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In recent years, mass spectrometry-based metabolomics has been established

as a powerful and versatile technique for studying cellular metabolism by

comprehensive analysis of metabolites in the cell. Although there are many

scientific reports on the use of metabolomics for the elucidation of mechanism

and physiological changes occurring in the cell, there are surprisingly very few

reports on its use for the identification of rate-limiting steps in a synthetic

biological system that can lead to the actual improvement of the host organism.

In this mini review, we discuss different strategies for improving strain

performance using metabolomics data and compare the application of

metabolomics-driven strain improvement techniques in different host

microorganisms. Finally, we highlight several success stories on the use of

metabolomics-driven strain improvement strategies, which led to significant

bioproductivity improvements.
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Introduction

As the use of biological systems to manufacture industrially relevant products is

becoming more mainstream, the search for reliable strategies to improve bioproduction

capabilities of chassis organisms becomes crucial. Traditionally, attempts to improve

strain bioproductivity have often been confined to the trial-and-error-based modifications

of single genes without a systemic understanding of the metabolism of the chassis

(Opgenorth et al., 2019). Recent advancements in omics technologies, including mass

spectrometry-based metabolomics, have opened the door to a more systemic approach of

metabolic engineering (Amer and Baidoo, 2021).

Metabolomics is a technology that allows for a system-wide quantitative

characterization of metabolites. Coupled with statistical multivariate pattern

recognition methods, such as principal component analysis (PCA) or partial least

squares-discriminant analysis (PLS-DA), metabolomics can be used to acquire deeper

insight on cellular metabolome state and investigate how genetic designs affect production

phenotype (Putri et al., 2013). For this reason, mass spectrometry-based metabolomics

has been established as a powerful and versatile tool in facilitating strain improvement

(Nitta et al., 2017). A typical flow of a metabolomics work which leads to inputs for strain
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improvement is illustrated in Figure 1. Although there are many

scientific reports on the use of metabolomics for the elucidation

of mechanism and physiological changes occurring in the cell,

there are surprisingly very few reports on its use for the

identification of rate-limiting steps in a synthetic biological

system that can lead to the actual improvement of the host

microorganism. In this mini review, we discuss different

strategies for improving strain performance using

metabolomics data and compare the application of

metabolomics-driven strain improvement techniques in

different host microorganisms. Finally, we highlight several

success stories on the use of metabolomics-driven strain

improvement strategies, which led to significant

bioproductivity improvements.

Strategies to improve strain
performance using metabolomics
data

Ultimately, the aim of metabolomics-driven strain

improvement is the increased bioproduction capability. To this

end, the role of metabolomics is to investigate whether the

designed system results in a desired production phenotype.

Metabolomics allows for the simultaneous monitoring of not

only the end product but also the important intermediates

along the way (Vignoli et al., 2019). This allows for the

accurate pinpointing of the rate-limiting steps or bottlenecks in

the bioproduction line, which gives clues on how to further

optimize bioproductivity (Hollywood et al., 2018). A bottleneck

in a pathway can exist due to either a suboptimal enzyme

performance or the existence of competing pathways (Figure 2).

A suboptimal enzyme performance is often indicated by an

accumulation of intermediates. Gene overexpression, facilitated

by either the construction of a ribosomal binding site (RBS) library

or a promoter strength adjustment, can be employed to improve a

suboptimal enzyme performance (Siegl et al., 2013). On the other

hand, the existence of competing pathways which can take away

important intermediates can be detected by a metabolic flux

analysis (Ghosh et al., 2016). In such cases, knockout of genes

in the competing pathways can be applied to reroute the flux (Nitta

et al., 2019). Aside from the alleviation of bottleneck reactions,

bioproduction can also be improved through the optimizations of

cell growth. In some cases, a high concentration of the desired end

product or a side product may be toxic and hampers cell growth,

which in turn prevents optimal bioproduction. In such

circumstances, bioproductivity can be improved by identifying

and subsequently optimizing genes that confer stress tolerance

(Ohta et al., 2016).

Metabolome profiling methods

Different experimental designs can be used to facilitate

metabolomics-driven strain improvement strategies. In

general, however, commonly employed experimental

approaches in metabolomics can be categorized into: Targeted

metabolomics and non-targeted metabolomics.

FIGURE 1
Metabolomics-driven strain improvement workflow.
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Targeted metabolomics focuses on the detection and

quantification of a specific, predefined set of metabolites. As a

hypothesis-driven approach, targeted metabolomics is ideally

used in cases where clues of possible rate-limiting steps are

present. For example, Noguchi et al. (2016) employed a

targeted analysis to specifically profile acyl-CoAs in

Synechococcus elongatus PCC 7942 based on the hypothesis

that the CoA-dependent pathway may contain a rate-limiting

step in 1-butanol production. Common targets for targeted

analysis in metabolomics-driven strain improvement studies

include metabolites involved in the central metabolic pathway

(Kawaguchi et al., 2018; Ohtake et al., 2022) and metabolites

surrounding heterologous pathways introduced for

bioproduction purposes (Noguchi et al., 2016; Nitta et al.,

2019). In targeted metabolomics, chemical standards of target

metabolites need to be characterized as references to facilitate

accurate metabolite annotation. For this reason, annotation in

targeted metabolomics is generally more reliable and

reproducible compared to its non-targeted counterpart,

despite the coverage being more limited (Cao et al., 2020).

Absolute quantification is also possible in targeted

metabolomics, which might provide essential insights for

understanding a biological system (Nitta et al., 2021).

Non-targeted metabolomics, on the other hand, does not

require prior information about specific targets. Non-targeted

metabolomics aims to capture as many signals as possible and

identify them by cross-referencing obtained spectra with

available metabolite spectral databases. In contrast to targeted

metabolomics, non-targeted metabolomics is an excellent

approach for generating clues of possible rate-limiting steps in

a biological production system. In a study, Teoh et al. (2015)

employed a non-targeted approach to identify gene targets that

might increase 1-butanol tolerance in Saccharomyces cerevisiae

without prior knowledge of the gene functions. While non-

targeted metabolomics provides a wide metabolite coverage

and is a powerful tool to examine a biological system, the

difficulty of metabolite identification remains to be a crucial

limitation (Wasito et al., 2022).

Metabolomics-driven strain
improvements in different organisms

The generation of optimization inputs based on metabolomics

data largely depends on the availability of genetic and pathway

information of the production host. For some hosts, a complete

metabolic map might be available, which may allow for genome-

scale metabolic modeling (GSM) (Kavšček et al., 2015). For other

chassis, where genetic information is limited, interpretation of the

captured metabolomics data may be more challenging. Here, we

highlight a number of success stories of applying metabolomics-

driven strain improvement strategies in different host organisms,

ranging from the model organism Escherichia coli to specialized

chassis, such as Aureobasidium pullulans.

Canonical hosts: Escherichia coli and
Saccharomyces cerevisiae

Owing to the wealth of genetic information available,

characterizations, as well as the molecular toolkit available,

Escherichia coli and Saccharomyces cerevisiae are the two most

FIGURE 2
Rate-limiting steps in a synthetic biological system.
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widely used hosts to produce heterologous metabolites. For this

reason, metabolomics-driven metabolic engineering to improve

the bioproduction in these two hosts is abundant. Here, we

highlight some notable examples of using metabolomics to

guide metabolic engineering in Escherichia coli and

Saccharomyces cerevisiae.

A series of studies performed by our group capitalized on

metabolomics data to optimize 1-butanol production in

Escherichia coli. We revealed that the CoA imbalance was due

to the deletion of pta causing an unwanted accumulation of

pyruvate, butanoate, and other CoA-derived compounds. Using

metabolomics, the alcohol dehydrogenase AdhE2 catalyzed

reduction of butanoyl-CoA to butanal was determined as the

rate-limiting step. The refinement of this activity and the

subsequent release of free CoA through cysteine

supplementation restored the balance of CoA, resulting in a

titer of 18.3 g/L. By enhancing the activity of AdhE2, the carbon

flux was directed towards the production of 1-butanol and the

unwanted accumulation of pyruvate and butanoate was reduced

(Ohtake et al., 2017). Meanwhile, optimizing YqhD alcohol

dehydrogenase activity using a ribosome binding site (RBS)

library improved 1-propanol titer (g/L) and yield (w/g

glucose) by 38 and by 29% in 72 h compared to the base

strain, respectively for the production of 1-propanol (Ohtake

et al., 2022).

A similar strategy was applied to improve the production of

1-butanol in Saccharomyces cerevisiae. Growth inhibition due to

high alcohol conditions was determined as the bottleneck in 1-

butanol production. Accordingly, we capitalized on

metabolomics data to improve the 1-butanol tolerance of the

producing Saccharomyces cerevisiae strain. Non-targeted

metabolome analysis using GC/MS coupled with Orthogonal

Projections to Latent Structures (OPLS) modeling revealed that

threonine and citric acid were among the most important

metabolites in conferring 1-butanol tolerance. We proved that

individual deletions of genes associated with threonine and citric

acid (met2, cha1, cit2) lead to higher 1-butanol tolerance (Teoh

et al., 2015). Further data mining using Random Sample

Consensus combined with Partial Least Squares regression

(RANSAC-PLS) on the same dataset suggested that trehalose,

valine, and pyroglutamic acid also contribute to the 1-butanol

tolerance of Saccharomyces cerevisiae. From this input, individual

deletions of xp1, bat2, and nth1 were performed. This led to

higher growth under 1-butanol stress (Teoh et al., 2016).

Photosynthetic cyanobacterial hosts

Aside from the traditional chassis, cyanobacteria have also

been a popular choice for producing biotechnologically

significant homologous and heterologous metabolites. The

photosynthetic nature of cyanobacteria, its ease of cultivation,

as well as its ability to store compounds within its intracellular

compartmentalization give cyanobacteria some competitive edge

over traditional hosts. On the other hand, metabolomics-driven

metabolic engineering often requires ample genetic information

and characterizations, which are largely lacking in most

cyanobacterial strains. Nonetheless, here, we highlight some

success stories of performing metabolomics-driven strain

improvements in cyanobacterial hosts.

One example is the widely-targeted metabolomics analysis to

improve cyanobacterial 1-butanol yield previously performed by

our group. By focusing on the CoA-dependent pathway in

Synechococcus elongatus PCC 7942, we identified that the

reductive reaction of butanoyl-CoA to butanol is a possible

rate-limiting step in butanol production (Noguchi et al.,

2016). Improved CoA-acylating heterologous propionaldehyde

dehydrogenase, which is responsible for this bottleneck step,

increased the target compound and free CoA regeneration,

leading in turn to increased acetyl-CoA synthesis. The newly

discovered rate-limiting step was enhanced by overexpressing

heterologous acetyl-CoA carboxylase, resulting in increased 1-

butanol levels. We further compared strains that differ in

enzymes that convert butanoyl-CoA to butanol, revealing

another distinct rate-limiting step in 1-butanol biosynthesis.

The result indicated that the reductive reaction of butanoyl-

CoA to butanal needs to be further modified to improve both the

titer and the productivity of the engineered cyanobacterial strain

(Fathima et al., 2018). However, strain sensitivity to 1-butanol

itself hindered the production of 1-butanol. Using a high

producer of 1-butanol S. elongatus DC11 strain, demonstrated

a significant accumulation of sugars and nucleosides under salt

and alcohol stress compared to the original construction of the

strain background. The results obtained from this study may be

useful for future strain enhancement strategies in S. elongatus,

focusing specifically on the metabolic response of this strain to 1-

butanol stress (Fathima et al., 2020).

Cyanobacteria have also been explored as promising

producers of succinate and D-lactate to develop

environmentally friendly, biodegradable plastics. Succinate

could be synthesized in PCC 6803 via the TCA cycle under

dark anoxic conditions; however, it was unclear whether this was

achieved through an oxidative or reductive route. Dynamic

metabolic profiling of PCC 6803 revealed that succinate is

synthesized via glycolysis, the anaplerotic pathway and the

reductive pathway of the TCA cycle. PCC6803 cultured under

dark anoxic conditions, allowing identification of the carbon flow

and rate-limiting steps in glycogen catabolism. Glycogen

biosynthesized from CO2 assimilated during periods of light

exposure is catabolized to succinate via glycolysis, the anaplerotic

pathway, and the reductive TCA cycle under dark anoxic

conditions. Expression of the phosphoenolpyruvate (PEP)

carboxylase (ppc) gene has been identified as a rate-limiting

step in succinate biosynthesis, and this rate limitation has

been alleviated by overexpression of ppc, resulting in increased

secretion of succinate (Hasunuma et al., 2016).
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Metabolomics analysis on the recombinant isoprene

producing strain Synechocystis sp. PCC 6803 revealed that the

limitation in isoprene production was due to an insufficient

DMAPP level (Pade et al., 2016). Therefore, the mevalonic

acid (MVA) pathway, another pathway for the synthesis of

DMAPP, was introduced into the isoprene-producing cells to

bypass the MEP pathway, resulting in increased isoprene levels.

The production of isoprene was also enhanced by the

overexpression of the genes encoding Ipi, Dxs and IspD,

whose catalytic reactions were identified as bottlenecks within

the MEP pathway (Englund et al., 2018).

Other non-canonical hosts

While less common, there are some studies employing

metabolomics-driven metabolic engineering in hosts other than

Escherichia coli, Saccharomyces cerevisiae, or cyanobacteria. As

with the case of cyanobacterial hosts, extracting insightful inputs

from the obtained metabolomics data might be more challenging in

these non-canonical hosts due to the lack of genetic information and

characterizations. These hosts are likely selected despite the tradeoffs

due to their excellent natural capabilities to produce industrially

relevant compounds.

Corynebacterium glutamicum is a bacterium with high

industrial importance. This bacterium is commonly used in

large-scale production of amino acids, most notably L-glutamate.

In 2018, Kawaguchi et al. (2018) used metabolomics data input to

engineer Corynebacterium glutamicum ATCC 31831 strain capable

of simultaneous utilization of D-glucose and L-arabinose. LC-MS/

MS analysis was used to identify phosphofructokinase and pyruvate

kinase as major bottlenecks in the metabolisms of D-glucose and

L-arabinose, respectively. Accordingly, they engineered a strain

overexpressing pyruvate kinase combined with the deletion of the

L-arabinose uptake and catabolism repressor gene, araR. This newly

improved strain was able to utilize 15 g/L of D-glucose and

L-arabinose simultaneously. They also identified citrate synthase

to be the new bottleneck in this improved strain during the

simultaneous utilization of D-glucose and L-arabinose.

Clostridium autoethanogenum is an ethanol producing

bacterium capable of utilizing CO and/or CO2 + H2 gases as

its sole carbon and energy sources. In 2019, Lemgruber et al.

(2019) engineered and optimized a recombinant Clostridium

autoethanogenum strain to produce poly-3-hydroxybutyrate

(PHB). HPLC-based metabolomics analysis, combined with

transcriptomics and genome-scale metabolic modeling, was

used to evaluate and further optimize the production of PHB

to up to 12 times the original yield.

Aureobasidium pullulans is an industrially important fungus

commonly used in the production of various enzymes and

compounds, including polymalic acid (PMA) and its monomer

L-malic acid (MA). In 2018, Feng et al. (2018) used GC/MS-based

analysis to perform widely-targeted metabolomics profiling of PMA

and MA-producing Aureobasidium pullulans. They utilized the

multivariate analysis methods of principal component analysis

(PCA) and orthogonal-partial least squares-discriminant analysis

(OPLS-DA) to recognize insightful patterns and extract information

from the obtained metabolomics data. Notably, they also

incorporated genome-scale metabolic modelling based on the

obtained metabolomics data. Pyruvate metabolism, in particular

pyruvate carboxylase (encoded by pyc), was identified to be the key

metabolite and enzyme affecting PMA synthesis. Based on this

input, they engineered a new strain FJ-PYC which over-expresses

the pyc gene. Owing to this metabolomics-driven metabolic

engineering, they were able to increase the PMA yield by over 15%.

Recent advances and future outlook

While not always accompanied by an immediate

demonstration of an increased bioproductivity, recent studies

often explore the multidisciplinary integration of metabolomics

and other technologies to better understand biological systems

and generate suggestions for strain improvement. In a recent

study, Webb et al. (2022) developed an approach involving the

multi-omics integration of metabolomics, transcriptomics,

proteomics, and lipidomics to identify potential targets for

strain improvement and successfully demonstrated a 3-fold

increase in styrene bioproduction. In another study, Zhang

et al. (2022) utilized a combination of metabolomics,

genomics, and protein structure simulation to identify F6PPK

in the “bifidus” pathway as a vital enzyme to confer osmotic stress

tolerance in engineered Bifidobacterium bifidum. Metabolomics-

driven strain improvement strategies are also often incorporated

into a larger, more systematic framework in the Design-Build-

Test-Learn (DBTL) pipeline of synthetic biology. The DBTL

cycle is a systematic framework designed to accelerate strain

improvement processes. Metabolomics-driven strain

improvement principles play an integral role in the ‘Test’ and

‘Learn’ stages of this framework.

In the future, the effectiveness of metabolomics-driven strain

improvement strategies may be elevated further through the

advancements in different facets of metabolomics technology.

For instance, more accurate reflection of the actual metabolic

state of strains can be achieved through the recent advancements

in single-cell metabolomics (Hu et al., 2021) and real-time

analysis (Judge et al., 2019). Spatial information of metabolite

distribution can also be obtained through the combination of

mass spectrometry and imaging techniques (Schleyer et al., 2019;

Taylor et al., 2021). Much work is also being done to develop

analytical methods to increase the number of metabolites

annotated, particularly unstable metabolites with very fast

turnover rates (Mousavi et al., 2019). Further technological

developments covering these aspects, as well as the expansion

of analysis coverage, improvements in data processing

algorithms, and the incorporation of automation technologies,
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would make metabolomics a more powerful technology for strain

improvements.
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