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DNA methylation is one of the most important epigenetic mechanisms that

governing regulation of gene expression, aberrant DNA methylation patterns

are strongly associated with human malignancies. Long non-coding RNAs

(lncRNAs) have being discovered as a significant regulator on gene

expression at the epigenetic level. Emerging evidences have indicated the

intricate regulatory effects between lncRNAs and DNA methylation. On one

hand, transcription of lncRNAs are controlled by the promoter methylation,

which is similar to protein coding genes, on the other hand, lncRNA could

interact with enzymes involved in DNA methylation to affect the methylation

pattern of downstream genes, thus regulating their expression. In addition,

circular RNAs (circRNAs) being an important class of noncoding RNA are also

found to participate in this complex regulatory network. In this review, we

summarize recent research progress on this crosstalk between lncRNA,

circRNA, and DNA methylation as well as their potential functions in

complex diseases including cancer. This work reveals a hidden layer for

gene transcriptional regulation and enhances our understanding for

epigenetics regarding detailed mechanisms on lncRNA regulatory function in

human cancers.
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Introduction

DNAmethylation is an epigenetic modification involving the

transfer of the methyl group onto the C5 position of the cytosine

at CpG dinucleotide sites to form the 5-methylcytosine (5mC). It

has been widely recognized for DNA methylation as a major

epigenetic mechanism in regulating gene expression, genome

stability and cell fate (Deaton and Bird, 2011; Moore et al., 2013).

DNA methylation at promoter region could determine the

regulatory activity of the target genes by regulating chromatin

accessibility and blocking recruitment of transcription factors

(Blattler and Farnham, 2013; Hu et al., 2013). CpG islands within

promoter regions are usually unmethylated and associated with a

transcriptionally permissive state in normal physiology, whereas

methylated CpG islands, which are often observed in cancer,

generally associated with the closed chromatin configuration and

lead to gene repression (Feinberg et al., 2006). DNA methylation

status alterations are well known to influence transcript

abundance of many cancer-related genes, thus may define

different types of “driver” events, such as cell growth,

proliferation, differentiation, and apoptosis processes (Borgel

et al., 2010; Jones, 2012; Kulis et al., 2015; Fialkova et al., 2017).

DNA methylation is highly spatio-temporal specific across

different cell types and developmental stages, and its emergence

and maintenance are complex processes under precise regulation

(Lister et al., 2009; Ziller et al., 2013). In mammalian cells,

transfer of the methyl group to cytosine is catalyzed by three

DNA methyltransferases (DNMTs): DNMT3A, DNMT3B, and

DNMT1. It is recognized that DNMT3A and DNMT3B are de

novo methyltransferases that establish DNA methylation

patterns early in development, whereas DNMT1 functions to

preserve DNA methylation patterns from parental to daughter

strand during every DNA replication cycle (Lyko, 2018). DNA

demethylation is mainly mediated by the Ten-eleven

translocation (TET) family members (TET1, TET2, and

TET3). These enzymes are responsible for the hydroxylation

of 5mC and its further oxidation, which finally get replaced by

cytosine following base excision repair (Melamed et al., 2018).

The DNA methylation status at particular site is not only

determined by activity of DNMTs, which present limited

sequence specificity (Furuta et al., 2014), but is also affected

by coordinated function of other complexes, particularly

chromatin-remodeling complexes and histone modification

enzymes (Hervouet et al., 2018). For instance, it has been

found that the maintenance of DNA methylation in

heterochromatin requires the DNMT1/HDAC1 interaction

and deacetylation state of histones, and the presence of 5mC

is often correlated with histone deacetylation (Fuks et al., 2000).

The Ubiquitin-like containing PHD Ring Finger 1 (UHRF1),

which constitutes a complex with HDAC1, could interact with

DNMT1 to promote DNA methylation inheritance during mid

to late S phase (Liu et al., 2013; Nishiyama et al., 2020). Another

example is the Polycomb Repressive Complex 2 (PRC2) protein

EZH2, which has been shown to interact with DNMTs and is

crucial for recruitment of DNMTs to specific loci (Vire et al.,

2006; Wu et al., 2008). DNA hypermethylation observed in colon

cancer could be partially regulated by interactions between

DNMT3B and PRC1 or PRC2 (Jin et al., 2009). In recent

years, accumulating evidence points towards long non-coding

RNAs (lncRNAs) being an important piece in this jigsaw puzzle,

representing a distinct class of epigenetic regulators that

influence genome-wide DNA methylation patterns.

LncRNAs are defined as non-coding transcripts whose length

ranges from 200 nt to more than 10 kb, and have been implicated

in many physiological and pathological processes, including

cancer (Cabili et al., 2011; Fatica and Bozzoni, 2014). A vast

majority of lncRNAs are characterized as tissue and

developmental stage specific with important functions in gene

expression regulation, often act as competing endogenous RNA

(ceRNA) to regulate the expression of downstream genes by

binding to their common microRNA (miRNA) regulators

(Ponting et al., 2009; Tay et al., 2014). In fact, lncRNAs could

regulate gene expression via multiple mechanisms, including

modulation of transcription, mRNA stability, translation and

protein subcellular location by interacting with DNA, RNA or

protein to form large complexes (Statello et al., 2021). Many

lncRNAs act as scaffold or decoy to recruit or sequester other

proteins or RNAs. They could affect chromatin architecture and

genome organization to regulate gene expression by different

mechanisms of action (Yao et al., 2019). Meanwhile, circular

RNAs (circRNAs) being a new subtype of non-coding RNA

formed by covalently closed loops through back splicing, now

exhibit great potential with different cellular functions (Liu and

Chen, 2022). They are involved in gene expression regulation by

acting as sponge for miRNAs, or with other aspects of

mechanisms. LncRNAs and circRNAs are widely implicated in

the epigenetic regulatory mechanisms, such as DNAmethylation

and histone modification, and involved in the development and

progression of many human malignancies (Hanly et al., 2018;

Morselli and Dieci, 2022).

Evidence has indicated that transcriptional control of

lncRNAs and circRNAs are similar to that of protein-coding

genes (PCGs), with their expression regulated by promoter

methylation status (Wu et al., 2010; Li et al., 2015; Xu et al.,

2018). On the other hand, studies also indicate that they are

pivotal regulators modulating the epigenome by interacting with

different epigenetic factors (Ferreira and Esteller, 2018).

LncRNAs and circRNAs could regulate DNA methylation via

interaction with DNMTs or other genes involved in chromatin

organization, thereby regulating target gene expression in diverse

biological processes (Mercer and Mattick, 2013). The dynamic

nature of their repertoire and plasticity for lncRNAs and

circRNAs in interacting with different molecules made this

crosstalk between lncRNAs and DNA methylation a complex

regulatory network to be elucidated at the system level (Figure 1).

Therefore, a comprehensive review for achievements of the
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experimentally verified regulatory relationships among lncRNA,

circRNA and DNA methylation is critically needed. Here we lay

emphasis on those lncRNAs and circRNAs that have been

identified to regulate DNA methylation with various

mechanisms, as well as their roles in cancer development.

Indeed, the broad phylogenies of lncRNAs and circRNAs and

their important biological roles lead to the hypothesis that they

could constitute another regulatory layer that shapes the

epigenetic landscape, with great potential for diagnosis,

prognosis, and personalized treatment of cancer.

DNA methylation contributes to long
non-coding RNA expression
regulation

Beneath the aberrant cell proliferation of tumor formation is the

complex interactions between a striking diversity of genetic and

epigenetic factors, and the mechanisms of cancer development can

be largely attributed to epimutations, which include the aberrant

histonemodifications andDNAhyper- and hypomethylation events

across the genome (Banno et al., 2012). CpG hypermethylation is

associated with specific chromatin conformation in blocking the

recruitment of transcription factors, and generally promotes the

transcription inhibition of tumor suppressor genes in cancer,

whereas hypomethylation may lead to upregulation of oncogenes

(Domcke et al., 2015). LncRNAs resemble mRNAs in length and

biological characteristics but lack extended open reading frames

(ORFs). Most of them are transcribed by RNA polymerase II,

capped, polyadenylated, and often spliced, thus it is not surprise

lncRNAs share similar epigenetic regulatory mechanisms with

PCGs (Okazaki et al., 2002; Sati et al., 2012; Hangauer et al.,

2013). This was confirmed by the observation of the lncRNA

promoter methylation alterations in cancers (Yan et al., 2015),

and also by the altered expression of numerous lncRNAs in

response to the treatment with DNA methylation inhibitor 5-

aza-2′-deoxycytidine (5-AZA-CdR) (Cao et al., 2016). Many

lncRNAs that undergo cancer-associated methylation changes are

found at the crossroads of key oncogenic pathways (Table 1). For

example, a p53-induced lncRNA TP53TG1 present promoter

hypermethylation in gastric and colon cancers. This lncRNA was

found to interact with the DNA/RNA binding protein YBX1,

impede its nuclear localization and prevent YBX1-mediated

activation of other oncogenes (Diaz-Lagares et al., 2016). Another

example is the tumor suppressor lncRNA GAS5 (Growth Arrest-

Specific transcript 5), which was found downregulated in gastric

cancer via promoter hypermethylation. This lncRNA plays a key

role in adriamycin sensitivity, and represents a novel marker of

prognosis and potential therapeutic target for gastric cancer (Sun

et al., 2014; Zhang et al., 2016). LncRNA CRNDE presents promoter

hypermethylation and downregulated expression in B lymphocytes

of chronic lymphocytic leukemia (CLL) patients. It acts as a

competing endogenous RNA (ceRNA) to repress miR-28,

thereby regulating NDRG2 expression. Overexpression of CRNDE

by DNA methylation inhibitor 5-AZA-CdR promotes NDRG2

expression, thereby inhibit cell proliferation and promote

apoptosis in CLL (Ni et al., 2021).

In addition to promoter hypermethylation, hypomethylation is

also widely observed for many lncRNA genes. For instance, the well-

known lncRNA H19 displays aberrant promoter hypomethylation

in many different cancer-types, including bladder cancer (Takai

et al., 2001), colorectal cancer (Tian et al., 2012), and oral squamous

FIGURE 1
Complex regulatory network involving lncRNAs and DNA methylation. On one hand, DNA methylation change targeting promoters of lncRNA
genes may affect its expression as observed for PCGs. On another hand, lncRNAs can modulate DNA methylation and transcription of proximal and
distant genes by interacting with enzymes or proteins involved in epigenetic regulation.
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TABLE 1 Representative lncRNAs whose expression regulated by promoter methylation.

LncRNA
name

Methylation
pattern

Tissue/disease Target Function References

TP53TG1 Hypermethylation Gastric cancer; colon
cancer

YBX1 Cellular death resistance Diaz-Lagares et al.
(2016)

GAS5 Hypermethylation Gastric cancer Cell proliferation promotion Sun et al. (2014); Zhang
et al. (2016)

CRNDE Hypermethylation Chronic lymphocytic
leukemia

miR-28 Competing endogenous RNA, cell proliferation promotion Ni et al. (2021)

H19 Hypomethylation Bladder cancer Takai et al. (2001)

H19 Hypomethylation Colorectal cancer Tian et al. (2012)

H19 Hypomethylation Oral squamous cell
carcinoma

Lee et al. (2021)

H19 Hypermethylation Peripheral blood of
gastric cancer patients

Hu et al. (2021)

PlncRNA-1 Hypomethylation Breast cancer miR-136 Competing endogenous RNA, epithelial–mesenchymal
transition (EMT)

Kang et al. (2020)

Esrp2-as Hypomethylation Breast cancer Cell motility and proliferation promotion Heilmann et al. (2017)

HNF1A-AS1 Hypermethylation Laryngeal squamous cell
carcinoma

Shi et al. (2020)

LINC00299 Hypermethylation Breast cancer (TNBC) Manoochehri et al.
(2020)

LINC00472 Hypermethylation Gastric cancer Tsai et al. (2019)

RP11-713P17.4 Hypermethylation Breast cancer Pangeni et al. (2022)

SNHG12 Hypermethylation Glioblastoma miR-
129-5p

Competing endogenous RNA Lu et al. (2020)

SNHG11 Hypermethylation Colorectal cancer Promote CRC cell migration and metastasis under hypoxia Xu et al. (2020)

CCND2 AS1 Hypomethylation Cervical cancer Inhibited the proliferation and cell cycle progression Zhao et al. (2020a)

SOX21-AS1 Hypomethylation Cervical cancer Regulation of the Wnt signaling pathway Du et al. (2021a)

H19 Hypomethylation Nasopharyngeal
carcinoma

Ng et al. (2003)

H19 Hypomethylation Colorectal cancer Cui et al. (2002)

H19 Hypermethylation Cervical cancer Roychowdhury et al.
(2020)

MEG3 Hypermethylation Esophageal squamous cell
carcinoma

miR-9 Competing endogenous RNA, promote cell proliferation
and invasion

Dong et al. (2017)

PLUT Hypermethylation Lung adenocarcinoma Kim-Wanner et al.
(2020)

LINC00473 Hypermethylation Colorectal cancer Ruiz-Banobre et al.
(2022)

MEG3 Hypermethylation Breast cancer Pan et al. (2022)

LINC00261 Hypermethylation Pancreatic cancer C-myc Repressing c-Myc expression Liu et al. (2020c)

BLAT1 Hypomethylation Breast cancer Increased apoptosis, accumulation of DNA damage Han et al. (2018)

LINC00886 Hypermethylation Laryngeal squamous cell
carcinoma

Mitigated cell proliferation, migration and invasion,
VEGFA/PI3K/AKT signaling pathways and epithelial-
mesenchymal transition

Lan et al. (2020)

SSTR5-AS1 Hypermethylation Laryngeal squamous cell
carcinoma

E-cadherin Inhibits laryngeal carcinoma cells proliferation, migration
and invasion

Wang et al. (2019a)

GAS5 Hypermethylation Cervical cancer Inhibited proliferation, cell cycle progression, invasion,
migration while inducing apoptosis

Yang et al. (2019b)

MALAT1 Hypomethylation Non-small cell lung
cancer

CXCL5 Decrease cell migration and invasion Guo et al. (2015)

TRPM2-AS1 Hypomethylation Colorectal cancer Promote proliferation and drug resistance of colorectal
cancer cell

Ghasemi et al. (2021)
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cell carcinoma (Lee et al., 2021). One exception was found in the

peripheral blood of gastric cancer patients, where hypermethylation

of H19 was observed that associated with poor prognosis (Hu et al.,

2021). Another lncRNA PlncRNA-1 was found hypomethylated in

breast cancer tissue and accompanied by overexpression. It also

functions as a ceRNA in the regulatory axis of miR-136—Smad3,

regulating epithelial–mesenchymal transition (EMT) (Kang et al.,

2020). Besides proximal promoter regions, aberrant DNA

methylation at enhancer region has also been observed for

lncRNA genes. For example, hypomethylation of the enhancer

mapping to Esrp2-as is associated with its overexpression in

breast cancer. This lncRNA locates in proximity to Esrp2

(epithelial splicing regulatory protein 2), coordinated

overexpression of Esrp2 and Esrp2-as inversely correlates with

hypomethylation in the enhancer and promotes cell motility and

proliferation (Heilmann et al., 2017). Some other representative

examples of aberrant methylation of lncRNA promoter in different

cancers are summarized in Table 1.

In recent years, circRNA as another important class of non-

coding RNAs has gained much attention due to its promising

regulatory roles in cellular systems. CircRNAs are generated from

precursor mRNA and are derived from non-canonical back-

splice junction by linking 3′ splice site to a downstream 5′ splice
site (Ashwal-Fluss et al., 2014). In this case, circRNA are thought

to share the same transcription regulatory mechanism with their

host genes. A previous study found a group of six circRNAs with

their host genes undergo cancer-specific hypermethylation-

associated transcriptional silencing, this phenomenon is

suggested to be wide spread among different types of human

malignancies (Ferreira et al., 2018). Another example was from

multiple myeloma (MM), circRNA ciRS-7 is downregulated in

MM cells with immunomodulatory drug resistance. The decrease

of its expression is associated with promoter hypermethylation of

its host gene LINC00632 (Jakobsen et al., 2021). However,

evidence also suggests that many circRNAs may be

transcriptionally regulated independently from their linear

isoforms, resulting in different levels between their expression

and that of their cognate linear mRNAs (Salzman et al., 2013;

Rybak-Wolf et al., 2015). But the detailed mechanism of

epigenetic regulation on circRNA biogenesis is largely

unknown and remains further investigation.

It is worth noting that improvements in high-throughput

sequencing technologies have led to the development of DNA

methylome approaches, such as Whole Genome Bisulfite

Sequencing (WGBS), Reduced Representation Bisulfite

Sequencing (RRBS), DNA Immunoprecipitation Sequencing

(MeDIP-seq), Methylation-sensitive restriction enzyme digestion

sequencing (MRE-seq) and Human Methylation BeadChip Array

(450K, EPIC). These technologies allow comprehensive

characterization of human cancers via integrative analyses of

genome, epigenome, and transcriptome data, and enable

identification of global aberrant epigenetic patterns implicating

deregulated lncRNAs and circRNAs. For example, by applying a

combined strategy of MeDIP-seq and MRE-seq, Zhang et al. (2014)

investigated the genome-wide DNA methylome profile in

endometrial cancer, with hundreds of differentially methylated

regions (DMRs) identified that co-localized with the promoters

of lncRNA genes, including the well-known Xistwhich is critical for

establishing inactivation of the X chromosome. Another study based

on integrative analysis of MeDIP-seq and RNA-seq data identified

differentially methylated lncRNAs in bladder cancer, with

26 lncRNAs presenting reverse correlation between methylation

and expression (Zhang et al., 2019). Another integrative analysis of

RRBS and RNA-seq, now in lung cancer, identified eight lncRNAs

whose expression are associated with methylation in promoter

regions (Sun et al., 2021). Due to the complex processing

procedures and high cost of high-throughput sequencing based

methylome technology, studies that identify global DNA

methylation patterns for lncRNAs are still limited. For this

reason, the Illumina Infinium Human Methylation450 BeadChip

Array and its successor, the MethylationEPIC Array, are now

commonly used to investigate DNA methylation profiles for

different scenarios. Many studies have developed re-annotation

strategies to identify array probes located in genome loci that

associated with lncRNAs and to obtain lncRNA methylation

profiles for a large number of samples (Zhi et al., 2014; Zhi

et al., 2018). For example, one study performed in-depth

characterization of DNA methylation landscape of lncRNA genes

in 20 cancer types from The Cancer Genome Atlas (TCGA),

discovering that the expression of lncRNAs is recurrently

activated in tumors by hypomethylation. Overexpression of

lncRNA EPIC1 was identified to enhance tumor growth in vitro

and in vivo for breast cancer, and is associated with poor prognosis

of the patients (Wang et al., 2018b). Many other studies utilized

bioinformatics and systems biology approaches to investigate

differential methylation patterns of lncRNAs and their associated

functions at pan-cancer wide (Ma et al., 2017; Xiao et al., 2018; Li

et al., 2020; Ji et al., 2020; Xu et al., 2021; Zhong et al., 2021; Zhao

et al., 2022). Although most of these DNA methylation related

lncRNA dysregulation remains further confirmation and

mechanism investigation, these current progresses indicate that

many lncRNA genes are recurrently targeted by DNA

methylation alterations in tumors, and could play an important

role in tumor initiation and progression, and are worth being further

evaluated for usage as cancer biomarkers.

Long non-coding RNAs as DNA
methylation regulator

One of the major advances for functional study of lncRNAs

over the past decade has been their participation in epigenetic

control. The regulation by lncRNAs on DNA methylation has

been proved to be an important mechanism that controls gene

expression during cancer development (Ferreira and Esteller,

2018). For instance, we have previously shown that the well-
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known lncRNA HOTAIR is associated with methylation profile

enriched for polycomb group target (PCGT) genes in ovarian

cancer, this HOTAIR-associated DNA methylation signature

could serve as biomarkers for mesenchymal differentiation

and also as for carboplatin resistance of the tumor cell

(Teschendorff et al., 2015). LncRNA associated DNA

methylome deviation is achieved through direct or indirect

interactions with DNMT or TET members to recruit or

sequester these enzymes from specific genome loci, resulting

in promotion or repression of the DNA methylation in cis or in

trans. HOTAIR and some other lncRNAs, such as particle, are

found to recruit epigenetic modifiers to RNA binding loci in the

genome by formation of triple helix, which functions to modulate

global methylation in cancer cells (Kalwa et al., 2016; O’Leary

et al., 2017). The effect of lncRNAs on DNA methylation

dysregulation of their target genes affects multiple cellular

regulatory networks, revealing their importance for

tumorigenesis and progression.

Long non-coding RNAs interact with DNA
methyltransferases

As the core enzyme involved in DNA methylation,

interfering with DNMTs could be the most effective way for

its function disturbance. Many lncRNAs were identified that

physically interact with DNMTs to regulate methylation on

target genes (Figure 2A). Merry et al. (2015) discovered

FIGURE 2
Detailed mechanism for DNA methylation regulation by lncRNAs in direct mode. (A). LncRNAs recruit DNMTs to genome loci; (B). LncRNAs
sequester DNMTs from genome loci; (C). LncRNAs regulate expression level of DNMTs; (D). LncRNAs function as ceRNA to regulate DNMT
expression level; (E). LncRNAs influence the ubiquitination of DNMT proteins to affect the degradation. (F). LncRNAs promote subcellular location of
DNMT proteins. It is worth noting that similar mechanisms also applies to TET family members.
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148 lncRNAs that interact with DNMT1 in colon cancer by using

the RNA immunoprecipitation sequencing (RIP-seq) method.

Among these, one named DACOR1 (DNMT1-associated colon

cancer repressed lncRNA 1), which presents downregulated

expression in colon cancer, was identified to interact with

DNMT1 and recruit this macromolecular complex at specific

genomic sites to influence DNA methylation and gene

expression. Induction of DACOR1 in colon cancer cells results

in global hypermethylation at multiple loci without changing the

DNMT1 expression level, many of the hypermethylated regions

are associated with genes that participate in cancer related

pathways, such as TGF-β/BMP signaling (Somasundaram

et al., 2018). Similarly, another lncRNA SAMD12-AS1 was

found highly up-regulated in gastric cancer. SAMD12-AS1

may facilitate the repression of p53 by recruiting DNMT1,

thus promoting the progression of gastric cancer (Lu et al.,

2021). In chronic myelocytic leukemia (CML), the lncRNA

HOTAIR was found to enhance the methylation of PTEN

promoter by recruiting DNMT1. Overexpression of HOTAIR

could facilitate the proliferation, invasion, and migration of CML

cells (Song et al., 2021). Besides PCGs, lncRNAs associated DNA

methylation dysregulation are also widely found in promoters of

other types of ncRNAs, such as miRNA. In hepatocellular

carcinoma (HCC), miR-122 was identified as the methylation

target of HOTAIR, the downregulated expression of miR-122 by

HOTAIR leads to the activation of oncogene Cyclin G1 and

promotion of tumorigenesis in HCC (Cheng et al., 2018).

Another example is TINCR, this lncRNA can recruit

DNMT1 to the promoter of miR-503 gene in breast cancer.

Overexpression of TINCR could increase methylation and

suppress the transcription of miR-503-5p. Of note, TINCR

can also act as a ceRNA for miR-503-5p to regulate EGFR

and interfere with JAK2–STAT3 signaling (Wang et al., 2021).

Besides the recruitment mechanism, lncRNA also sequester

DNMTs from particular genome loci by a competitive

interaction mode (Figure 2B). A lncRNA arising from the

CEBPA gene locus termed ecCEBPA could compete with

DNMT1, thus inhibit methylation of CEBPA gene and

facilitate CEBPA expression in leukemic cells. (Di Ruscio

et al., 2013). This lncRNA was later identified to interact with

DNA strand by forming a DNA:RNA triple helices and protect

regions near its binding site from methylation (Ogunleye et al.,

2021). Another lncRNA, named 91H which located at the H19/

IGF2 locus and transcribed in H19 antisense orientation, is

overexpressed in breast cancer and prevent the maternal allele

at the H19/IGF2 locus from DNA methylation, by this

mechanism to induce overexpression of oncogenic H19

(Vennin et al., 2017). LncRNA HOTAIRM1 (HOX antisense

intergenic RNAmyeloid 1), which is located between theHOXA1

and HOXA2 genes, could interact with DNMTs and other

epigenetic factors to sequester them away from HOXA1

promoter in glioblastoma multiforme (GBM). Upregulation of

HOTAIRM1 could lead to reduced methylation levels of HOXA1

and finally to its upregulation of expression (Li et al., 2018). A

similar observation was found in dental follicle stem cells

(hDFSCs), in which HOTAIRM1 binding to the CpG islands

of the HOXA2 promoter and reduce the binding of DNMT1 at

theHOXA2 promoter, resulting inHOXA2 hypomethylation and

deviant induction (Chen et al., 2020). These examples indicate

that this regulatory mechanism by HOTARIM1 within the

HOXA cluster could be universal across tissues and diseases.

LncRNAs are also found to interact with other DNA

methyltransferases in addition to DNMT1 to influence the

methylation pattern of target genes. For instance, lncRNA

HOTAIR was shown to recruit DNMT3B to increase HOXA5

promoter methylation and silence its expression in acute myeloid

leukemia (AML). HOTAIR silence and HOXA5 activation were

found to induce apoptosis and reduce proliferation of AML cells

(Wang et al., 2019d). Another lncRNA MROS-1 was found to

modulate tumor suppressor PRUNE2 expression by interacting

with DNMT3A in oral squamous cell carcinoma (OSCA). Higher

methylation levels of PRUNE2 promoter induced by MROS-1

were associated with cell migration and metastases (Su et al.,

2021). The lncRNA TTTY15 could interact with DNMT3A and

prevent its binding to TBX4 promoter in non-small cell lung

cancer (NSCLC), the lower expression level of TTTY15 and the

associated downregulation of TBX4 is connected with metastasis

and worse prognosis of NSCLC patients (Lai et al., 2019).

Besides interacting with DNMT proteins, lncRNAs could

also regulate their expression level with different mechanisms

(Figure 2C). For instance, one lncRNA named Dnmt3aos (DNA

methyltransferase 3A, opposite strand) located on the antisense

strand of DNMT3A was found to participate in the regulation of

DNMT3A expression. Dnmt3aos is highly expressed in M(IL-4)

macrophages, which leads to the highly coordinated expression

of this sense-antisense pair of DNMT3A and Dnmt3aos. Elevated

expression of Dnmt3aos and DNMT3A results in global DNA

methylation changes in M(IL-4) macrophages (Li et al., 2020). In

small cell lung cancer (SCLC), HOTAIR was found to inhibit

expression of DNMT1 and DNMT3B, thus regulating the

methylation of HOXA1 to mediate chemoresistance of SCLC

(Fang et al., 2016). Whereas in AML patients, HOTAIR present

up-regulated expression, which leads to downregulation of PTEN

via DNMT3B-dependent pathway, and lead to doxorubicin

resistance (Zhou et al., 2021).

LncRNAs have long been recognized to regulate gene

expression via the ceRNA mechanism, by which lncRNAs act

as a “sponge” to combine with miRNAs and sequester their

interactions with mRNAs to de-repress the expression of targets.

Many examples have been found for lncRNAs that regulate the

expression of DNMTs as ceRNA (Figure 2D). In laryngeal

squamous cell carcinoma (LSCC), H19 was found to be the

sponge for miR-148a-3p, through which to regulate DNMT1

expression. Overexpression of H19 in LSCC leads to elevated

expression of DNMT1 and genome wide change of DNA

methylation, including MGMT (Wu et al., 2016). Similar
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TABLE 2 Representative lncRNAs that regulate DNA methylation of other genes in cancers and other disease.

LncRNA
name

Cofactor Interaction
mode

Target Tissue/cancer Function References

DACOR1 DNMT1 Recruit Genome wide Colon cancer TGF-β/BMP signaling Merry et al. (2015);
Somasundaram et al.
(2018)

SAMD12-
AS1

DNMT1 Recruit p53 Gastric cancer P53 signaling pathway Lu et al. (2021)

HOTAIR DNMT1 Recruit PTEN Chronic myelocytic
leukemia

Song et al. (2021)

HOTAIR DNMT1 Recruit miR-122 Hepatocellular
carcinoma

Cyclin G1 repression Cheng et al. (2018)

TINCR DNMT1 Recruit miR-503-5p Breast cancer EGFR and
JAK2–STAT3 signaling

Wang et al. (2021b)

ecCEBPA DNMT1 Sequester CEBPA;
genome wide

Di Ruscio et al. (2013);
Ogunleye et al. (2021)

91H DNMT1 Sequester H19; IGF2 Breast cancer Vennin et al. (2017)

HOTAIRM1 DNMTs; G9a; EZH2 Sequester HOXA1 Glioblastoma
multiforme

Li et al. (2018)

HOTAIRM1 DNMT1 Sequester HOXA2 Dental follicle stem cell Osteogenesis Chen et al. (2020b)

HOTAIR DNMT3B Recruit HOXA5 Acute myeloid
leukemia

Apoptosis Wang et al. (2019d)

MROS-1 DNMT3A Recruit PRUNE2 Su et al. (2021)

TTTY15 DNMT3A Sequester TBX4 Non-small cell lung
cancer

Metastasis Lai et al. (2019)

Dnmt3aos DNMT3A Expression Genome wide M(IL-4) macrophage Macrophage polarization Li et al. (2020a)

HOTAIR DNMT1; DNMT3B Expression HOXA1 Small cell lung cancer Chemoresistance Fang et al. (2016)

HOTAIR DNMT3B Expression PTEN Acute myeloid
leukemia

Adriacin doxorubicin
resistance

Zhou et al. (2021b)

H19 miR-148a-3p—DNMT1 ceRNA MGMT;
Genome wide

Laryngeal squamous
cell carcinoma

Cell proliferation Wu et al. (2016)

RP11-
159K7.2

miR-206—DNMT3B ceRNA miR-206 Laryngeal squamous
cell carcinoma

Wang et al. (2020)

HOTAIR miR-29b—DNMT3B ceRNA PTEN Hepatocytes Liver fibrosis Yu et al. (2020a)

RMST HuR—DNMT3B RNA stability Genome wide Peng et al. (2020)

Linc-GALH Ubiquitin—DNMT1 Ubiquitination Gankyrin Hepatocellular
carcinoma

AKT signaling Xu et al. (2019c)

LUCAT1 Ubiquitin—DNMT1 Ubiquitination Esophageal squamous
cell carcinoma

Cell proliferation, apoptosis Yoon et al. (2018)

CCDC26 DNMT1 Subcellular location Genome wide Apoptosis Jones et al. (2021)

MAGI2-AS3 TET1 Recruit MAGI2 Breast cancer Cell proliferation and
migration

Xu et al. (2021b)

MAGI2-AS3 TET2 Recruit LRIG1 Acute myeloid
leukaemia

Leukaemic stem cell self-
renewal suppression

Chen et al. (2020a)

TARID GADD45A—TET1 Recruit TCF21 Arab et al. (2014); Arab
et al. (2019)

HOTAIR TET1 Expression SOX17; MAGI2 Cervical cancer (Hela
cell)

Wnt/β-catenin signaling Salmeron-Barcenas
et al. (2019)

H19 let-7—TET1 ceRNA TGFBR2; TSP1 Atherosclerotic
coronary arteries

TGF-β signaling Cao et al. (2020)

H19 let-7—TET3 ceRNA HMGA2 Uterine leiomyomas Proliferation Cao et al. (2019)

TETILA TET2 Ubiquitination;
subcellular
location; recruit

MMP-9 Diabetic skin Wound healing Zhou et al. (2019a)

PYCARD-
AS1

G9a; DNMT1 Recruit PYCARD Breast cancer Miao et al. (2019)

(Continued on following page)
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TABLE 2 (Continued) Representative lncRNAs that regulate DNA methylation of other genes in cancers and other disease.

LncRNA
name

Cofactor Interaction
mode

Target Tissue/cancer Function References

KCNQ1OT1 HP1α Recruit Genome wide Lung fibroblast Heterochromatin
reorganization

Zhang et al. (2022b)

LINC01133 EZH2 Recruit DKK1 Pancreatic cancer Wnt signaling Weng et al. (2019)

HOXB13-
AS1

EZH2; DNMT3B Recruit HOXB13 Glioma Xiong et al. (2018)

Lnc-LALC EZH2; DNMTs Recruit LZTS1 Colorectal cancer Liver metastasis Zhang et al. (2021a)

LUCAT1 EZH2; DNMTs Recruit CXXC4; SFRP2 Gastric cancer Wnt/β-catenin signaling Byun et al. (2020)

SNHG22 EZH2; DNMT1 Recruit miR-16-5p Hepatocellular
carcinoma

Cell proliferation Zhang et al. (2021c)

GIHCG EZH2; DNMT1 Recruit miR-200b/
a/429

Hepatocellular
carcinoma

Cell proliferation and
migration

Sui et al. (2016)

SChLAP1 EZH2; DNMT3A; miR-
340-5p—DNMT3A

Recruit; expression miR-340-5p;
miR-143-3p;
miR-145-5p

Prostate cancer Cell proliferation and
migration

Huang and Tang,
(2021)

HOXA11-AS EZH2; LSD1; DNMT1;
miR-1297—EZH2

Recruit; ceRNA PRSS8; KLF2 Gastric cancer Cell proliferation, migration
and apoptosis

Sun et al. (2016)

LINC00470 miR-101—EZH2; miR-
101—EED

ceRNA ELFN2 Glioblastoma Cell autophagy Liu et al. (2018)

H19 SAHH Interaction Nctc1; genome
wide

Zhou et al. (2015)

H19 SAHH Interaction HNF4α Liver of metformin-
exposed fetuses

Liver development and
function

Deng et al. (2017)

H19 SAHH Interaction Beclin1 Breast cancer Autophagy Wang et al. (2019c)

H19 SAHH Interaction LINE-1 Lung Fu et al. (2018)

SNHG6 miR-1297—MAT2A;
MAT1A

ceRNA; subcellular
location

Genome wide Hepatocellular
carcinoma

Guo et al. (2018)

LINC00662 MAT1A; SAHH Interaction Genome wide Hepatocellular
carcinoma

Guo et al. (2020)

PARTICLE G9a; SUZ12 Recruit MAT2A Breast cancer cell line Response to irradiation O’Leary et al. (2015)

LINC00261 DNMTs Recruit DYPD Esophageal cancer 5-fluorouracil resistance Lin et al. (2019)

LINC01419 DNMTs Recruit GSTP1 Esophageal cancer 5-fluorouracil resistance Chen et al. (2019b)

LINC00673 DNMTs Recruit KLF4 Prostate cancer Paclitaxel resistance Jiang et al. (2020)

LINC00628 DNMTs Recruit LAMA3 Lung adenocarcinoma Vincristine resistance Xu et al. (2019b)

LINC00607 DNMTs Recruit CASP9 Thyroid cancer Doxorubicin resistance Li et al. (2021a)

91H DNMTs Recruit CDK4 Osteosarcoma Tumor migration and invasion Cheng et al. (2021)

H19 DNMT3B Expression Genome wide Endometrial cancer;
breast cancer

Cell proliferation Zhong et al. (2017)

HOTAIR EZH2; DNMTs Interaction ALDH1A1 Ovarian cancer Spheroid formation and
colony-forming

Wang et al. (2021c)

HOTAIR miR-126—DNMT1 ceRNA CDKN2A Osteosarcoma Cell viability and apoptosis Li et al. (2017)

LINC00240 miR-124-3p—DNMT3B ceRNA miR-124-3p Gastric cancer Cell proliferation, invasion and
migration

Li et al. (2020c)

XIST miR-149-5p—DNMT3A ceRNA miR-149-5p Cartilage Cell proliferation, apoptotic
and ENC degradation

Liu et al. (2020d)

HOTTIP miR-101—DNMT3B ceRNA HoxA13 Cartilage Cartilage development and
destruction

Kim et al. (2013)

IRAIN DNMT1; DNMT3A;
DNMT3B

Recruit VEGFA Renal carcinoma Cell proliferation, migration
and apoptosis

Li et al. (2020b)

AS1DHRS4 G9a; EZH2 Recruit DHRS4L1;
DHRS4L2

Li et al. (2012)

PRKCA-AS1 DNMT1 Recruit PRKCA Heart p38/MAPK pathway Xie et al. (2021)

LINC00518 DNMT1; DNMT3A;
DNMT3B

Recruit CDX2 Breast cancer Cell proliferation, invasion,
migration and EMT

Wang et al. (2019b)

(Continued on following page)
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TABLE 2 (Continued) Representative lncRNAs that regulate DNA methylation of other genes in cancers and other disease.

LncRNA
name

Cofactor Interaction
mode

Target Tissue/cancer Function References

RCPCD DNMT1; DNMT2;
DNMT3

Recruit HCN4 Embryonic stem cells Differentiation of ESCs into
pacemakelike cells

Zhu et al. (2021)

LINC00313 DNMT1; DNMT3B Recruit ALX4 Thyroid cancer AKT/mTOR signaling, cell
proliferative, migratory,
invasive abilities as well as EMT

Zhao and Hu, (2019)

LINC00152 DNMTs Recruit BRCA1/PTEN Breast cancer Tumorigenesis and metastasis Wu et al. (2018)

LINC00470 DNMT3A Recruit PTEN Endometrial cancer Cell invasiveness, migration
and angiogenesis, facilitate
tumorigenesis and metastasis

Yi et al. (2021)

LINC00922 DNMT1; DNMT3A;
DNMT3B

Recruit NKD2 Breast cancer Wnt signaling pathway Wang et al. (2021d)

LINC01419 DNMT1; DNMT3A;
DNMT3B

Recruit ZIC1 Hepatocellular
carcinoma

PI3K/Akt signaling pathway,
tumor formation and
metastasis

Hou et al. (2021)

MIR210HG DNMT1 Recruit CACNA2D2 Non-small cell lung
cancer

Cell proliferation and
migration

Kang et al. (2019)

SNHG1 DNMT1 Recruit Bcl-2 Sepsis Cell inflammation and
apoptotic

Zhang et al. (2022a)

ADAMTS9-
AS2

DNMT1; DNMT3A;
DNMT3B

Recruit CDH3 Esophageal cancer Cell proliferation, invasion and
migration

Liu et al. (2020a)

ELFN1-AS1 DNMT1; DNMT3A;
DNMT3B

Recruit ZBTB16 Gastric cancer PI3K/AKT signaling pathway Zhuang et al. (2022)

IGF2-AS DNMT1 Recruit IGF2 Breast cancer PI3K/AKT/mTOR signaling
pathway

Zhang et al. (2021d)

NEAT1 G9a; DNMT1; Snail Recruit CDH1 Osteosarcoma Metastasis in vitro and in
vivo, EMT

Li and Cheng, (2018)

PCAT-14 DNMT1; DNMT3A;
DNMT3B

Recruit miR-372 Hepatocellular
carcinoma

Cell proliferation, invasion, cell
cycle arrest

Wang et al. (2017)

HAGLR DNMT1 Recruit E2F1 Lung adenocarcinoma Cell growth Guo et al. (2019)

XIST DNMT1; DNMT3A;
DNMT3B

Recruit TIMP-3 Cartilage Collagen degradation Chen et al. (2019a)

RAMP2-AS1 DNMT1; DNMT3B Recruit CXCL11 Breast cancer Tumor growth Li et al. (2022a)

TNRC6C-
AS1

DNMT1; DNMT3A;
DNMT3B

Recruit STK4 Thyroid cancer Hippo signaling pathway Yang et al. (2019a)

yylncT DNMT3B Recruit Embryo Embryonic cell fate transition Frank et al. (2019)

SNHG1 DNMT1 Expression PTBP1 Bone marrow Adipogenic differentiation and
contributed to osteoporosis

Yu et al. (2022a)

FAS-AS1 DNMT3B Expression SIRT1; FAS Leukemia Yuan et al. (2020)

Linc-
POU3F3

EZH2; DNMT1;
DNMT3A; DNMT3B

Recruit POU3F3 Esophageal squamous
cell carcinoma

Cell proliferation and ability to
form colonies

Li et al. (2014)

PVT1 EZH2; DNMT1 Recruit miR-18b-5p;
HIF1A

Gallbladder cancer Cell proliferation Jin et al. (2020)

ROIT DNMT3A Ubiquitination Nkx6.1 Pancreas islet Glucose homeostasis and
insulin transcription

Zhang et al. (2020a)

Platr10 TET1 Recruit Oct4 Modulating chromatin
architecture

Du et al. (2021b)

WT1-AS TET2; TET3; DNMTs Recruit WT1 Leukemia McCarty and Loeb,
(2015)

NEAT1 DNMTs Recruit miR-129-5p;
WNT4

Breast cancer WNT signaling Lo et al. (2016)

Evf2 MECP2 Recruit DLX1/2 Forebrain Berghoff et al. (2013)

NKILA NF-κB; DNMT3A Recruit KLF4 Vascular endothelium Endothelium inflammation Zhu et al. (2019)

HOTAIR DNMT1; DNMT3B;
EZH2

Expression HOXA1 Small cell lung cancer Multidrug resistance Fang et al. (2018)

(Continued on following page)
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TABLE 2 (Continued) Representative lncRNAs that regulate DNA methylation of other genes in cancers and other disease.

LncRNA
name

Cofactor Interaction
mode

Target Tissue/cancer Function References

ANRIL EZH2 Recruit ERRFI1 Cholangiocarcinoma Cell proliferation and
migration

Yu et al. (2020b)

LINC00858 DNMTs Recruit WNK2 Colon cancer Cell apoptosis, autophagy and
senescence

Wu et al. (2020)

UCA1 EZH2 Recruit p21 Breast cancer PI3K/AKT signaling pathway Li et al. (2019)

H19 EZH2 Recruit BIK Breast cancer Paclitaxel (PTX) resistance Si et al. (2016)

AC092723.1 TET1 Recruit IRF8 Zhou et al. (2022)

HOTAIR EZH2 Recruit E-cadherin Oral squamous cell
carcinoma

Cell invasion, migration and
apoptosis

Wu et al. (2015)

LINC00887 DNMT1 Recruit CA9 Tongue squamous
carcinoma

Suppress oncogenic CA9 Shen et al. (2021b)

LINC00472 DNMTs Recruit MCM6 Breast cancer Inhibite tumor growth and
metastasis

Shao et al. (2021)

LINC01270 DNMTs Recruit GSTP1 Esophageal cancer Cell proliferation, migration,
invasion and drug resistance

Li et al. (2021b)

HOTAIR DNMTs Recruit MTHFR Esophageal cancer Cell apoptosis and proliferation Zhang et al. (2020b)

BZRAP1-
AS1

DNMT3B Recruit THBS1 Hepatocellular
carcinoma

Angiogenesis and tumor
growth

Wang et al. (2019e)

PVT1 DNMT1 Recruit BNIP3 Gastric cancer Cell proliferation Xin et al. (2021)

SNHG3 EZH2 Recruit MED18 Gastric cancer Cell migration and invasion Xuan andWang, (2019)

HOTAIR DNMT1; EZH2 Recruit miR-454-3p Gastric cancer Cell apoptosis and autophagy Bao et al. (2017)

LINC00630 DNMT3B; EZH2 Recruit BEX1 Colorectal cancer Cell apoptosis and radio-
resistance

Liu et al. (2020b)

Lnc34a DNMT3A; PHB2 Recruit miR-34a Colorectal cancer Cell proliferation Wang et al. (2016)

SATB2-AS1 TETs; GADD45A Recruit SATB2 Colorectal cancer Cell metastasis and immune
response

Xu et al. (2019a)

Dali DNMT1 Recruit Pou3f3; genome
wide

Central nervous system Cell differentiation Chalei et al. (2014)

Dum DNMT1; DNMT3A;
DNMT3B

Recruit Dppa2 Skeletal myoblast cell Myogenesis Wang et al. (2015)

lincRNA-p21 HNRNPK – DNMT1;
SETDB1

Recruit Nanog Pluripotent stem cell Cell differentiation Bao et al. (2015)

Kcnq1ot1 DNMT1; EZH2; G9a Recruit Kcnq1 Placenta Gene imprinting Mohammad et al.
(2010)

THAP9-AS1 DNMTs Recruit SOCS3 Osteosarcoma JAK2/STAT3 signaling Yang et al. (2021b)

H19 PRC2 Recruit genome wide Neuroendocrine
prostate cancer

Metastatic Singh et al. (2021)

KCNQ1OT1 DNMT1 Recruit PTEN Triple negative breast
cancer

Cell proliferation, invasion, and
migration

Shen et al. (2021a)

KCNQ1OT1 DNMT1; DNMT3A;
DNMT3B

Recruit EIF2B5 Ovarian cancer Metastasis He et al. (2022)

KAT7 DNMTs Recruit miR-10a Non-small cell lung
cancer

Gao et al. (2021)

SNHG3 miR-448—DNMT1 ceRNA SEPT9 Gastric cancer Cell growth, metastasis Li et al. (2022d)

KIF9-AS1 DNMT1 Recruit RAI2 Hepatocellular
carcinoma

Cell proliferation, migration,
apoptosis

Yu et al. (2022b)

PVT1 EZH2; DNMT1 Recruit ZBP1 Liver cell Response to nonylphenol Qiannan et al. (2022)

ZFAS1 DNMT3B Recruit Notch1 Myocardial ischemia-
reperfusion injury

Apoptosis Li et al. (2022b)

UCA1 EZH2; DNMT1 Recruit APAF1 Myocardial ischemia-
reperfusion injury

Jin et al. (2022)

LINC01270 DNMT1; DNMT3A;
DNMT3B

Recruit LAMA2 Breast cancer MAPK signaling pathway Li et al. (2022c)

UCA1 DNMT1; DNMT3A;
DNMT3B

Recruit METTL14 Breast cancer Cell proliferation, invasion,
metastasis

Zhao et al. (2022a)
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observation was also found for the RP11-159K7.2—miR-

206 – DNMT3A axis in LSCC. Overexpressed RP11-159K7.2

could interact with miR-206, which binds with DNMT3A 3′-
UTR. Interestingly, DNMT3A was also found to inhibit the

expression of miR-206 via a DNA methylation-dependent

manner, thus a feedback loop is maintained between

DNMT3A and miR-206 to keep its internal balance (Wang

et al., 2020). In hepatocytes, HOTAIR was found as sponge of

miR-29b, which also regulates the expression of DNMT3B to

regulate the methylation level of PTEN (Yu et al., 2020). Besides

interactions with miRNAs, lncRNAs are also found to regulate

the mRNA level of DNMTs by interacting with other proteins.

For instance, the RMST, a lncRNA capable of upregulating

DNMT3B expression by interaction with the RNA binding

protein HuR, leads to alterations in global methylation in

cancers (Peng et al., 2020).

LncRNAs could also function to regulate protein expression

for DNMTs, such as by mechanism of ubiquitination (Figure 2E).

In HCC, lncRNA linc-GALH overexpression could enhance the

ubiquitination of DNMT1 to accelerate its degradation. In this

way, linc-GALH reduces the methylation level of Gankyrin to

promote its expression (Xu et al., 2019). In another example,

lncRNA LUCAT1 was found to interact with DNMT1 but now to

inhibit the ubiquitination in esophageal squamous cell carcinoma

(ESCC). Upregulated LUCAT1 thus stabilizes DNMT1 to

enhance the methylation and inhibit the expression of tumor

suppressors (Yoon et al., 2018). In addition, lncRNAs could also

regulate local concentration of DNMTs by interfering with its

subcellular location (Figure 2F). For example, the lncRNA

CCDC26 could promote DNMT1 localization from cytoplasm

to nucleus. In absence of CCDC26, DNMT1 is found mis-located

in the cytoplasm, resulting in global hypomethylation (Jones

et al., 2021). Examples of lncRNAs that interact with DNMTs to

regulate methylation of downstream genes and their functions in

cancers are summarized in Table 2.

Long non-coding RNAs interact with ten-
eleven translocation enzymes

DNMTs are responsible for catalyzing the conversion of

cytosine to 5-mC whereas TET enzymes catalyze the

successive conversion of 5mC to 5-hydroxymethylcytosine

(5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine

(5caC) to promote locus-specific removal of methylation.

DNA demethylation can be achieved either as a process in the

absence of functional DNA methylation maintenance

mechanism during DNA replication or through TET-mediated

5mC oxidation. In this case, regulation to TET family affects the

methylation level of downstream genes as well. Studies have

discovered many lncRNAs interact with TETs to regulate

methylation process (Table 2). For example, lncRNA MAGI2-

AS3 (MAGI2 antisense RNA 3) which is transcribed from the

antisense strand near the MAGI2, acts as cis-acting factor to

downregulate the DNA methylation level of the MAGI2

promoter by interaction with TET1 and promotes apoptosis

by activating the Fas/FasL signaling pathway in breast cancer

(Xu et al., 2021). In AML, MAGI2-AS3 recruits TET2 to the

LRIG1 promoter region in trans and causes DNA demethylation

of LRIG1. Downregulation of MAGI2-AS3 suppresses the self-

renewal capacity of leukemic stem cell by promoting LRIG1

expression (Chen et al., 2020). LncRNAs are also found to recruit

TET enzymes in an indirect mode. The lncRNA TARID

(TCF21 antisense RNA inducing demethylation) could

interact with both the TCF21 promoter and GADD45A

protein, whereas GADD45A in turn recruits TET1 to activate

the expression of TCF21 (Arab et al., 2014). The authors further

show that TARID combine to TCF21 promoter to form an R-loop

of DNA–RNA hybrids, which is recognized by GADD45A and

then triggers TET1-dependent DNA demethylation (Arab et al.,

2019).

TETs are also found to be regulated by lncRNAs at the

transcriptional, posttranscriptional, and protein expression

levels. In cervical cancer, the HOTAIR could regulate TET1

expression, which leads to promoter hypermethylation of

Wnt/β-catenin signaling related genes. In Hela cells,

upregulated HOTAIR leads to the decreased TET1 expression,

which is associated with the transcriptional activity of Wnt/β-
catenin pathway genes, such as PCDH10, SOX17, AJAP1, and

MAGI2 (Salmeron-Barcenas et al., 2019). At the

posttranscriptional level, TET1 is found to be regulated by

lncRNA H19 via miRNA let-7 with ceRNA mode, TET1

expression alteration due to upregulation of H19 promotes

TGF-β signaling related endothelial–mesenchymal transition

in endothelial cells of atherosclerotic coronary arteries (Cao

et al., 2020). A similar observation was found for TET3 in

uterine leiomyomas, a H19—let-7—TET3 axis was identified

for methylation regulation of fibroid-promoting gene and to

drive proliferation of leiomyoma cells (Cao et al., 2019). At the

protein expression level, a multifunctional lncRNA TETILA was

found in diabetic skin that play a key role in wound healing. Zhou

et al. (2019a) indicated this lncRNA could regulate TET2 stability

through the ubiquitin-proteasome pathway and also promote

TET2 nuclear translocation. In addition, TETILA also acts as a

scaffold to recruit thymine-DNA glycosylase (TDG), which

simultaneously interacts with TET2 at the promoter of MMP-

9 for its demethylation and transcriptional activation.

Long non-coding RNAs interact with other
epigenetic factors

One of the most intriguing observations have recently

emerged in epigenetics is the subtle crosstalk between DNA

methylation and other epigenetic modifications. Accumulating

literature has revealed complex mechanisms underlying the
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interplay between DNA methylation and histone modification.

Many partners of DNMTs have been found that involved in both

of the DNA methylation and histone modification. In addition,

DNA methylation status within genome present concomitant

presence with other repressive marks, such as histone

deacetylation. For example, HDAC1 has the ability to bind

DNMT1, the histone deacetylase activity is required for

DNMT1 related DNA methylation maintenance in

heterochromatin (Fuks et al., 2000). DNMTs have also been

identified to interact with G9a, which is responsible for mono-,

di-and slowly trimethylation of histone H3 lysine 9 (H3K9). This

interaction has been shown to play a role in the establishment of

DNA methylation pattern for key genes in ES cells (Xin et al.,

2003; Esteve et al., 2006). In addition, the PRC2 system, which

has histone methyltransferase activity for H3K27me3, is

connected to DNA methylation related gene silencing at

specific loci. The PRC2 core component EZH2-dependent

recruitment of DNMT3A was found to be associated with

H3K27me3 and DNA methylation (Jin et al., 2009; Rush

et al., 2009; Li et al., 2021c). This explains how lncRNAs

interact with epigenetic factors to regulate DNA methylation

at particular loci (Figure 3A). For instance, the PYCARD-AS1,

which is antisense to the pro-apoptotic gene PYCARD, functions

to induce DNA methylation and H3K9me2 modification of

PYCARD promoter by recruiting the chromatin-suppressor

proteins G9a and DNMT1 in breast cancer (Miao et al.,

2019). Another example is the lncRNA KCNQ1OT1, which

binds and recruits the heterochromatin protein HP1α, and

finally lead to DNA methylation and H3K9me3 modification

in the genome. One repeat-rich region within KCNQ1OT1 is

identified mainly responsible for Hoogsteen base pairing with

double-stranded DNA, by which to fulfill the function of protein

recruitment. This observation demonstrates an example for

lncRNA to induce and maintain epigenetic silencing at

repetitive DNA elements, in order to safeguard against

genome instability (Zhang et al., 2022). In pancreatic cancer,

the upregulated LINC01133 was found to recruit EZH2 to for

histone methylation and also to promote the promoter

methylation of DKK1, thus activate Wnt signaling (Weng

et al., 2019). LncRNA HOXB13-AS1 is found upregulated in

glioma and negatively correlated with its surrounding gene

HOXB13, this lncRNA could increase DNMT3B-mediated

methylation of HOXB13 promoter by binding with EZH2

(Xiong et al., 2018). Similar examples include the regulation

of LZTS1 by lnc-LALC during liver metastasis of colorectal cancer

(Zhang et al., 2021), regulation of CXXC4 and SFRP2 by LUCAT1

in gastric cancer (Byun et al., 2020). In addition, lncRNA could

also regulate promoter methylation of miRNA genes by

interacting EZH2. For instance, lncRNA SNHG22 was found

to recruit DNMT1 to miR-16-5p DNA promoter through

FIGURE 3
Detailed mechanism for DNA methylation regulation by lncRNAs in indirect mode. (A). LncRNAs interact with other epigenetic factors, such as
EZH2, to affect methylation level of downstream genes; (B). LncRNAs interfere with DNMT functions by interacting with S-adenosylmethionine
related pathway.
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EZH2 and inhibited miR-16-5p transcription via DNA

methylation (Zhang et al., 2021c). LncRNA GIHCG physically

associates with EZH2 and recruits EZH2 and DNMT1 to

promoter regions of the miR-200b/a/429, which lead to

changes of H3K27me3 and DNA methylation levels in the

miR-200b/a/429 promoter, and dramatically silences their

expression (Sui et al., 2016).

It is worth noting that many miRNAs regulated by lncRNA

through promoter DNA methylation are also found to regulate the

upstream lncRNAs or other epigenetic factors, by which a feedback

loop formed to control the internal gene expression. For example,

lncRNA SChLAP1 was found to recruit EZH2 and DNMT3A to

repressmultiple miRNA expression in prostate cancer, including the

miR-340-5p/miR-143-3p/miR-145-5p, these miRNAs in turn

regulate DNMT3A expression (Huang and Tang, 2021). In

gastric cancer, EZH2 along with the histone demethylase LSD1

andDNMT1were recruit by the lncRNAHOXA11-AS, this lncRNA

also acts as sponge for miR-1297, antagonizing its ability to repress

EZH2 protein translation (Sun et al., 2016). In glioblastoma,

LINC00470 could enhance the expression of ELFN2 through

adsorption of miR-101, and also affect the methylation level of

ELFN2 by decreasing H3K27me3 occupancy (Liu et al., 2018). The

above examples indicate that lncRNAs are able to control genes at

the transcriptional level or post-transcriptional level through a

variety of different mechanisms to achieve accurate regulation of

expression levels for downstream target genes.

Long non-coding RNAs interact with
S-adenosylmethionine related pathway

All DNA methyltransferases are known to use

S-adenosylmethionine (SAM) as the methyl donor and generate

S-adenosylhomocysteine (SAH) as by-product. The methyl donor

SAM is synthesized from ATP and methionine by the methionine

adenosyltransferase (MAT) (Lu and Mato, 2012), whereas SAH

could be eliminated by S-adenosylhomocysteine hydrolase (SAHH),

SAH also acts as feedback inhibitor of DNMTs (Lyko, 2018).

Regulation on the genes involved SAM synthesis or SAH

degradation by lncRNAs may lead to malfunction of DNMTs to

interference DNA methylation (Figure 3B). The H19 for instance,

could bind to SAHH and inhibits its function of SAH hydrolyzing,

then give rise to genome-wide methylation alteration (Zhou et al.,

2015). This mechanism was further observed in liver of metformin-

exposed fetuses to induce hypomethylation and increased

expression of HNF4α (Deng et al., 2017), and also in tamoxifen-

resistant breast cancer to induce the upregulation of Beclin1 (Wang

et al., 2019c), as well as in human lung tissue to regulate the LINE-1

methylation (Fu et al., 2018).

Interference to MAT may result in the alteration of the SAM

concentration and disturbance of DNA methylation process.

This has been confirmed by the interaction between lncRNA

SNHG6 and MAT family members of MAT1A and MAT2A. On

one hand, SNHG6 was found to upregulate MAT2A expression

by act as sponge for miR-1297, on another hand, this lncRNA

also downregulate MAT1A translation by suppressing the

nucleus-cytoplasmic shuttling of MAT1A mRNA, thereby

regulate genome wide methylation in hepatoma cells of HCC

(Guo et al., 2018). Another lncRNA LINC00662 was identified to

induce decay of MAT1A mRNA and also the degradation of

SAHH protein by ubiquitination mechanism, in this way to

reduce SAM and enhance SAH levels, which finally leads to

global hypomethylation (Guo et al., 2020). It is worth mentioning

a dual functional lncRNA PARTICLE in response to low-dose

irradiation. Over expressed PARTICLE upon irradiation recruits

the PRC2 to the promoter region of MAT2A in a DNA-RNA

triplex form, in this way to regulate MAT2A expression via

methylation. The altered expression level of MAT2A lead to

changed concentration of SAM, which further influence the

methylation level of downstream genes (O’Leary et al., 2015)

(Figures 3A,B). This triplex-mediated expression regulation

based on interaction between lncRNA PARTICLE and DNA

strand was further proved to be widespread in the human

genome (O’Leary et al., 2017). In summary, these studies

indicate that lncRNAs could regulate methylation level of

downstream genes by regulating the SAM related pathway genes.

Implications of long non-coding RNA
mediated DNA methylation in drug
treatment of cancer

Studies have indicated that lncRNAs could modulate gene for

degradation and/or elimination of endogenous and exogenous toxins

or medicines, by which they are able to exert their effects on drug

metabolism and response to treatment (Table 2). For example,

LINC00261 was found to recruit DNMTs to the promoter of the

dihydropyrimidine dehydrogenase (DYPD), which is mainly

responsible for 5-fluorouracil (5-FU) degradation. Increased

LINC00261 promotes the methylation level within the DPYD

promoter region and leads to its downregulation in esophageal

cancer. As a result, 5-FU degradation is inhibited, finally results in

an elevated sensitivity to 5-FU of the cancer cell (Lin et al., 2019).

Similar observations were also found for the effect of LINC01419-

GSTP1 regulation in esophageal cancer (Chen et al., 2019). In

prostate cancer, regulation of KLF4 promoter methylation by

LINC00673 is associated with paclitaxel resistance (Jiang et al.,

2020). In lung adenocarcinoma, vincristine resistance is meditated

by promoter methylation of LAMA3 induced by LINC00628 (Xu

et al., 2019). In thyroid cancer, LINC00607 mediates doxorubicin

resistance through the regulation of CASP9 methylation (Li et al.,

2021). These observations lead to the thought that the chemical drug

effectiveness can be improved for better treatment by regulating the

expression level of these lncRNAs.

Another possible direction for cancer treatment is to interfere

with lncRNAs involved in DNA methylome regulation by using
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gene editing methods. One example is the lncRNA 91H which is

reasonable for inducing methylation of CDK4 promoter,

knockdown of this lncRNA could suppress the tumorigenesis of

osteosarcoma (Cheng et al., 2021). Some small molecules directly

interfering lncRNAs responsible for methylation regulation could

also be efficient treatment targets. For instance, metformin was

found to induce H19 repression and the genome-wide DNA

methylation alterations by modulating the activity of

H19—SAHH axis, this observation provides a novel explanation

for the mechanism and function of the metformin for the epigenetic

regulation effect in cancer (Zhong et al., 2017). In addition, some

chemical compound that interrupts the

HOTAIR—EZH2 interaction are found to inhibit cancer cell

invasion and migration, which was thought to be a potential

approach for targeted therapy of cancers (Ren et al., 2019; Wang

et al., 2021). In summary, lncRNAs involved in DNA methylation

regulation are promising targets for applications in cancer therapy.

Representative lncRNAs currently identified that are involved in

DNA methylation regulation, and the associated cofactors,

interaction mode, as well as target genes are listed in Table 2.

This comprehensive summary revealed us a complex interaction

network based on epigenetic regulatory mechanisms that remains to

be further explored. In-depth analysis of non-coding RNA and other

epigenetic regulatory elements including DNA methylation at the

systemic level will help us to reveal the underlying mechanisms of

tumor development and development, thus providing a new

perspective for personalized tumor therapy.

Role of circular RNAs in DNA methylation
regulation

In recent years, circRNAs have been revealed for their

crucial role during the onset and progression of human disease

TABLE 3 Representative circRNAs that regulate DNA methylation of other genes in cancers and other disease.

CircRNA
name

Cofactor Interaction
mode

Target Tissue/disease Function References

ACR DNMT3B Recruit Pink1 Myocardial ischemia/
infarction

Autophagy Zhou et al.
(2019b)

Circ_6790 CBX7—DNMTs Recruit S100A11 Pancreatic ductal
adenocarcinoma

Cell proliferation, apoptosis,
metastasis, immune escape

Gao et al. (2022)

Hsa_circ_001291 DNMT1 Expression CD11a; CD70 Systemic lupus
erythematosus

Zhang et al.
(2018)

Circ-Amotl1 STAT3—DNMT3A Expression miR-17-5p Wound healing Cell adhesion, migration,
proliferation, wound repair

Yang et al.
(2017)

FECR1 TET1; DNMT1 Recruit;
expression

FLI1; SERTED2 Breast cancer Tumor invasion, metastasis Chen et al.
(2018)

Circ_0040809 miR-515-
5p—DNMT1

ceRNA Colorectal cancer Cell proliferation, migration,
apoptosis

Mao et al.
(2021)

CircSOD2 miR-502-
5p—DNMT3A

ceRNA SOCS3 Hepatocellular
carcinoma

JAK2/STAT3 signaling Zhao et al.
(2020b)

CircMEMO1 miR-106b-5p—TET1 ceRNA TCF21 Hepatocellular
carcinoma

Cell proliferation, invasion,
metastasis, EMT, sorafenib
sensitivity

Dong et al.
(2021)

CircTRIM33–12 miR-191—TET1 ceRNA WWC3; TP53INP1;
ULBP1; JHDM1D

Hepatocellular
carcinoma

Cell proliferation, migration,
invasion, immune evasion

Zhang et al.
(2019a)

CircIBTK miR-29b — Genome wide Systemic lupus
erythematosus

AKT signaling Zhang et al.
(2019a)

Circ-ATAD1 — — miR-34b Acute myeloid
leukemia

Cell proliferation Wu et al.
(2021b)

Circ-ATAD1 — — miR-10a Endometrial cancer Cell invasion, migration Yang et al.
(2021a)

CircFAT1 — — miR-21 Endometrial cancer Cell stemness increase Wu et al.
(2021a)

CircSEPT9 — — miR-186 Endometrial cancer Cell invasion, migration Guo et al. (2022)

CircRIMS — — miR-613 Esophageal squamous
cell carcinoma

Cell proliferation Wan et al.
(2021)

CircSKA3 — — miR-1 Glioblastoma Cell proliferation Zhou et al.
(2021a)

CircFADS2 — — miR-195-5p Osteoarthritis Apoptosis Zhang et al.
(2021b)
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by their important regulatory effect. The capacity of circRNAs

interact with proteins involved in epigenetic modification

manifests itself the ability for the transcriptional regulation

on target genes (Table 3). Examples include a circRNA termed

ACR (autophagy related circular RNA), which directly binds

to DNMT3B and block DNMT3B-mediated DNAmethylation

of Pink1 promoter. Pink1 further brings about

phosphorylation of the downstream target FAM65B, and

finally inhibits autophagy and cell death in the heart (Zhou

et al., 2019). An exosome derived circRNA circ_6790 from

bone marrow mesenchymal stem cell was found to increase the

nuclear translocation of CBX7, by this indirect interaction

mode to recruit DNMTs and induce the methylation of

S100A11 in pancreatic ductal adenocarcinoma (Gao et al.,

2022). Many circRNAs are found to regulate the expression

level of DNMT genes and finally influence the downstream

target methylation. For example, hsa_circ_0012919 is

downregulated in CD4+ T cells of systemic lupus

erythematous (SLE) and results in the increased the

expression of DNMT1 and finally leads to the

hypermethylation of CD70 and CD11a (Zhang et al., 2018).

A similar example is the circ-Amotl1, which interacts with

STAT3 and facilitate its nuclear translocation and the binding

to the promoter of DNMT3A gene, the activated DNMT3A

further induce miR-17 promoter methylation and decrease its

expression (Yang et al., 2017). In addition, a multi-functional

circRNA was found that regulate downstream methylation by

different mechanisms. The circRNA derived from FLI1

termed FECR1 is able to recruit TET1 to the promoter of

the host gene and lead to the hypomethylation in cis, in

addition, this circRNA could also bind to the DNMT1

promoter, where it downregulates DNMT1 transcription in

trans. In this manner, this circRNA regulator controls tumor

growth and metastasis of breast cancer (Chen et al., 2018).

The ceRNA mechanism is also widely involved in the processes

of methylation regulation by circRNAs. For example,

hsa_circ_0040809 regulates cell proliferation of colorectal cancer

by upregulating DNMT1 via targeting miR-515-5p (Mao et al.,

2021). Another example is fromHCC, the circSOD2was activated by

promoter modification of H3K27ac and H3K4me3, the activated

circSOD2 inhibits miR-502-5p expression and rescues miR-502-5p

target gene DNMT3A expression (Zhao et al., 2020). Similar

observations include the circMEMO1—miR-106b-5p—TET1 axis

(Dong et al., 2021) and circTRIM33–12—miR-191—TET1 axis

(Zhang et al., 2019), which play key roles for controlling cell

proliferation, migration and immune evasion. This ceRNA

mechanism for downstream target methylation regulation was

also found during SLE development (Wang et al., 2018).

Interestingly, miRNA genes are also found to be the methylation

targets of circRNA regulators. For instance, the circ-ATAD1 leads to

miR-34b gene methylation in AML to increase the cell proliferation

(Wu et al., 2021). This very circRNAwas found to regulate miR-10a

gene methylation in endometrial cancer (Yang et al., 2021). Other

similar examples are also identified in many types of diseases

(Table 3) (Wu et al., 2021; Zhou et al., 2021; Zhang et al., 2021;

Wan et al., 2021; Guo et al., 2022). However, the detailedmechanism

on how circRNA influence the methylation of miRNA gene

promoters are largely unknown and remains to be further

investigation.

Concluding remarks

One of the major findings in cancer epigenetics is that genes

encoding lncRNAs and circRNAs are widely connected with DNA

methylome regulation in tumorigenesis. First of all, lncRNAs as

well as circRNAs could be targets of DNA methylation regulation

bases on the canonical epigenetic regulatory mechanism. Aberrant

methylation changes at lncRNA and circRNA promoters are

widely observed in a variety of physiological and pathological

circumstances. Studies have identified the lncRNAs and circRNAs

whose transcriptional deviation are associated with aberrant

promoter methylation (Lujambio et al., 2010; Morenos et al.,

2014; Boque-Sastre et al., 2015; Lu et al., 2020; Pangeni et al.,

2022). On the other hand, lncRNAs and circRNAs could also

regulate DNAmethylation level of target genes by interaction with

DNMTs or other genes involved in this process, either directly or

indirectly. The study of the lncRNA-DNAm interactions has

shifted our understanding of gene expression and regulation.

LncRNAs usually do not function alone, but by interaction

with proteins or other biomolecules to play a regulatory role in

different biological processes (Teng et al., 2020; Wang et al., 2021).

As a rapid way for gene expression regulation, impact on target

genes by lncRNAs by re-shaping the epigenome is an effective

approach to adjust cell function, through which cells can respond

to diverse stimuli rapidly. Given the diversity and tissue specificity

of their expression pattern, lncRNAs and circRNAs taking part in

multiple cellular regulatory networks have revealed their

importance in various physiological processes, and also the

implications in cancer. Indeed, by using a systems biology

approach, we have revealed lncRNAs that constitute master

regulators of the DNA methylome in pan-cancer wide, which

implicated in regulating the DNA methylation and expression

levels of key genes involved in cancer development as targets (Yang

et al., 2021). It is likely that lncRNAs and circRNAs establish an

additional layer for transcriptional and posttranscriptional

regulation defined by epigenetic landscape, which leads to

reconsideration of our concept about epigenetics. As

summarized in this review, evidences of the regulatory

networks among lncRNAs and DNA methylation in human

diseases are increasing rapidly, although many important

questions regarding detailed mechanism on lncRNA regulatory

complexity remain to be solved. In this context, lncRNAs could be

exploited not only as specific biomarkers for early diagnosis and

prognosis, but also for combined epigenetic targeting of

personalized treatment of cancer.
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