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Bacterial small RNAs (sRNAs) research has accelerated over the past decade,

boosted by advances in RNA-seq technologies and methodologies for

capturing both protein–RNA and RNA–RNA interactions. The emerging

picture is that these regulatory sRNAs play important roles in controlling

complex physiological processes and are required to survive the

antimicrobial challenge. In recent years, the RNA content of OMVs/EVs has

also gained increasing attention, particularly in the context of infection.

Secreted RNAs from several bacterial pathogens have been characterized

but the exact mechanisms promoting pathogenicity remain elusive. In this

review, we briefly discuss how secreted sRNAs interact with targets in infected

cells, thus representing a novel perspective of host cell manipulation during

bacterial infection. During the last decade, Acinetobacter baumannii became

clinically relevant emerging pathogens responsible for nosocomial and

community-acquired infections. Therefore, we also summarize recent

findings of regulation by sRNAs in A. baumannii and discuss how this

emerging bacterium utilizes many of these sRNAs to adapt to its niche and

become successful human pathogen.

KEYWORDS

Acinetobacter baumannii, small RNAs (sRNAs), host-pathogen interactions, non-
coding RNAs, antibiotic-resistance, outer membrane vesicles (OMVs)

OPEN ACCESS

EDITED BY

Olga N. Ozoline,
Institute of Cell Biophysics (RAS), Russia

REVIEWED BY

Jonathan Perreault,
Université du Québec, Canada

*CORRESPONDENCE

Meysam Sarshar,
meysam.sarshar@uniroma1.it

Andrea Masotti,
andrea.masotti@opbg.net

†These authors have contributed equally
to this work and share first authorship

‡These authors have contributed equally
to this work and share last authorship

SPECIALTY SECTION

This article was submitted to RNA
Networks and Biology,
a section of the journal
Frontiers in Molecular Biosciences

RECEIVED 03 November 2022
ACCEPTED 07 December 2022
PUBLISHED 21 December 2022

CITATION

Sarshar M, Scribano D, Palamara AT,
Ambrosi C and Masotti A (2022), The
Acinetobacter baumannii model can
explain the role of small non-coding
RNAs as potential mediators of host-
pathogen interactions.
Front. Mol. Biosci. 9:1088783.
doi: 10.3389/fmolb.2022.1088783

COPYRIGHT

© 2022 Sarshar, Scribano, Palamara,
Ambrosi and Masotti. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Mini Review
PUBLISHED 21 December 2022
DOI 10.3389/fmolb.2022.1088783

https://www.frontiersin.org/articles/10.3389/fmolb.2022.1088783/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.1088783/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.1088783/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.1088783/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.1088783/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.1088783&domain=pdf&date_stamp=2022-12-21
mailto:meysam.sarshar@uniroma1.it
mailto:meysam.sarshar@uniroma1.it
mailto:andrea.masotti@opbg.net
mailto:andrea.masotti@opbg.net
https://doi.org/10.3389/fmolb.2022.1088783
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.1088783


Introduction

Both coding and non-coding RNAmolecules (ncRNAs) have

attracted great interest for their ubiquitary roles in almost all

cellular and evolutionary processes of living organisms (Wu et al.,

2021; Yates et al., 2021). By definition, both coding and ncRNAs

are transcribed from DNA but ncRNAs are not translated into

functional proteins (Han and Chen, 2015; Diamantopoulos et al.,

2018). Remarkably, ncRNAs are expressed at specific stages of

cell’s development, and involved in gene modulation in response

to external stimuli (Szymański et al., 2003; Li et al., 2021). Long

(>200 nt) and short (<200 nt) ncRNAs were found in both

eukaryotes and prokaryotes (de la Fuente et al., 2012;

Deogharia & Gurha, 2022).

Discovered as early as the 1950s, ncRNAs were initially

deemed as by-products of huge transcripts with negligible

biological roles (i.e., “junk” RNAs). Thereafter, the

development of advanced technologies revolutionized the

exploration of ncRNAs, resulting in the discovery of

distinctive ncRNA species, both cellular and circulating, with

different biological roles in many human diseases (Cech & Steitz,

2014; Felli et al., 2017; Hung et al., 2018; Slack & Chinnaiyan,

2019; Tait et al., 2020; Toden et al., 2021). Among all, the best-

studied family of ncRNAs is miRNAs that able to interact with

other ncRNAs as well as various types of mRNA transcripts in a

regulatory crosstalk known as competing endogenous RNAs

(ceRNAs) leading to an additional post-transcriptional levels

(Agirre & Eyras, 2011; Ala, 2020; Li et al., 2020).

Recently, Seal and colleagues have provided a guide to the

nomenclature of human ncRNAs genes by reviewing each

major class based on the HUGO Gene Nomenclature

Committee (HGNC; http://www.genenames.org), providing

an updated database and useful resources available online

(Da Sacco et al., 2011; Seal et al., 2020). They function as post-

transcriptional regulators of their mRNA targets resulting in

the translational repression and/or degradation (Djebali et al.,

2012; Catalanotto et al., 2016; Hung et al., 2018; Sun et al.,

2018). Moreover, different kinds of ncRNAs can interact with

each other and/or with DNA, as well as other RNA classes and

proteins (Baldassarre & Masotti, 2012; RamónCajal et al.,

2019; Sun et al., 2020). Various ncRNAs have been

discovered to be encapsulated and transported through

exosomes, microvesicles, and apoptotic bodies, all referred

to as extracellular vesicles (EVs), ranging from ~30 to 150 nm

in diameter (Fischer & Deindl, 2021; Li et al., 2021). Exosomal

ncRNAs, mainly miRNAs, lncRNAs, and circRNAs, have been

reported to be expressed by different cells in several

physiological and pathological conditions (Li et al., 2021).

Once secreted, they are transported by body fluids, such as

serum, plasma, urine, saliva, etc, to recipient cells where they

could influence different functionalities (Li et al., 2021; Qiu

et al., 2021; Wang et al., 2022) or can be employed as useful

diagnostic biomarkers of paediatric diseases (Masotti et al.,

2017a; Masotti et al., 2017b; Paolini et al., 2022a; Paolini et al.,

2022b; Felli et al., 2022).

Insights into bacterial sRNAs

Further investigations have led to explore bacterial RNA-

dependent mechanisms associated with ncRNAs. In bacteria, a

class of small ncRNAs (i.e., sRNAs), are gene expression

mediators at both transcriptional and post-transcriptional

levels. So far, hundreds of sRNA molecules ranging from

approximately 50–400 nt were found ubiquitously in different

bacterial species, among which sRNAs from Escherichia coli

(E. coli) are the most studied (Storz et al., 2011; Kang et al.,

2013; Pérez-Reytor et al., 2017; Mediati et al., 2021). Using next-

generation sequencing (NGS), Lee and Hong identified several

short sRNAs (ca. 26 nt) in Streptococcus mutans, and proposed

the term “microRNA-size,” small RNA (msRNA) (Lee & Hong,

2012). Furthermore, very small RNAs (vsRNAs <16 nt) as well as
tRNA-derived fragments (tRFs), belonging to the category of

vsRNAs, were recently discovered in bacteria (Diallo et al., 2022).

Interestingly, tRFs seem to represent the majority of sncRNA

types in bacteria as well as in eukaryotes (Plante et al., 2012;

Lambert et al., 2021) suggesting a conserved evolutionary

strategy to modulate gene expression from bacteria to eukaryotes.

Nowadays, thanks to the development of RNA sequencing, it

is known that production and regulation of bacterial sRNAs is

coordinated through other components, including others sRNAs,

mRNAs, and remarkably sRNA-binding proteins (sRBPs)

(Adams & Storz, 2020; Goldberger et al., 2021). Several sRBPs

(e.g., Hfq, ProQ, and CsrA) are involved in facilitating sRNA-

mRNA base-pairing in Enterobacteriaceae, mainly investigated

in E. coli and Salmonella enterica serovar Typhimurium (Storz

et al., 2011; Kim & Kwon, 2013; Klein & Raina, 2017; Goldberger

et al., 2021). In E. coli, the Hfq protein, an RNA chaperone,

enhances base pairing between a specific sRNA and its mRNA

target (Waters & Storz, 2009; De Lay et al., 2013; Vazquez-

Anderson & Contreras, 2013). Hfq interacts with at least 40% of

the known sRNAs and has the ability to interact not only with

other ncRNAs, but also with longer RNAs (i.e., rRNAs and

tRNAs) and most importantly with many different mRNAs

(Pichon & Felden, 2007; Bandyra et al., 2012; Waters et al.,

2017; Quendera et al., 2020). The functional importance of sRBPs

in “sRNA-mediated” regulation of gene expression in bacteria

was summarized previously (Pichon & Felden, 2007).

Host-pathogen interactions mediated by
sRNAs

sRNAs secreted by bacteriamay play important roles not only in

microbe–microbe but also in host–microbe interactions (Ahmadi

Badi et al., 2020). In both Gram-negative and Gram-positive
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bacteria, two major characteristics of sRNAs have been identified,

the cis- and trans-encoded sRNAs. These sRNAs, once coupled to

their RNA target(s) lead to inhibition or activation of target gene

expression (e.g., genes responsible for controlling bacterial

adaptation to environmental changes and virulence) through a

variety of post-transcriptional gene regulation mechanisms (Li

et al., 2012; Felden & Gilot, 2018; Chakravarty & Massé, 2019;

Felden & Augagneur, 2021; Millar & Raghavan, 2021). Usually, cis-

encoded sRNAs are transcribed from the same genetic locus but in

the opposite direction to their single RNA target against which they

pair, whereas trans-encoded sRNAs are transcribed in a distant locus

(respect to theis targets) and exert their regulatory functions by

partially pairing to their RNA targets (Adams & Storz, 2020; Carrier

et al., 2020; Dell’Annunziata et al., 2020; Jørgensen et al., 2020).

Several bacterial sRNAs are considered as master regulators in that

they are able to modulate the expression of transcriptional factors

responsible for the activation of virulence genes or they can target

the quorum-sensing regulatory components by regulating multiple

mRNA targets (Quorum Regulatory RNAs, QRR) (Broach et al.,

2012; Pérez-Reytor et al., 2017; Felden &Cattoir, 2018; Janssen et al.,

2020; Lalaouna et al., 2021). Hence, sRNAs are emerging as key

controllers of central regulatory circuits determining the bacterial

lifestyle. sRNAs encoded on pathogenicity islands (PAIs) or

virulence plasmids are prime candidates to directly control the

expression of virulence genes (Papenfort & Vogel, 2010;

Papenfort & Vogel, 2014). Several types of RNA-based regulatory

mechanisms as well as their interactome in pathogenic bacteria have

been reported so far (Sridhar & Gunasekaran, 2013; Waters et al.,

2017; Chakravarty & Massé, 2019). The most intriguing types of

bacterial sRNAs are those targeting human host mRNAs. Some

sRNAs adopt secondary structures that allow them to interact with

human host mRNAs during bacterial infection. Although the

function of this class of RNAs has not been fully elucidated yet,

their secondary structure could bind not only to specific human

mRNAs but also could regulate the expression of individual bacterial

genes (Choi et al., 2017). Bacterial sRNAs that mimic eukaryotic

miRNAs could target the host immune response during infection. A

tRF from Pseudomonas aeruginosa downregulates the inflammatory

response in both in vitro and in vivo pulmonary infection models.

Indeed, it was shown that this sRNA could downregulate the

expression of specific MAPKs involved in the activation of NF-

kB, thereby leading to a decreased expression of IL-8 (Koeppen et al.,

2016). Recently, Sahr and colleagues reported that the sRNAs RsmY

and tRNA-Phe from Legionella pneumophila (L. pneumophila)

could base pair with eukaryotic mRNAs either in the coding

region or the untranslated region (UTR) (Sahr et al., 2022). This

binding leads to the inhibition of proteins involved in the formation

of the RIG-I-like receptor as well as those involved in the Toll-like

receptor signalling pathway, such as RIG-I, cRel, and IRAK1 (Sahr

et al., 2022).

Furthermore, it has been reported that several bacterial

pathogens produce sRNAs that can be secreted within EVs

produced by Gram-positive bacteria or outer membrane

vesicles (OMVs) produced by Gram-negative bacteria and, by

these means, transferred into eukaryotic cells and/or to other

bacteria (Ahmadi Badi et al., 2017; Choi et al., 2017; Ahmadi Badi

et al., 2020; Stanton, 2021). For instance, L. pneumophila releases

EVs containing sRNAs both in vitro and in vitro during infection;

these sRNAs modulate the host innate immune response in

argonaute-2 (Ago2)-dependent manner (Sahr et al., 2022).

Ago2 as a component of the RNA-induced silencing complex

(RISC), involved in several cellular processes and functions in

RNA-mediated gene silencing (RNAi) (Müller et al., 2020).

Taken together, in the host–pathogen interaction scenario,

pathogens could actively alter the host machinery for their

own benefits by changing the pattern of host mRNA

expression (Sarshar et al., 2022a). However, additional

researches are necessary to elucidate how bacterial sRNAs

delivered by OMVs/EVs mediate inter-kingdom

communication upon entering human cells.

The role of A. baumannii sRNAs in different
networks of interactions

Hospital-acquired infections caused by multidrug resistant

(MDR) bacteria remain an unresolved problem in healthcare

settings worldwide. Recently, A. baumannii emerged as one of

the major opportunistic nosocomial and community-acquired

pathogens; its propensity to acquire multidrug, extensive drug

and even pandrug resistance phenotypes reduced effective

therapies and increased mortality rates (Dehbanipour and

Ghalavand, 2022). Apart from pneumonia, several others

infections such as wound infections, meningitis, endocarditis,

osteomyelitis, endophthalmitis and urinary tract infections

(UTIs) have been reported in adults as well as children (Hu &

Robinson, 2010; Di Venanzio et al., 2019; Sarshar et al., 2021).

The A. baumannii ability to adhere and form biofilms on both

biotic and abiotic surfaces is the cause of several biofilm-

mediated infections such as catheter-associated UTIs

(CAUTIs) in clinical settings (Di Venanzio et al., 2019).

Within the last decade, several studies tried to unravel the

complex mechanisms that led to the emergence of A.

baumannii as a formidable human pathogen, from its

pathogenicity to resistance strategies (Ambrosi et al., 2017;

Scribano et al., 2019; Ambrosi et al., 2020; Pompilio et al.,

2021; Marazzato et al., 2022). However, these researches have

been hampered by the wide heterogeneity of A. baumannii

isolates owing to its high genome plasticity (i.e., capability to

acquire extracellular DNA, high frequency of homologous

recombination and elevated presence of mobile elements), that

widens its ability to adapt and persist in hospital settings where

the presence of these kind of pathogens is constantly monitored

(Gaiarsa et al., 2019; Leal et al., 2020;Whiteway et al., 2022). Gene

expression modulation by transcription factors (TFs), two-

component systems (TCSs), σ factors and sRNA-mediated
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mechanisms are among the preferred bacterial strategies to fight

environmental stresses (i.e., oxidation, acidic environment,

osmotic or temperature gradients, nutrient starvation, and

antibiotic exposure) (Felden & Cattoir, 2018; Allen et al.,

2020). In particular, it was recently shown that bacterial trans-

encoded sRNAs could modulate antibiotic resistance

mechanisms through several strategies, such as by acting on

efflux pumps, membrane transporters, LPS and/or cell wall

biosynthetic modifications, DNA mutagenesis and biofilm

synthesis, thereby fine tuning the responsiveness to a broad

spectrum of antibiotics. Detailed reviews on this topic have

appeared in the last few years (Dersch et al., 2017; Mediati

et al., 2021). However, the overall properties of trans-encoded

sRNAs inA. baumannii remain elusive compared to other Gram-

negative species. Of note, carbapenem-resistant A. baumannii is

a major concern owing to the enhanced expression of

carbapenamases, several classes of efflux pumps and outer

membrane proteins (OMPs), which have been reported to be

correlated with the capability of this pathogen to form biofilm

(Pompilio et al., 2021; Sarshar et al., 2021). Conversely, the

sRNAs regulating efflux pumps (EPs) have been extensively

studied in E. coli, Clostridium acetobutylicum, Mycobacterium

tuberculosis, Shigella sonnei and S. enterica ser. Typhimurium

(Yu & Schneiders, 2012; Chan et al., 2017; Felden & Cattoir, 2018;

Gan & Tan, 2019). For example, in Enterobacteriaceae, the

homeostasis of major OMPs, such as OmpA, OmpC, OmpD,

and OmpF, is controlled by the regulatory action of several

sRNAs (Guillier et al., 2006; Papenfort et al., 2006; Klein &

Raina, 2017; Matera et al., 2022). As these sRNAs have a pivotal

role as virulence factors and in drug resistance of several OMPs in

FIGURE 1
Small RNAs (sRNAs) in A. baumannii physiology, antibiotic-resistance and virulence. The figure summarizes A. baumannii sRNAs associated with their
targets and relative functions. Black dotted lines represent putative or underexplored roles. By the downregulation of the abaF gene, sRNAAbsR25 affects the
function of the major facilitator superfamily (MFS) transporter, thereby leading to an increased susceptibility to fosfomycin. Other sRNAs can regulate the
expression of other efflux pumps and outer membrane proteins (OMPs). The sRNA 13573 was found to be overexpressed during A. baumannii biofilm
formation aswell as during airway epithelial cell adhesion, probably belonging to theQuorumSensing (QS) RegulatoryRNAs. Additional sRNAs are believed to
control the expression ofA. baumannii virulence factors. The identification of differentially regulated sRNAs linked to colistin resistance in COLRA. baumannii
strains provides the basis for their use as diagnosticmarkers. A 300 nt-long sRNA has been found to be overexpressed in a subpopulation of opaque virulent
colonies showing low rate of translucent switch, named low-switchingopaque variants (LSO). Additionally,A. baumannii can release sRNAs-containing outer
membrane vesicles (OMVs) that may have a role in host-pathogen interactions. A. baumannii Hfq complex (i.e., Hfq, mRNA and sRNA) depicted in the
centered dotted square represents the main regulatory machinery able to modulate the expression of several fundamental proteins, such as OMPs or to
impair sRNA stability and influence bacterial pathogenicity. All the items depicted in this picture have been fully described in the main text.
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A. baumannii, mainly OmpA, BamA, LptD, Omp33–36, OmpW,

CarO, and OprD, it would be interesting to investigate whether

specific sRNAs could either suppress or enhance the expression

of these OMPs in A. baumannii (Figure 1, top left).

Pathania and colleagues were the first group who investigated

the presence of regulatory sRNAs and their functionality in A.

baumannii. They identified distinct sets of novel differentially

expressed sRNAs in A. baumannii strain MTCC 1425 compared

to ATCC 17978, suggesting that in A. baumannii the expression of

sRNAs is strain-specific (Sharma et al., 2014). In this screening, the

authors found a sRNA, designated AbsR25. By target gene

prediction, AbsR25 was initially recognized as the regulator of an

efflux pump in A. baumannii, therefore suggesting that it might be

either directly or indirectly involved in the expression of a

transporter and potentially also in drug resistance mechanisms

(Sharma et al., 2014) (Figure 1, top right). Later on, Sharma and

colleagues demonstrated that the sRNAAbsR25 negatively regulates

the expression of the abaF gene, which belongs to the major

facilitator superfamily (MFS) transporter. AbaF actively effluxes

fosfomycin, rendering the cells resistant. Accordingly, its

expression is upregulated upon exposure to this antibiotic

(Figure 1, top center). Inhibition of abaF by AbsR25 lowered

fosfomycin minimum inhibitory concentration (MIC) by

eightfold but also decreased biofilm formation and virulence in

A. baumannii (Sharma et al., 2016). Additionally, Alvarez-Fraga and

colleagues analyzed the regulatory effects ofA. baumannii sRNAs on

biofilm formation both in vitro and in vivo (Alvarez-Fraga et al.,

2017). Among the differentially expressed sRNAs, the expression

level of the sRNA 13573 was significantly higher in biofilm as well as

during adhesion to A549 human alveolar epithelial cells, compared

to planktonic A. baumannii ATCC 17978 cells (Figure 1, middle

center and bottom center) (Alvarez-Fraga et al., 2017). Although the

mechanism(s) underlying this regulation remains to be fully

determined, the involvement of sRNAs in the adhesion to

epithelial cells highlights the unrealized key role of sRNAs in A.

baumannii-host interaction to establish a successful infection.

So far, the comprehensive transcriptomic analysis of

Acinetobacter spp. led to the discovery of 110 potential sRNAs,

the majority of which are conserved inA. baumannii and, to a lesser

extent, in Acinetobacter nosocomialis and Acinetobacter pittii

(Kröger et al., 2018). Kröger’s group improved the resolution of

sRNA de novo discovery by differential RNA-seq pooled from

sixteen different growth conditions in A. baumannii ATCC

17978. Their results indicated that the majority of sRNAs were

located within intergenic regions of the bacterial genome or

antisense with respect to coding regions or within the 3′ regions
of coding genes. Interestingly, 22 sRNAs were found within this

latter location and all possessed their own promoters located

upstream of the coding gene (Kröger et al., 2018). However, the

authors did not explore the possible targets of these 22 sRNAs.

Recently, Cafiso et al. identified several msRNAs that are

differentially expressed in colistin resistant (COL R) A.

baumannii strains through both experimental and computational

analyses (Figure 1, bottom left). Although identified as precursors of

their mature microRNA-size small RNA form (pre-microAbsRNA),

computational prediction of their targets revealed their involvement

in the regulation of different biological functions (i.e., biofilm

production, virulence and aminoglycoside-resistance),

highlighting their role in host-microbe interactions (Cafiso et al.,

2020). The innovative aspect of this work is the identification of

downregulated sRNAs in COLR vs. colistin susceptible A.

baumannii strains that could be used to rapidly identify resistant

isolates. Most importantly, despite several sRNAs have been

identified in the MDR A. baumannii strain AB5075, their

physiological function(s) remain uncertain so far. Weiss and

colleagues identified 78 novel short and conserved strain-specific

sRNAs that are present in large copy numbers within the

AB5075 genome, using a RNA-seq-based approach (Weiss et al.,

2016). Twomore sRNAs, Aar and AbsR28 were previously reported

inAcinetobacter baylyi andA. baumanniiATCC 17978, respectively

(Schilling et al., 2010; Sharma et al., 2014). Among the others and

based on internal homology, they identified six groups of sRNAs

with one sRNAparticularly abundant and homologous to regulatory

C4 antisense RNAs found in bacteriophages P1 and P7. Four

additional highly conserved RNA species were identified in strain

AB5075, including the signal recognition particle (SRP) RNA, 6S

RNA, tmRNA and RNase P RNA, annotated as ABUWs030,

ABUWs053, ABUWs059, and ABUWs062. Interestingly, three of

them, ABUWs030, ABUWs053, and ABUWs059, were among the

most highly expressed ncRNAs in A. baumannii, suggesting their

potential physiological relevance in this pathogen (Weiss et al.,

2016).

Recently, the expression of a ~300-nt sRNA has been found to be

involved in controlling the phenotypic switch from the virulent opaque

(VIR-O) to the avirulent translucent (AV-T) phenotype in strain

AB5075 (Anderson et al., 2020). This sRNA was encoded at the 5′
end of the aadB gene within resistance island two and showed a

variable expression. In fact, gene expression analysis revealed that

bacterial opacity switching rate varied from VIR-O to the low-

switching opaque variants (LSO) as a function of the copy number

of this locus (Figure 1, middle left). The LSO represents a

subpopulation of cells that exhibit dramatically reduced levels of

switching to AV-T relative to that for the VIR-O. This identified

sRNA affected virulence, as the LSO cells exhibited decreased virulence

in vivo. In addition, more than 100 genes were identified as

differentially expressed between VIR-O and LSO, suggesting that

the ~300-nt sRNAmay act as a global regulator (Anderson et al., 2020).

As already outlined, Hfq can regulate the interactions

between mRNA and sRNA, both positively and negatively.

Among RNA chaperones, Hfq has been the only one

functionally studied in Acinetobacter spp. (Figure 1, middle

center). Indeed, recent analysis of Hfq in A. baylyi and A.

baumannii ATCC 17978 revealed that deletion of hfq in

A. baumannii impaired growth with respect to the wild-

type strain, increased susceptibility to environmental

stressors, including desiccation, decreased carbon
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metabolism and reduced host cell adhesion and virulence

(Kuo et al., 2017). The same pleotropic effects observed in

A. baylyi and A. baumannii ATCC 17978 were also shown in

Salmonella and E. coli hfq mutants, including reduced growth

rates, elevated sensitivity to environmental stresses, defeated

OMV production, fimbriae, biofilm formation and adhesion,

invasion and survival in eukaryotic cells (Sittka et al., 2008;

Hayashi-Nishino et al., 2012; Kuo et al., 2017). While it

appears that Hfq is a vital virulence factor in A.

baumannii, it remains unclear how this chaperone is

involved in mediating sRNA-mRNA interactions, a

function that is worth to be explored.

Conclusion and future perspectives

Host-pathogen interactions are based on the production of

specific types of communication molecules. Among them,

non-coding small RNAs, sRNAs, received an increased

attention as they are directly involved in the regulation of

gene expression, resulting in a rapid phenotypic change and

fast adaptation to the environment. The study of eukaryotic

miRNAs started about 30 years ago and a huge knowledge on

their targets and functions are nowadays available. Owing to

this, several miRNAs are currently used as disease biomarkers,

they are targets for new therapeutics (anti-miR compounds)

or under therapeutic evaluation in several clinical trials. Vice

versa, the massive discovery of bacterial sRNAs, the similarity

with human miRNAs, and detailed functional studies are very

recent concepts and the role of bacteria sRNAs in host-

pathogen interaction is still an unexplored field. Only few

studies reported that secreted bacterial RNAs can be stably

transported either in OMVs or as complexes with proteins/

biomolecules (Ghosal, 2018; Quendera, et al., 2020) or found

in free-form circulating in the human plasma of healthy

donors (Wang and Fu, 2019). sRNA-dependent gene

regulation influences bacterial lifestyle, modulating the

switch from a “harmless” colonizer to a pathogen.

However, the study of the expression profiles of bacterial

sRNAs has not been investigated in details yet, neither in

healthy individuals nor in infected patients. We think that

further studies about bacterial sRNAs could help to better

understand the role of these molecules as a diverse toolkit for

bacterial adaptation to the host environment (Sarshar et al.,

2017; Ambrosi et al., 2019; Sarshar et al., 2022b) or as

potentially novel therapeutics (i.e., administration of

natural or synthetic oligonucleotides) (Markelova et al.,

2021; Ozoline and Shavkunov, 2021). Being an

opportunistic pathogen, A. baumannii represents an

excellent model to characterize bacterial sRNAs and

evaluate their role in A. baumannii antibiotic-resistance

and pathogenesis. This is particularly true for those sRNAs

packed into OMVs that can be directly absorbed by the host

cells (Figure 1, middle right). However, the studies on the

functional role of bacterial secreted RNAs in infected host cells

has only recently started to appear and achieved results are

insufficient for depicting the whole crosstalk during bacterial

infection. Indeed, the majority of the studies were conducted

using in vitro or animal models that do not consider the

human tissue architecture and function. Hence, application of

human-derived advanced cell cultures, such as organoids,

together with high resolution RNA-seq techniques will

enable us to understand the impact of sRNAs on infectious

diseases. These models will allow the molecular

characterization of the interactions between bacterial RNAs

and host factors and will clarify their roles and importance in

bacterial pathogenicity, thereby including them under the

general concept of “RNA effector.” Last but not least,

owing to the presence of specific sRNAs in MDR bacteria

and/or their differential expression upon antibiotic stress, this

field of research opens the possibility to develop alternative

and innovative therapeutic strategies based on sRNAs.
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