNA expression was reduced in the

rpoS and clpP/rpoS double deletion mutants, suggesting that csrA

is modulated by RpoS (Knudsen et al., 2013). Based on these

results, and the observation that RpoS is a substrate of ClpXP in

E. coli, (Pratt and Silhavy, 1996; Schweder et al., 1996), it is

thought that ClpP in S. typhimurium positively controls the

expression of the T3SS by regulating csrA levels indirectly

through RpoS turnover (Figure 5).
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In E. coli, attaching and effacing lesions in the intestinal

mucosa produced by this pathogen are encoded on a

pathogenicity island termed the locus of enterocyte effacement

(LEE). These genes encode for chaperones, structural and effector

proteins that comprise the E. coli T3SS (Furniss and Clements,

2018). LEE appears to be positively regulated by ClpXP as

FIGURE 5
ClpP regulates the assembly of the Type III secretion system as well as flagellum synthesis in various pathogens. Degradation of the repressor
GrlR by ClpXP removes the inhibition of transcription of the Locus of the Enterocyte Effacement (LEE) genes, which encode for the T3SS apparatus in
E. coli. In addition, degradation of GrlR prevents repression of FlhD and FlhC, the master regulators of flagellar genes, thereby causing flagellum
synthesis to occur. Furthermore, RpoS turnover by ClpXP prevents upregulation of CsrA, thereby causing expression of LEE in E. coli and
Salmonella Pathogenicity Islands 1 and 2 in S. typhimurium. Additionally, CsrA positively regulates FlhD and FlhC expression, therefore, turnover of
RpoS by ClpXP ultimately results in FlhD and FlhC downregulation through CsrA, leading to decreased flagellar synthesis. In Y. pestis, degradation of
the repressor YmoA enables LcrF to stimulate production of the T3SS apparatus.
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evidenced by a significant reduction of the LEE-encoded Esp

proteins following clpXP deletion. Further analysis indicated that

ClpXP modulates the expression of LEE via two distinct

mechanisms (Figure 5). First, deletion of the LEE negative

regulator grlR showed a comparable increase of esp expression

in both the ΔgrlR mutants and in the ΔgrlR/ΔclpXP mutants,

indicating that grlR expression is under the control of ClpXP

(Iyoda andWatanabe, 2005). Second, deletion of the sigma factor

rpoS, a known substrate of ClpXP (Schweder et al., 1996) in the

clpXP mutants, resulted in a partial increase in esp expression

(Iyoda and Watanabe, 2005). rpoS overexpression through

insertion of a multicopy plasmid in these ΔrpoS/ΔclpXP
mutants significantly repressed esp expression. Taken together,

these results suggest that ClpXP positively modulates LEE

expression through RpoS and GrlR turnover (Figure 5; Table 1).

Caseinolytic protease influences motility

Bacterial motility is essential for pathogens to navigate

through the environment to obtain nutrients and to seek a

host for infection and colonization. Motility strongly

contributes to the disease-causing capabilities of a pathogen,

with those lacking such mechanisms exhibiting attenuated

virulence (Josenhans and Suerbaum, 2002). Given that the

T3SS injectisome largely resembles the supramolecular

structure of the flagellar complex, the T3SS is likely derived

from a flagellar common ancestor (Diepold and Armitage, 2015).

It is postulated that ClpXP regulates motility by modulating

flagellum synthesis. Indeed, clpXP deletions in S. typhimurium,

resulted in cells exhibiting a “hyperflagellated” phenotype

characterized by hypermobility and an increased rate of fliC

transcription that encodes for flagellin, a subunit of the flagellum

filament (Tomoyasu et al., 2002) (Figure 5; Table 1). Further

analysis showed that clpXP deletions increased and stabilized the

half-lives of the FlhD/FlhC proteins, which are the master

regulators that encode for all the genes in the flagellum

complex. Therefore, ClpXP acts as a negative regulator of

flagellum synthesis by post-translationally regulating FlhD/

FlhC turnover (Tomoyasu et al., 2003) (Figure 5; Table 1).

The role of ClpXP in regulating flagellar synthesis was also

reported in E. coli. ClpXP deletion led to an upregulation of

fliC expression (Iyoda et al., 2006), as well as FlhD/FlhC

accumulation and stabilization (Kitagawa et al., 2011).

Moreover, deletion of grlR led to the downregulation of flhD

transcripts and, correspondingly, fliC expression (Iyoda et al.,

2006). Given that ClpXP was also shown to downregulate GrlR

protein levels (Iyoda and Watanabe, 2005), this suggests that

ClpXP negatively regulates flagellar synthesis directly through

FlhD/FlhC and GrlR turnover in E. coli (Figure 5).

Currently there is a lack of mechanistic studies implicating

ClpXP in P. aeruginosamotility. Nevertheless, phenotypic effects

were observed upon clpXP deletion whereby twitching,

swimming and swarming motility were impaired (Shanks

et al., 2006; Fernandez et al., 2012). Importantly, ClpP1 but

not ClpP2 is required for both swimming and twitching motility

(Hall et al., 2017). Swimming motility refers to the individual

movement of bacteria, whereas swarming motility refers to

bacteria that migrate en masse; both types mediated by

flagellar rotation. In twitching motility, bacteria migrate on

surfaces through attachment and retraction of the pili

appendages (Kearns, 2010). Overall, ClpXP appears to be

involved in the regulation of flagellar and pilus synthesis in P.

aeruginosa, but further studies are needed to elucidate signalling

pathways and regulatory mechanisms that are at play.

Caseinolytic protease as an antibiotic
target

In the previous sections, the role of ClpP and its cognate

ATPases in pathogenesis was highlighted, demonstrating that the

protease not only influences a pathogen’s survivability, but also

its infectivity potential and virulence. As such, much research has

gone into the discovery and optimization of compounds that can

interfere with the regulatory roles of ClpP and its associating

ATPases.

Chemical alteration of ClpP activity has been shown to affect

the virulence and infectivity of several pathogens (Conlon et al.,

2013; Brӧtz-Oesterhelt and Sass, 2014; Silber et al., 2020). One

strategy employed is the use of compounds such as β-lactones/
lactams, phenyl esters, peptide boronic acids, and clipibicyclene

as ClpP inhibitors (Gersch et al., 2013; Akopian et al., 2015; Hackl

et al., 2015; Culp et al., 2022). These compounds typically bind to

the active site serine of ClpP to prevent proteolysis. The

mechanism of action of β-lactones/lactams, phenyl esters and

peptide boronic acids on ClpP were comprehensively discussed

in these reviews from our group and others (Culp and Wright,

2017; Bhandari et al., 2018; Moreno-Cinos et al., 2019; Mabanglo

and Houry, 2022).

The unique structure and regulation of the ATPase-ClpP

complexes allows for an additional mode of chemical interference

of ClpP activity. Acyldepsipeptides (ADEPs) and activators of

self-compartmentalizing proteases (ACPs) have been shown to

bind the hydrophobic pockets of ClpP that are normally occupied

by the ATPase’s IGF loops (Brӧtz-Oesterhelt et al., 2005; Martin

et al., 2007; Lee et al., 2010; Leung et al., 2011; Goodreid et al.,

2014; Goodreid et al., 2016; Mabanglo et al., 2019; Binepal et al.,

2020) (Figure 1B). This binding results in the widening of the

tetradecameric ClpP axial pores, which facilitates substrate entry

and increases proteolytic activity (Li et al., 2010a). Association of

the drugs to ClpP disrupts the chaperone-ClpP interaction while

keeping ClpP in its active conformation, resulting in unregulated

proteolysis (Mroue et al., 2019; Jacques et al., 2020). These

compounds have been shown to induce promiscuous

degradation of non-substrate proteins both in vitro and in
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vivo, thereby resulting in cell death (Kirstein et al., 2009; Li et al.,

2010a) and validating ClpP as a promising antimicrobial target. It

is worth noting that in firmicutes (e.g., Bacillus, Staphylococcus,

and Streptococcus), ClpP is not essential for cell viability. The

bactericidal activity of ADEPs is mainly due to unregulated

proteolysis of substrates by ClpP such as FtsZ, which is

required for cell division (Sass et al., 2011). However in M.

tuberculosis, clpP1 deletion leads to cell death making it an

essential component of the proteostasis network (Ollinger

et al., 2012); accordingly, the mechanism by which ADEPs

induce cell death in mycobacteria is different. While ADEPs

can stimulate degradation of peptides and full-length proteins in

M. tuberculosis, its effect is weaker than in firmicutes and other

bacteria. Rather, the binding of ADEPs inhibits the association of

ClpP1P2 with the ATPases ClpX or ClpC1 to prevent essential

protein turnover in mycobacteria, thus, leading to cell death

(Famulla et al., 2016).

It may seem like a negative trait for an antibacterial target to

possess multiple paralogs and regulatory pathways that can

compensate for each other. However, this can be

advantageous because disruption of the ClpP-chaperone

complex’s activity can increase the bacterium’s susceptibility

to the host’s immune system and to other antibiotics without

imposing strong evolutionary pressure, which gives rise to

resistant mutants. Indeed, co-administering traditional

antibiotics with ClpP dysregulators has been shown to be

effective at killing otherwise resistant mutants. Incubating

high density cultures of methicillin resistant Staphylococcus

aureus (MRSA) and vancomycin-resistant Enterococcus

faecalis (VRE) with linezolid, ampicillin, oxacillin, or ADEPs

individually, showed that none of the compounds had

bactericidal activity against either of the two species. However,

co-incubation of linezolid, ampicillin, or oxacillin with ADEPs

was found to be effective at killing and preventing regrowth of the

pathogens, with no evidence of developing resistant mutants

(Mroue et al., 2019).

However, targeting ClpP function as an effective anti-

virulence strategy with small molecule compounds has some

caveats. In addition to the above-mentioned S. aureus infection

model, a study treating L. monocytogenes with β-lactones in

mouse macrophages showed a significant reduction in

intracellular replication. Follow up analyses confirmed that

this was due to the compound binding to ClpP (Bottcher and

Sieber, 2009). Here, disruption of ClpP function was seen to

decrease virulence. In contrast, deletion of clpX and clpP from

MRSA led to increased resistance to β-lactam antibiotics (Baek

et al., 2014). These results suggested that ClpXP controls one or

more of the pathways modulating β-lactam resistance in S.

aureus. MRSA expresses a peptidoglycan transpeptidase,

penicillin binding protein 2a (PBP2a), which has decreased

affinity for β-lactams compared to other PBPs enabling

resistance against β-lactam antibiotics (Baek et al., 2014). In

the clpXP knockout mutants, cellular levels of PBP2a were found

to be unchanged suggesting that PBP2a mediated resistance

against β-lactam antibiotics is still intact. Nevertheless, it was

noted that these mutants possessed generally thicker cell walls

consisting of an altered muropeptide composition and increased

levels of crosslinking (Baek et al., 2014). Therefore, it is likely that

the role of ClpXP in the peptidoglycan synthesis pathway is

multifaceted, which led to this undesirable phenotype (Baek et al.,

2014).

Discrepancies in drug effectiveness like the ones described

above may also in part be due to the various functional forms of

ClpPs found within different bacterial species. Specific ClpP

paralogs are known to serve different functions, and the

expression levels of each paralog have been shown to fluctuate

through various growth stages for some pathogens. For example,

in P. aeruginosa, clpP1 and clpX were observed to be

constitutively expressed throughout the cell growth cycle,

while clpP2 expression was shown to increase during the

stationary phase (Hall et al., 2017). Similar differences

between paralogs have been recorded for other species such as

L. monocytogenes and C. difficile (Balogh et al., 2017; Lavey et al.,

2019; Mawla et al., 2021). Furthermore, variations in encoded

ATPases could contribute to these discrepancies by minimizing

the effects of dysregulating any specific chaperone. The

redundancy of ClpC and ClpE suggests that many of the

pathways dysregulated by inhibiting ClpC could be

compensated for by the presence of ClpE except in M.

tuberculosis, which lacks the latter Clp ATPase.

ClpC1 dysregulators in M. tuberculosis such as ecumicin and

lassomycin possess bactericidal properties by enhancing the

ATPase activity of ClpC1 and uncoupling its proteolytic

activity from ClpP1P2 (Gavrish et al., 2014; Gao et al., 2015).

By dysregulating proteostasis and causing cell death,

ClpC1 appears to be a viable drug target against M.

tuberculosis. Nevertheless, how the overlapping functions of

multiple paralogs or chaperones factor into the efficacy of

antibiotics in other species is not well understood. Further

research is needed to design and administer effective

antibiotics that are specific towards particular pathogens,

accounting for variations in ClpP and chaperones.

An additional consideration with respect to drug design is the

presence of a ClpP in the mitochondrion of eukaryotes. Novel

antibiotic inhibitors and activators therefore must be highly

specific for prokaryotic ClpP, so as not to target human ClpP.

Indeed, it has been shown that mitochondrial ClpP is also

dysregulated by ADEPs (Lowth et al., 2012; Wong et al., 2018).

Concluding remarks

In summary, ClpP and its cognate ATPases affect bacterial

virulence through its involvement in peptidoglycan and biofilm

formation, cell stress tolerance, motility, defense against host

immune responses, the shift to a virulent life stage, and the
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production and transport of virulence factors. Although the

presence of multiple ClpPs and the redundancy of Clp

chaperones suggest that the protease is not essential for

pathogen survival, chemical compounds that dysregulate ClpP

have been shown to induce anti-virulence effects and increase

bacterial susceptibility towards other antibiotics. It is worth noting

that most contemporary antimicrobial compounds targeting ClpP

were tested using S. aureus or E. coli, necessitating further

investigation into other pathogens as well. Nevertheless, ClpP is

a desirable druggable target and future research should be aimed at

optimizing ClpP antimicrobial compounds in order to validate

their use in animal models and eventually humans.
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