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Editorial on the Research Topic

Machine learning, epistasis, and protein engineering: From sequence-

structure-function relationships to regulation of metabolic pathways

Epistasis is a term originating from genomics and describes the non-additivity of

effects of gene interactions on functional parameters (Phillips, 2008). Both within and

between genes, epistasis plays a fundamental role in the ability of protein sequences to

evolve (Breen et al., 2012).

In protein sciences, epistasis reflects non-linearity effects, ie., non-additive impacts,

resulting from interactions between mutations within a protein sequence (Reetz, 2013).

The evolution of proteins cannot be understood without the knowledge of the epistasis

phenomena (non-additive mutational effects) that take place within them. Indeed,

epistasis can reverse the effect of a mutation from beneficial to deleterious. Likewise,

thanks to epistasis phenomena, the conservation of a neutral mutation during evolution

can lead to beneficial effects of greater amplitude. Interactions between mutated amino

acids, as well as intramolecular interaction networks that can be set up following

mutations, condition the function (Acevedo-Rocha et al., 2021). While it is clear that

understanding sequence-structure-function relationships, and in particular
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intramolecular epistasis, is of paramount importance in protein

engineering, the means to predict these phenomena are currently

limited. Non-linear interactions are still poorly understood,

making the design of networks of interacting amino acid

residues serving to introduce desired functionality in an

enzyme a bottleneck.

The prediction of protein structure has been an on-going

challenge for computational methods, including artificial

intelligence. However, the recent development of structure

prediction deep learning (DL) tools such as alphafold2

(Jumper et al., 2021), ESMfold (Lin et al., 2022) or

ProteinMPNN (Dauparas et al., 2022), has the potential to

revolutionize this area (de Brevern, 2022; Goulet and

Cambillau, 2022). Nevertheless, these DL tools are not suitable

for predicting how individual amino acid changes alter protein

structure and function (Eisenstein, 2021): they can’t predict

epistatic effects.

After protein folding powered by DeepMind, Meta and/or

Baker’s team, the next challenge is to accurately predict epistasis

ie., the impact of non-linear interactions of mutations within the

protein sequence. A recent review of machine learning and deep

learning strategies examines how epistatic effects influence the

success rate of protein engineering projects by comparing fifteen

state-of-the-art approaches and provides a general workflow for

non-experts when using such learning strategies (Cadet et al.,

2022).

The aim of this Research Topic is to give an overview of

recent advances and to discuss the current understanding of

epistatic phenomena. Particular attention is paid to better

understanding and modeling of epistatic phenomena that can

impair the prediction of a property of interest.

The articles in this Research Topic illustrate the role of non-

linear interactions between players through four particularly

interesting examples: negative epistasis for an RNA enzyme;

higher-order interactions in complex phenotypes revealed by

the BowSaw tool; synergistic effect between Lysine acetylation

levels, mSWI/SNF activity and BRD9 inhibition in many cellular

contexts, and positive epistasis during the acquisition of

resistance of pathogenic bacteria to antibiotics.

Each of these articles is summarized
below

Machine learning approaches based on large experimental

datasets allow the behavior of some complex biological systems

to be predicted. As we know, the rational design of RNA enzyme

(ribozyme) activity is challenging, and many ribozyme-based

systems are only engineered or improved by random

mutagenesis and selection (in vitro evolution). Moreover,

extensive pairwise and higher-order epistasis prevent

straightforward prediction of the effect of multiple mutations

that is needed for rational design. Beck et al. used high-

throughput experimental data from variants of a self-cleaving

ribozyme to train a predictive model through machine learning

approaches. Using only sequence and activity data, they showed

that a machine learning approach can be used for RNA design

even for RNA molecules with unknown structures. This work is

very important because self-cleaving ribozymes can be used to

engineer control of gene expression thanks to their capacity to

alter RNA processing and stability. Beck et al. unveiled negative

epistasis in the RNA data suggesting that additional information,

eg. thermodynamic stability of helices, might be necessary for

increasing accuracy when predicting effects of long-range

distance mutations. This will enable a more comprehensive

understanding of RNA fitness landscapes for studying

evolution and for guiding RNA-based engineering efforts.

Machine learning also enables the inference and classification

of cellular, organismal and ecological phenotypes based on large

datasets, e.g., from genomic, transcriptomic and metagenomic

analyses. DiMucci et al. have developed a suite of algorithms,

named BowSaw, that takes into account different combinations

of variables also called “rules”. They applied this approach to

study the role of the gut microbiome in Crohn’s disease. They

found a previously unreported combination of microbial taxa

that is broadly and precisely associated with Crohn’s disease

samples. This is an important work whose current

implementation shows that BowSaw can be applied to other

datasets and used to uncover patterns associated with other

diseases. This new suit of algorithms utilizes variable

interactions in a trained Random Forest (RF) model in order

to extract multiple candidate explanatory rules. Applying

BowSaw to a study on the role of the gut microbiome in

Crohn’s disease, DiMucci et al. shows that it can find a

previously unreported combination of microbial taxa that is

broadly and precisely associated with Crohn’s disease samples

in the data set: they unveil higher-order interactions in complex

phenotypes.

Protein-protein interaction networks are often affected by

post-translational modifications. Since proteins rarely act alone,

these interactions and their regulation play key roles in a cell. For

example, acetylated histones not only affect chromatin

condensation but also act as anchor points for bromodomain

(BRD)-containing adapter proteins. These domains, and the

proteins containing them, can act as chromatin scaffolds that

organize large interaction networks which regulate transcription.

Loehr et al. have created a cellular model allowing the study of

lysine acetylation-dependent protein interaction networks. Using

cell lines in which histone acetylation was dependent on acetate

supplementation, they showed that the loss of lysine acetylation

remodels the composition of the chromatin and the protein-

protein interactions of BRDs. Their model may help to

understand the functional characterization of BRD-containing

proteins across distinct cellular contexts. Synergy between Kac

levels, mSWI/SNF activity and BRD9 inhibition appears to be

present in many cellular contexts. Loehr et al. created an
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inexpensive and flexible cellular model allowing the study of Kac-

dependent protein interaction networks.

The increasing resistance of pathogenic bacteria to antibiotics

is a major challenge to the health of humans, livestock and wildlife.

One approach to overcome resistance is to use drug combinations.

However, Mehta et al. showed that in the case of the pathogen

Francisella tularensis, exposure to two different drugs, sequentially

or in combination, resulted in a generalist mutation followed by

further mutations that alternated between adaptation to one drug

or the other, hence overcoming resistance.Mehta et al. showed that

clonal interference, weak pleiotropy and positive epistasis also

contributed to combinatorial evolution. The finding suggests that

the use of this non-interacting drug pair against F. tularensis may

render both drugs ineffective because of mutational switch-backs

that accelerate evolution of dual resistance. A better understanding

of how drug combinations affect adaptation to multi-drug

resistance is required to help overcome antibiotic resistance.

Our understanding of how to account for the effects of genetic

variation and in particular the impact of non-linear interactions

both within and between genes, is still in its infancy (Cadet et al.,

2022; Wittmund et al., 2022). As shown in the articles cited above,

the fundamental question of epistasis must be approached in a

transdisciplinary manner mixing theoretical approaches, data

driven modeling and wet laboratory experiments.
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