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Treating acute myeloid leukemia (AML) by targeting FMS-like tyrosine kinase 3

(FLT-3) is considered an effective treatment strategy. By using AI-assisted hit

optimization, we discovered a novel and highly selective compound with

desired drug-like properties with which to target the FLT-3 (D835Y) mutant.

In the current study, we applied an AI-assisted de novo design approach to

identify a novel inhibitor of FLT-3 (D835Y). A recurrent neural network

containing long short-term memory cells (LSTM) was implemented to

generate potential candidates related to our in-house hit compound (PCW-

1001). Approximately 10,416 hits were generated from 20 epochs, and the

generated hits were further filtered using various toxicity and synthetic

feasibility filters. Based on the docking and free energy ranking, the top

compound was selected for synthesis and screening. Of these three

compounds, PCW-A1001 proved to be highly selective for the FLT-3

(D835Y) mutant, with an IC50 of 764 nM, whereas the IC50 of FLT-3 WT was

2.54 μM.
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Introduction

Overexpression or mutation of some signaling proteins leads

to cancer development (Kazi and Rönnstrand, 2019). Among the

most mutated extracellular signaling mediators in cancer are the

receptor tyrosine kinases (RTKs) (McDonell et al., 2015). Among

the five known types of RTKs, FMS-like tyrosine kinase (Kindler

et al., 2010) (FLT-3) belongs to type III. It plays an essential role

in regulating early hematopoiesis because it is selectively

expressed on CD34+ hematopoietic stem cells and immature

hematopoietic progenitors (Rosnet et al., 1996; Kindler et al.,

2010). It is also expressed in the liver, spleen, lymph nodes,

thymus, placenta, gonads, and brain (Del Zotto et al., 2001;

Stirewalt and Radich, 2003; Brown and Small, 2004). Our work is

focused on FLT-3, a gene that is highly mutated in acute myeloid

leukemia (AML) (Grafone et al., 2012).

Interestingly, thousands of mutations (mostly insertions)

have been reported for FLT-3. Many FLT-3 point mutations

are commonly found in AML, and the activation loop residue

D835, which stabilizes the inactive conformation is the

predominant site of mutations (Yamamoto et al., 2001; Liang

et al., 2003; Smith et al., 2012). Overexpression and frequent FLT-

3 mutations are associated with poor prognoses and AML

pathogenicity and activate downstream signaling molecules,

which leads to stimulation and survival of cancerous cells

(Zhang and Broxmeyer, 1999; Hayakawa et al., 2000; Lin

et al., 2012). Treating AML patients by targeting FLT-3 and

its mutants with small molecules is considered a promising

strategy (Assouline et al., 2012; Leung et al., 2013; Gebru and

Wang, 2020; Ambinder and Levis, 2021).

Since approval by the Food and Drug Administration (FDA)

of the first tyrosine kinase inhibitor imatinib (Savage and

Antman, 2002) two decades ago, several drugs targeting FLT-

3 have entered clinical trials. Nevertheless, only midostaurin and

gilteritinib have been approved by the FDA (Scholl et al., 2020).

FLT-3 inhibitors are classified as type I or type II based on their

binding with the protein. Type I inhibitors such as sunitinib

(Schittenhelm et al., 2006), midostaurin (Stone et al., 2004),

lestaurtinib (Smith et al., 2004), crenolanib (Heinrich et al.,

2012), and gilteritinib (Grunwald and Levis, 2013) bind with

the active state (DFG-in) of FLT-3, whereas type II inhibitors

such as sorafenib (Auclair et al., 2007), ponatinib (O’Hare et al.,

2009), and quizartinib (Zarrinkar et al., 2009) bind only with the

inactive (DFG-out) FLT-3 conformation (Scholl et al., 2020).

Studies have shown that type I inhibitors are more promising for

use in AML treatment, as they target the predominant mutated

kinase (Wodicka et al., 2010; Smith et al., 2012). There has been

tremendous interest in developing FLT-3 inhibitors using classic

computer-aided drug design approaches (Chang Hsu et al., 2014;

Ke et al., 2015). In this study, we focus on developing a more

rational approach for preparation of FLT-3 type-I inhibitors.

Recent breakthroughs show the significance of artificial

intelligence (AI) in drug discovery, and AI reduces costs and

increases the speed of the drug discovery pipeline (Mak and

Pichika, 2019). One of the main bottlenecks of traditional de novo

drug design methods is the complicated synthetic routes;

reported AI methods suggest synthetically feasible molecules

or synthetic pathways that can help chemists (Corey and

Wipke, 1969; Hessler and Baringhaus, 2018). Using AI,

identification of a DDR1 kinase inhibitor was completed in

just 60 days, including synthesis and experimental validation

(Zhavoronkov et al., 2019). Excientia prepared the first AI-

designed drug (DSP-1181) to treat obsessive-compulsive

disorder (OCD), which subsequently entered clinical trials

(Luo et al., 2022). They also discovered the AI-designed

molecule EXS-21546 for immuno-oncology, which entered

clinical trials in 8 months. Insilico medicine (www.insilico.

com) used its AI program to develop a novel inhibitor

(ISM001-055) for antifibrotic targets, and it reached clinical

trials in 9 months. Recently, they have announced a

preclinical candidate for the main protease of SARS-CoV-2,

which was discovered with their novel AI platform, Chemistry42.

Network-based approaches are widely used to infer relationships

between diseases and drugs (Guney et al., 2016) and aremore focused

on predicting novel protein targets and new uses of known drugs

(Berger and Iyengar, 2009; Wu et al., 2013). In the current study, we

used our reverse network theory approach developed in-house to

identify a potential therapeutic target for PCW-1001. Based on the

network theory and docking results, FLT3 was considered a potential

target. Further biological screening studies showed that PCW-1001

exhibited an inhibitory IC50 of 13.6 μM against FLT-3 WT and

1.83 μM against the FLT-3 (D835Y) mutant (Kang et al., 2022). An

AI-assisted de novo design approach was applied to identify a potent

and selective inhibitor for the FLT3/FLT-3 (D835Y) mutant. This

parent compound (PCW-1001) was considered for further

optimization, and more than 10,416 analogs were generated using

the LSTM approach. These hits were further evaluated for synthetic

FIGURE 1
2D Chemical structure of FLT-3 inhibitor PCW-A1001.
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feasibility by in-house machine learning models and assessed for

potential structural alerts. The resulting hits were subjected to

docking studies, binding mode reviews, and free energy

calculations for prioritization. Based on the binding mode review

and free energy calculation data, the top compound was prioritized

for synthesis and further screening. Screening data showed that

PCW-A1001 (Figure 1) proved to be a potential and selective

inhibitor against the FTL3 (D835Y) mutant.

Results and discussion

Network-based reverse target prediction

We implemented an in-house network-based reverse target

prediction module to identify a protein target for PCW-1001

(Figure 2). Our parent compound, PCW-1001, exhibited a

significant inhibitory profile against various breast cancer cell lines,

but a substantial protein target was unknown (Kang et al., 2022).

PCW-1001 compound structural similarity (atom pair descriptors)

was computed against the ChEMBL chemical database. The

generated similarity matrix of the ChEMBL database with PCW-

1001 and its corresponding protein target informationwas considered

for further analysis. Ensemble docking studies were carried out for

PCW-1001 against all 2,000 unique targets [with a known crystal

structure database (www.rcsb.org)]. Of the top 10 scored (docking

score) targets, five kinases (FLT3, JAK2, NTRK, MKNK2, and

TGFBR1) were observed to be potential targets for PCW-1001. All

five kinase targets are known to play a critical role in treating various

cancers; among the five targets, we selected FLT-3 based on the score.

Furthermore, FLT-3 point mutations are frequently found in AML,

where the mutations occur in the activation loop residue D835 and

stabilize the active conformation.

Artificial intelligence-assisted de novo
design of a novel FMS-like tyrosine kinase
3 inhibitor using the long short-term
memory approach

In the current study, we applied a deep recurrent neural

network (RNN) with long short-term memory (LSTM) cells

FIGURE 2
Network-based reverse target prediction. (A) Protein-Ligand interaction network with nodes (depicted in dark turquoise elliptical sphere) as
proteins and edges (rectangular orange box) as ligands obtained fromChEMBL, DrugBank and PubChem. Tanimoto similarity identified usingMACCS
keys fingerprint between query compound (PCW-A1001) and the top hit CHEMBL 1807483 (shows interactions with FLT3) is 0.67. (B) Study of
selectivity of the PCW-1001 against the panel of 48 representative kinase enzymes. The score was rescaled to be ranged, as the lower value
corresponds to more energetically favorable one.

Frontiers in Molecular Biosciences frontiersin.org03

Jang et al. 10.3389/fmolb.2022.1072028

http://www.rcsb.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1072028


FIGURE 3
Overall pipeline of AI based drug discovery approach to identify PCW-A1001 from PCW-1001. Step-1: The target protein for the PCW-1001 was
identified as FLT3 from the network analysis. Step-2: AI-assisted drug design using the RNN-LSTM method. Step-3: Generated compounds were
evaluated using various lead-like identification filters. Step-4: Binding mode analysis (Docking, Molecular dynamics, QM/MM, Free energy
calculation) of the filtered molecules. Step-5: Synthesis and characterization. Step-6: In vitro Assay for the enzymatic activity and cell viability.

SCHEME 1
The synthesis of PCW-A1001. (i) K2CO3, DMF, 70°C, 12 h; (ii) H2(g), Pd/C, EtOAc, r.t., 10 min; (iii) 4-tert-butylbenzoic acid, EDCI, DMAP, DCM, r.t.,
48 h; (iv) LiOH·H2O, THF/MeOH/H2O, r.t., 12 h; (v) NH4Cl, HBTU, DIPEA, DMF, r.t., 12 h; (vi) 20% TFA in MeOH, r.t., 3 h.
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for de novo drug design (Merk et al., 2018) to generate

potential hit candidates around PCW-1001 (Figure 3). We

fine-tuned the model by using the transfer learning approach

to optimize de novo generation of FLT-3 active compounds

(Kang et al., 2022). We sampled 10,416 SMILES (Simplified

Molecular Input Line Entry System) strings from 20 epochs

from the resulting fine-tuned model. AI-generated hits were

further evaluated using MOSES (Polykovskiy et al., 2020) for

novelty, validity, diversity, scaffold similarity, and

uniqueness. Benchmarking analyses indicated that 98.8% of

the hits were valid, 85% of the hits were unique, and 90% of

the hits were novel. The chemical space of AI-generated hits

falls within the range of FLT3 known actives and PCW-1001

(Supplementary Figure S1). Furthermore, violin plot analysis

also suggested that the distribution of molecular weights and

LogP of AI-generated hits were within the range of known

FLT3 actives (Supplementary Figure S2). Overall, AI-

generated hits fell within the chemical space of known

actives, and MOSES analysis suggested that AI-generated

hits were diverse and novel compared with known

FLT3 actives and PCW-1001.

Based on the binding analysis and interaction pattern studies,

we identified 1750 compounds out of 10,416 hits as suitable for

further studies. Following this preliminary evaluation, we

assessed the resulting structures for toxicity endpoints via our

Pharmulator™. We generated 9 toxicity models (different end-

points) using available literature data, and validated models were

deployed in Pharmulator™ to assess the hit moieties quickly. Of

1750 hits, only 190 compounds passed synthetic feasibility,

novelty, drug-like, all toxicity, and PAINS filters and were

further subjected to a binding pose analysis and free energy

calculations. We selected the top compound for synthesis and

in vitro screening.

Synthesis and structural characterization
of the de novo compound PCW-A1001

The synthetic route to PCW-A1001 is summarized in

Scheme 1. Methyl 2-fluoro-4-nitrobenzoate 1 and tert-butyl 3-

aminopiperidine-1-carboxylate 2 were reacted in the presence of

K2CO3 to obtain 3 through nucleophilic aromatic substitution.

The nitro group of resulting compound 3 was converted to an

amino functional group via hydrogenation. Amine Compound 4

was coupled with 4-(tert-butyl)benzoic acid in the presence of

EDCI and a catalytic amount of DMAP and then hydrolyzed

using LiOH·H2O to produce intermediate 6. The acid functional

group was efficiently converted to an amide with the HBTU

coupling reagent. The Boc protecting group of the secondary

amine in the piperidine ring was removed to obtain the desired

compound PCW-A1001. The step-by-step synthesis and

structural characterizations are shown in the Supplementary

Material.

Structural interaction and stability analysis
of PCW-A1001 with wild-type FLT-3 and
the FLT-3 (D835Y) mutant

The top predicted binding mode of PCW-A1001 with FLT-3

WT showed two key hydrogen bonding interactions with

Cys694 and Cys695 and a π-π interaction with Phe830. The

docking complex of PCW-A1001 with FLT-3 WT was

considered for molecular dynamics (MD) simulation for

100 ns. The MD simulation results also showed that the

compound binding interactions observed in the initial docked

complex were retained in PCW-A1001. The compound bound

perfectly in the ATP binding site by forming hydrogen bonds

with the two cysteine residues (Cys694 and Cys695) located in

the hinge region. As observed in several inhibitor-kinase

complexes, hydrogen bonding interactions with the inhibitor

are essential for kinase inhibitory activity (Banks et al., 1979; Ke

et al., 2015). The carbonyl moiety of the benzamide group formed

a hydrogen bond with the NH group of the Cys694 residue

(Figure 4).

The NH moiety of the next benzamide group in the

compound formed a hydrogen bond with the backbone

carbonyl group of the Cys695 residue. Phe830 in the DFG

loop in wild-type (WT) FLT-3 formed π-π interactions with

compound PCW-A1001. The binding free energy of PCW-

A1001 was −13.4 kcal/mol with FLT-3 WT but −14.8 kcal/mol

with the FLT-3 (D835Y) mutant, whereas those of the precursor

compound PCW-1001 were −7.2 kcal/mol and −8.07 kcal/mol

for FLT-3(WT) and FLT-3 (D835Y), respectively (Table 1).

In the FLT-3 (D835Y) mutant, the NH group of

Cys694 formed a hydrogen bond with the CO moiety of the

benzamide group in PCW-A1001, as seen with WT FLT-3.

Cys695 also maintained its hydrogen bonding interactions, as

in the WT; additionally, Lys614 and Tyr693 interacted with the

protein. The Cα-RMSD of the WT FLT-3 and the mutant

complex showed that the complex was stable throughout the

simulation (Figure 4).

Based on the binding study of PCW-A1001 and its precursor

compound PCW-1001 against the panel of kinase enzymes,

selectivity was achieved by PCW-A1001 for FLT-3 (D835Y).

The selectivity scores of PCW-A1001 and PCW-1001 were

calculated from the dock score (rescaled) of the selected

kinase panel of enzymes as 0.33 and 0.46, respectively, for the

Flt-3 (D835Y) mutant (Supplementary Figure S3).

QM/MM analysis of PCW-A1001

QM/MM optimization was used to validate the interactions

between PCW-A1001 and the FLT-3 (D835Y) mutant in the

MD-determined complex to study the electronic and structural

properties of the ligand and selected atoms of the protein

(Figure 5). The electrostatic and van der Waals interactions
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were intact in the protein–ligand complex, as with the MD

structure. The ligand was stabilized at the binding site

through hydrogen bonding and -CH-π and -NH-π
interactions. The backbone -NH group from

Gly697 interacted with the phenyl ring of the ligand. In

addition to hydrogen bonding interactions, -CH-π interactions

were dominant in the complex formed between the ligand and

protein. The Leu746, Phe691, Val624, and Leu616 residues were

involved in the -CH-π interaction, as shown in Figure 5. The

same pattern was also observed in the case ofWT protein binding

with the ligand, except for the -CH-π interactions with Ala642.

The calculated interaction energies for the ligand and protein

were −46.91 and −34.04 kcal/mol for the mutant and WT,

respectively. These binding affinities were in good agreement

with the free energy calculations for an explicit water

environment.

FIGURE 4
Binding analysis of PCW-A1001. (A)DFG-out conformation of FLT-3 wild type (B) Bindingmode of PCW-A1001 with FLT-3 wild type (C) Crucial
interactions observed in the FLT-3 wild-type (sticks). (D)DFG-in conformation of FLT-3 (D835Y) mutant, (E) Bindingmode of PCW-A1001 with FLT-3
(D835Y), (F) Crucial interactions observed in the FLT-3 (D835Y) (sticks). Hydrogen bond interactions are represented in black dashed lines and pi-pi
interactions in the blue dashed lines. (G) RMSD (Cα) plot of FLT-3 wild type and D835Y mutant.

TABLE 1 Binding free energy calculation for PCW-A1001 with WT and
mutant FLT-3.

Compound FLT-3 (WT) FLT-3 (D835Y) mutant

PCW-A1001 −13.4 kcal/mol −14.8 kcal/mol

PCW-1001 −7.2 kcal/mol −8.07 kcal/mol
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The electron distribution was determined from the calculated

orbital energies. The highest occupied molecular orbital (HOMO),

HOMO-1, and lowest unoccupied molecular orbital (LUMO) were

computed and are displayed in Figure 6. The HOMO surface was

predominantly localized in the hydrogen bonding interaction regions

of the ligand, whereas the LUMO surface was distributed evenly

across the ligand (Figure 6). Gly697, which was involved in the -NH-

π interactionwith the ligand, contributed less to theHOMO,whereas

HOMO-1 was highly localized on Gly697. The piperidine ring in the

ligand formed an intramolecular hydrogen bond and stabilized the

ligand orbitals. Thus, the HOMO was localized on and near the

piperidine ring. Furthermore, atomic charges were calculated with

natural population analysis. The sum of the atomic charges on the

ligand was found to be 0.02 au. No significant charge transfer from

the ligand to the protein was observed.

We also analyzed the Frontier orbitals of PCW-A1001, as shown

in Figure 6. Frontier orbitals direct the mode of interaction between

drugs and proteins. The HOMO and LUMO contribute to the

chemical stability of the molecule. If the energy gap is zero or

negligible, the molecule is highly reactive. PCW-A1001 was stable

and showed an energy gap of 3.7 eV. The HOMO was localized on

the phenyl ring, and the LUMO was distributed across two phenyl

rings of PCW-A1001. This indicated that intramolecular charge

transfer might enhance the stability of PCW-A1001. The

molecular electrostatic potential illustrates the charge distribution

of a molecule. This explains how one molecule can interact with

another. The electrostatic potential helps determine the electrophilic

and nucleophilic sites involved in hydrogen bond formation. The

calculated electrostatic potential surface is shown in Figure 6. The

positive and negative potentials are indicated by blue and red colors,

respectively. Atoms in the positive potential region act as electron

acceptors, whereas atoms with a negative potential behave as electron

donors during hydrogen bond formation with FLT-3. The aromatic

phenyl rings involved in -CH-π interactions were found between the

positive and negative potentials. The results show that the charge

distribution over PCW-A1001 was favorable for interacting with the

binding pocket of FLT-3.

Inhibition of MV4-11 and acute myeloid
leukemia cell lines by PCW-A1001

MV4-11 cells and FLT-3-mutated AML cells (Quentmeier

et al., 2003) were used to examine the anticancer activity of PCW-

A1001. It inhibited the proliferation of MV4-11 cells, with an

IC50 of 1.98 μM, showing that PCW-A1001 has potent anticancer

activity in AML cells (Figure 7).

In vitro kinase activity of PCW-A1001

Next, we performed an in vitro kinase assay to evaluate the

inhibitory activity of PCW-A1001 forWT FLT-3 and the D835Y-

mutant kinase. Interestingly, our data indicated that PCW-

FIGURE 5
QM optimization of PCW-A1001 with FLT-3(D835Y). (A) Schematic representation of the QM and MM optimization region selected in the
protein-ligand complex of the FLT-3-D835Y mutant. (B,D) HOMO/HOMO-1 surface of FLT-3 (D835Y) and (C) LUMO surface in FLT-3 (D835Y) in
complex with PCW-A1001. Ligand PCW-A1001 shows in ball and sticks and the residues in the QM region shown in lines. (E) Hydrophobic
interactions observed in the QM/MM optimized complex.
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A1001 inhibited the mutant kinase more effectively than the WT

(Figure 8A). The IC50 determined from the kinase assay was

764 nM for the FLT-3 D835Y mutant, which was only one-third

the IC50 for WT (2.54 μM) (Figures 8B,C). Thus, our data

provide proof-of-concept evidence for the AI-assisted de novo

drug design approach.

Materials and methods

Reverse target prediction—a network-
based approach

The input structures were used as SMILES structures and

converted into fingerprints. We used six kinds of fingerprints:

RDKit, MACCSkeys, AtomPair, Torsion, Morgan, and Morgan

with Features (Landrum, 2016). A total of six fingerprints and six

similarities were calculated and compared with the precalculated

scores for the ligands in our protein–ligand interaction network

database. A total of 10,647 compounds were used for the analysis

among 262,327 compounds in the ChEMBL database. The list of

compounds used with SMILES is included in the (Supplementary

Table S2). In detail, the similarities between the input compound and

all drugs in the network were calculated. Here, we used six similarity

measures: Tanimoto, Dice, Sokal, Cosine, Kulczynsk, and

McConnaughey. We selected drugs with high similarity scores

(sum of similarity values). Using protein–drug relationships in the

FIGURE 6
Isosurfaces of Frontier orbitals HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital). The charge
distribution over PCW-A1001 molecule. (A) Isosurface of HOMO, (B) Isosurface of LUMO and (C) Electrostatic potential of the PCW-A1001. The red
color indicates the negative charge and green color indicates the positive charge for the PCW-A1001. The electrostatic potential values were
distributed from −6.109e−2 to 6.109e−2.

FIGURE 7
PCW-A1001 inhibits the viability of AML cell line. MV4-11 cells
were treated with PCW-A1001 for 72 h, and cell viability was
analyzed. The data are presented as the mean ± standard error
mean. The dose response curve was generated using
OriginPro 2021 (OriginLab, United States).
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network, the similarity score of a drug was assigned to all proteins

connected to the drug. Then, we obtained a list of proteins with

similarity scores for each fingerprint. Based on the similarity score,

the list was sorted in descending order, and a rank value, which is a

descending value from the maximum rank, was assigned. The rank

score was calculated using the following formula:

rank score � rank value

∑rank values
(1)

The proteins obtained a total rank score R, which was the

sum of the rank score of each fingerprint. The rank score was

further modified as ~R by applying the following formula and

assigned to each protein. The modified total rank score showed

the potential of the target protein. The network model was

validated using eight known Bruton’s tyrosine kinase (BTK)

inhibitors, the model prediction rank was given

(Supplementary Figure S4), and the details of the targets along

with their inhibitors are given (Supplementary Table S1).

~R � 1
R max

∑
Fingerprint

rank score (2)

AI-assisted de novo design

A recurrent neural network (RNN) is a type of neural

network that is widely used for natural language processing

(NLP) tasks from simple language processing to complex

cheminformatics problems. RNNs have been successfully

applied for protein structure and function predictions from

sequences (Liu, 2017; Zhang et al., 2018), property

predictions, fragment-based hit generation (Awale et al.,

2019), and hit identification (Segler et al., 2018; Erikawa et al.,

2021).

For de novo drug design, we successfully applied generative

recurrent neural networks (RNN) containing long short-term

memory (LSTM) cells (Merk et al., 2018). The model considers

the SMILES strings for molecular representation and learns the

patterns and their probabilities from pretraining for use in

generation of the SMILES structures. We fine-tuned the

generated structures (SMILES) for specific molecular targets

or chemical series by employing transfer learning. The

generative LSTM approach has proven helpful in low-data

drug discovery, hit expansion, molecular design (fragment-

based), and lead optimization (Gupta et al., 2018; Segler et al.,

2018; Erikawa et al., 2021).

All deep learning models were applied using TensorFlow

(v2.1, www.TensorFlow.org) in Python (v3.7, www.python.org).

We have used RDkit (www.rdkit.org) for most cheminformatics

activities (property calculations, SMILES string validity

calculations, molecular fingerprint calculations, and molecular

clustering calculations). A detailed analysis of the generated

SMILES strings was performed using the Jupyter notebook

(www.anaconda.org).

FIGURE 8
PCW-A1001 inhibits the kinase activity of FLT-3 WT and D835Y mutant. (A) PCW-A1001 inhibited FLT-3 WT and D835Y mutant kinase at 10 µM
(A). IC50 of PCW-A1001 for FLT-3 WT (B) and D835Y mutation (C) were analyzed by ThermoFisher. The data are presented as the mean ± standard
error mean. *p < 0.01.
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RNNs were used as autoencoders, and the deep learning

model employed for this study was initially pretrained to capture

the structures of 438,552 bioactive small molecules (after

carefully excluding the FLT-3 actives) retrieved from

ChEMBL25 (KD, Ki, EC50, IC50 < 1 μM) and represent them

as simplified molecular-input line-entry system (SMILES) strings

(Weininger, 1988). Using this pretrained model, we fine-tuned

the model by transfer learning to bias de novo molecule

generation toward the desired bioactivities of the templates

(Merk et al., 2018). This fine-tuning step was employed to

train the model for designing functional mimetics. Generated

hits were further evaluated and benchmarked using Molecular

sets (MOSES) (Polykovskiy et al., 2020).

Synthetic feasibility

The synthetic feasibility of each compound generated by AI

was obtained with the retrosynthesis-associated fragment-based

synthetic feasibility (RAFSF) score module. The fundamental

idea of the module was that after cleaving synthetically

meaningful bonds of the given compound, the bonds and the

resulting fragments were searched from a bond/fragment space

extracted from the ChEMBL (Mendez et al., 2019) or USPTO

(Lowe, 2017) grants database in the same way. In the ChEMBL

small molecule database, 1,917,863 molecules with molecular

weights of less than 1,000 were used, as were 1,808,937 reactions

from the USPTO grants database. To break bonds, we used the

modified BRICS (Degen et al., 2008) module included in the rdkit

(Landrum, 2016). If the bond/fragment from the given

compound was not contained or rarely appeared in the bond/

fragment space, a RAFSF score with a high value was assigned,

meaning it was synthetically unfeasible. The RAFSF score is a

value ranging from 1 (highly feasible synthesis) to 10 (highly

unfeasible).

Protein preparation and modeling

The DFG-out WT FLT-3 protein structure was downloaded

from the protein databank (www.rcsb.org) with PDB ID: 1RJB in

the DFG-out conformation. Protein structures were prepared by

correcting the bond orders, adding missing hydrogens,

optimizing H-bonding with the protonation states of residues

at pH 7.0, and restraining minimization for added hydrogens

using the OPLS2005 forcefield of Protein Preparation Wizard

(Sastry et al., 2013). The DFG-in conformation of the FLT-3

(D835Y) mutant was modeled using Modeler 9.25 (Sali and

Blundell, 1993) with two templates, as reported previously (Ke

et al., 2015). The first template was the DFG-out conformation of

FLT-3 (PDB: 1RJB) with its DFG motif removed, and the other

template was the DFG-in conformation of the colony-

stimulating factor-1 receptor (CSF-1) crystal structure (PDB

id: 3LCD). These templates shared 93% and 63% sequence

identity with the target protein, respectively. The model was

subjected to loop refinement and minimization, followed by

validation using a standard protocol discussed elsewhere

(Sivakumar et al., 2013; Ke et al., 2015).

Ligand preparation andmolecular docking

Hit compounds were initially optimized using the DFT

method in Gaussian 16 with B3LYP functionals and the 6-

31G** basis set (Tirado-Rives and Jorgensen, 2008). The

antechamber obtained GAFF atom types with RESP charges

from the Gaussian output file. The atom types and all needed

parameters for the ligand were obtained from the above process

along with parmed and tleap (Shirts et al., 2017). Molecular

docking was carried out using Glide XP (Friesner et al., 2006)

with default parameters; initially, the receptor was prepared with

a grid box set covering the centroid of the active site, followed by

flexible ligand sampling of the ligand docking.

Molecular dynamics simulations

The stabilities of the complexes were studied byMD simulations

using Gromacs 2019 (Abraham et al., 2015). The Charmm36 force

field (Huang and MacKerell, 2013) was used for the protein

parameters. The protein–ligand complexes were solvated explicitly

using the TIP3P water model inside the cubic box, and their sizes

extended 0.1 nm away from the protein on the edges of the box in

each direction. The overall charge of the system was neutralized by

adding a 0.15M salt (Na+Cl−). All simulations were carried out on

GPU-enabled Linux clusters. The entire system was minimized with

a maximum step size of 50,000 until the maximum force was less

than 10 kJ/mol. The system was then equilibrated for 5 ns under

NVT conditions with temperature coupling for two separate groups,

protein–ligand and water-ions, at 300 K. The Lincs algorithm was

used to constrain the bonds of the hydrogen atoms (Hess et al., 1997).

A Berendsen thermostat and V-rescale were used to keep the

temperature and pressure constant, respectively (Lemak and

Balabaev, 1994; Bussi et al., 2007). The cutoff distances for

Coulomb and van der Waals interactions were set as 1.2 nm. The

particle mesh Ewald method (PME) was used to calculate the long-

range electrostatic interactions (Darden et al., 1993). The final

production run was carried out for 100 ns at a temperature of

300 K and a pressure of 1 bar.

Free energy calculation

The binding free energies for protein and ligand complexes

were calculated in an explicit water environment by employing

the alchemical method (Supplementary Figure S5). The final
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snapshot from the MD simulations (100 ns) was used as the

starting point for the free energy simulations. The alchemical

method involves two steps: 1) decoupling of the ligand from the

protein–ligand complex in an explicit water environment and 2)

decoupling of the ligand from the water environment. The

decoupling process includes turning off the van der Waals

and electrostatic interactions responsible for complex

formation (protein–ligand or water-ligand) with the help of

the coupling parameter (λ). First, electrostatic interactions

were turned off slowly, while the van der Waals interactions

were still present. Then, the van der Waals interactions between

the protein and ligand (water and ligand) were turned off using

the coupling parameter (λ). The electrostatic interactions were

turned off by changing λ (0 0.25 0.5 0.75 1.0) from 0 to 1 with a

step size of Δλ = 0.25, and the van der Waals interactions were

turned off with nonuniformly distributed values of λ (0.05, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0). The

same procedure was applied to decouple the ligands from the

protein–ligand complex and ligands from the water

environment. Therefore, 21 windows, each of 1 ns, were

employed to decouple the ligand from the protein–ligand and

water-ligand complexes. The free energy difference between the

two end states was calculated using the Bennett acceptance ratio

(BAR) method (Bennett, 1976). The BAR method is used to

estimate the free energy difference between two states with the

following equation:

1

1 + exp{β(ΔUij − ΔG)}〈 〉i � 1

1 + exp{β( − ΔUij + ΔG)}〈 〉j

(3)
where β is the reciprocal of the thermodynamic temperature, ΔG
is the free energy difference between states i and j, and ΔUij =

Uj−Ui is the potential energy difference.

At each λ-point, the structures were subjected to energy

minimization using the steepest descent method. Using Langevin

dynamics, the resulting structures were equilibrated in an

isothermal-isobaric (NPT) ensemble at 300 K and at a

pressure of 1 bar. The rest of the simulation protocol was

similar to the protocol followed in the classic MD section.

QM/MM approach

The final snapshots of protein and ligand complexes

determined from MD simulations were optimized in the gas

phase at the (B3LYP-D3/6-31G*)/Universal force field level of

theory with the help of the Gaussian16 package. It has been found

in earlier studies that density functionals such as M06-2X,

B3LYP-D, and ωB97XD are suitable for investigating

noncovalent interactions. Hence, in all calculations, the QM

region was optimized with dispersion-corrected B3LYP with

the Grimme empirical dispersion functional (B3LYP-D3)

using the 6-31G* basis set. The ligand and surrounding region

within 4 Å were treated as the QM region, and the remaining

parts were considered the MM region. We extracted only the QM

region from the optimized geometries and added terminal

hydrogens to calculate binding affinities. The resulting

structures were used to calculate the interaction energies with

the supermolecule approach at the B3LYP-D3/6-31G* level of

theory.

IE � EC − (EM1 + EM2) (4)
where IE is the interaction energy of the complex, EC is the

energy of the complex, EM1 is the energy of the protein part of

the complex, and EM2 is the energy of the ligand in the complex.

All IEs were corrected for basis set superposition error (BSSE)

using the counterpoise method suggested by Boys and Bernadi

(Gutowski et al., 1993), as implemented in the

Gaussian16 package (Frisch et al., 2016).

Selectivity

In total, 49 kinases were evaluated via selectivity score

calculation, and those 49 kinases were previously used for the

actual kinase panel assay. Representative PDB structures for

the 49 kinases were extracted from the RCSB Protein Data

Bank (https://www.rcsb.org/). The ligands were docked to the

binding pocket of each PDB using AutoDock-Vina (Trott and

Olson, 2010). The resulting docking score was rescaled to

observe and compare compound trends. Quantitatively, the

selectivity score was calculated to measure the overall

selectivity across different kinase families. A lower

selectivity score indicates better selectivity for the tested

compound.

Selectivityscore(S)
� numberofkinaseswithrescaleddockingscore less than0.5

totalnumberofkinases tested

(5)

Cell culture and cell viability assay

MV4-11 cells were purchased from American Type Culture

Collection (ATCC, VA, United States). The cells were passaged

for less than 1 month, and mycoplasma infection was checked by

PCR once a week. The growth medium was Iscove’s Modified

Dulbecco’s Medium (IMDM; ThermoFisher, United States)

supplemented with 10% fetal bovine serum (FBS; Corning,

United States) and 1% penicillin/streptomycin (GenDEPOT,

United States). The cells were maintained in a humidified

atmosphere with 5% CO2 at 37°C. Cell viability was

determined using the WST-8 assay (Cyto XTM cell viability
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assay kit; LPS solution, Daejeon, South Korea) in accordance with

the manufacturer’s protocol.

Synthesis of PCW-A1001

Unless otherwise stated, all reactions were performed under

an inert (N2) atmosphere. Reagents and solvents were reagent

grade and purchased from Sigma-Aldrich, Alfa Aesar, and

Combi-Blocks. Anhydrous solvents were purchased from

Sigma-Aldrich and used as provided. Reactions were

monitored by TLC and visualized with a UV lamp and/or

KMnO4 staining. Silica gel 60 (230–400 mesh, Merck) was

used for flash column chromatography. 1H and 13C NMR

spectra were recorded on BRUKER Ultrashield 300 and

400 MHz NMR spectrometers at 25°C. Chemical shifts are

reported in parts per million (ppm). Data for 1H NMR are

reported as follows: chemical shift (δ ppm) [multiplicity,

coupling constant (Hz), integration]. Multiplicities are

reported as follows: s = singlet, d = doublet, t = triplet, q =

quartet, dd = doublet of doublets, m = multiplet. Data from 13C

spectra are reported as chemical shifts (δ ppm). The residual

solvent peak was used as an internal reference. Mass spectra were

obtained on Acquity™ Waters A06UPD9BM and Agilent

Technologies SG12109048 systems. Prior to biological testing,

the final compound was confirmed to be > 98% pure by UPLC

chromatography using aWaters ACQUITYH-class system fitted

with a C18 reverse-phase column (ACQUITY UPLC BEH C18:

2.1 mm × 50 mm, Part No. 186002350) according to the

following eluent conditions: (A) H2O + 0.1% formic acid, (B)

CH3CN + 0.1% formic acid, (C) MeOH + 0.1% formic acid; (Ι) a
gradient of 95% A to 95% B over 5 min; and (Ⅱ) a gradient of 95%
A to 95% C over 5 min.

Conclusion

In this work, we used an AI-assisted de novo drug design

(LSTM) approach to identify a novel FLT-3 inhibitor that

selectively targets the FLT-3 (D835Y) mutant. The deep

learning model was pretrained on a known bioactive chemical

space (ChEMBL22), and the generated hits were fine-tuned using

our in-house FLT-3 inhibitors. The generated hits were further

evaluated and filtered using various parameters focusing on their

novelty, similarities, diversities, etc. We further evaluated the

toxicities of the de novo molecules with our in-house program

Pharmulator™. Among the screened hits, only 146 compounds

passed the toxicity filters. The binding affinities, conformations

and interaction patterns of these screened compounds were

studied with WT FLT-3 and its mutant (D835Y). Since the

FLT-3 (D835Y) mutant structure in the DFG-in conformation

was unavailable, we modeled the protein to validate the

compounds in terms of the binding interactions. The

stabilities of complexes were further validated qualitatively

with MD simulations and quantitatively with free energy

calculations.

The top compound, named PCW-A1001, was considered

for synthesis and screening studies. The anticancer activity

was tested against MV4-11 cells to verify the effectiveness of

these compounds in AML treatment. PCW-A1001 was found

to be a promising inhibitor of FLT3, and it showed an IC50 of

764 nM against the FLT-3 (D835Y) mutant and 2.54 μM

against WT FLT-3. PCW-A1001 also showed an IC50 of

1.98 μM against MV4-11-cell line screening. We

successfully implemented reverse network theory and AI-

based de novo design strategies and identified a potential

inhibitor of the FLT3/FLT3 (D835Y) mutant, PCW-A1001.

AI generated a hit, PCW-A1001 exhibited better activity than

the parent compound, PCW-1001. Further fine-tuning of

PCW-A1001 is in progress to optimize the selectivity and

activity and will be reported in due course.
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