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The maintenance of genome stability requires the coordinated actions of multiple proteins
and protein complexes, that are collectively known as genome guardians. Within this
broadly defined family is a subset of proteins that contain oligonucleotide/oligosaccharide-
binding folds (OB-fold). While OB-folds are widely associated with binding to single-
stranded DNA this view is no longer an accurate depiction of how these domains are
utilized. Instead, the core of the OB-fold is modified and adapted to facilitate binding to a
variety of DNA substrates (both single- and double-stranded), phospholipids, and
proteins, as well as enabling catalytic function to a multi-subunit complex. The flexibility
accompanied by distinctive oligomerization states and quaternary structures enables OB-
fold genome guardians to maintain the integrity of the genome via a myriad of complex and
dynamic, protein-protein; protein-DNA, and protein-lipid interactions in both prokaryotes
and eukaryotes.
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INTRODUCTION

The small β-barrel (SBB) family of proteins is a large and ubiquitous family with diverse metabolic
functions (Youkharibache et al., 2019). This family is comprised of members that contain a
structurally conserved “urfold” consisting of five or six β-strands forming a domain that
demonstrates flexibility in substrate binding ranging from phospholipids to proteins to RNA,
single- and double-stranded DNA, as well as DNA of unusual structures, including the ssDNA
regions G-quadruplexes and forked DNAmolecules (Chen et al., 2018). This flexibility is provided by
variations in the fold, unique modularity, as well as distinct oligomerization states and quaternary
structures. The term “urfold” was proposed by Youkharibache et al to transcend and encompass
superfold families including the closely related oligonucleotide/oligosaccharide-binding fold (OB-
fold) proteins and Src homology 3 (SH3) domains (Figure 1). While these two superfamilies have
different strand topologies, their structure is almost identical as when they are superimposed, they
differ by less than 2 Å for the β-strands (Agrawal and Kishan, 2001; Bianco et al., 2017; Bianco, 2021).
This structural similarity is critical to understanding OB-fold function and regulation as
explained below.

The OB-fold was originally identified as a novel folding motif in four unrelated proteins: a
nuclease, a tRNA synthetase, and two toxins (Murzin, 1993). Since then it has been found in multiple
proteins many of which are involved in genome stability (Amir et al., 2020; Bianco, 2021; Flynn and
Zou, 2010; Nguyen et al., 2020). The OB-fold is comprised of two, three-stranded antiparallel
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β-sheets and is often described as a Greek key motif (Murzin,
1993; Singleton et al., 2001). The β-sheets are arranged to form a
β-barrel that is typically capped by an α-helix at one end and a
binding cleft at the other (Figure 1A). The loops that connect the
β-strands vary in length, sequence, and conformation,
contributing to the binding specificities of each OB-fold.
Consequently, these domains also vary in size from 70 to 150
residues, and while the overall structure is conserved and
structures align with an RMSD of 2.1 Å, conservation at the
primary amino acid sequence level is notoriously low (Theobald
et al., 2003). Finally, while the intrinsic structure of the OB-fold is
maintained, its presentation and number of domains per protein
or complex vary significantly and the substrate specificities for
each domain are often different. This combined with the
variations in loop sizes and composition, varying sequences,
and the number of domains per protein or protein complex
further contributes to the unique binding and enzymatic
properties of each protein or protein complex. This is evident
in the seven representative OB-folds (Figures 1A, 2).

For the E. coli single-strand DNA binding (SSB) protein, β-
strands 3 and 4, as well as L34, are longer than those in RecG and
the nSrc loop is twisted back towards the β-barrel (compare
Figures 1A, 2A). As its name suggests, SSB binds to single-
stranded DNA (ssDNA) whereas RecG binds to forked DNA
substrates (Meyer et al., 1979; Molineux et al., 1975; Ruyechan

and Wetmur 1976; Sigal et al., 1972; Slocum et al., 2007; Whitby
et al., 1994). In contrast, RuvA binds to Holliday Junctions and in
its OB-fold, the nSrc loop is longer and contains charged residues
that are used for strand separation during branch migration
(Ariyoshi et al., 2000; Iwasaki et al., 1992). Thus the RuvA
OB-folds provide one catalytic function to the RuvAB branch
migration complex. In contrast to RuvA, in the OB-fold of the
eukaryotic minichromosome maintenance protein (MCM)
subunit from Thermoplasma acidophilum (tapMCM), the RT-
loop is extended and is interrupted by 310-helix that is itself
interrupted by a zinc-binding motif or Zn-finger (Figure 2C) (Fu
et al., 2014). This insertion seen in MCM subunits was selected
here for comparison to Replication Protein A (the eukaryotic
equivalent of E. coli SSB) which binds to ssDNA and, DNA ligase
III (Bochkarev and Bochkareva 2004; Iftode et al., 1999). In RPA
and the ligase, their OB-folds are also interrupted by insertions
and DNA ligase III uses its OB-fold to bind dsDNA (Bochkareva
et al., 2001; Fan and Pavletich 2012; Yates et al., 2018). For the
RPA70 OB-fold (also knowns as DBD-C), one insertion is a 28-
residue, Zn-stabilized, three, β-strand structural domain that is
involved in ssDNA binding (Fan and Pavletich 2012). In contrast,
for the recombination mediator RecO, the β-barrel is compact,
the RT-loop is comparable in size to that of RecG, and the nSrc
loop is shorter (Figure 2F) (Ryzhikov et al., 2011). This small
subset of OB-folds shows how the variations on the SBB theme

FIGURE 1 |OB-folds and SH3 domains are structurally almost identical. Images were generated using Chimera with helices colored red and β-sheets in purple. (A)
The OB-fold is from the T. maritima RecG (PDB file:1GM5) (Singleton et al., 2001). (B) The SH3 domain bound to a PXXP-ligand (blue) shown is from the ABL tyrosine
kinase (PDB file: 1ABO) (Musacchio et al., 1994). The labeling of strands, helices, and loops in panels A and B is taken from reference (Agrawal and Kishan 2001). Loop
nomenclature is from the Src protein (RT-Src and nSrc, respectively) (Yu et al., 1992). The RT-loop connects β2 and 3 (L23) while the nSrc loop connects β-strands
1 and 5 (L15). (C) Structural alignment of an SH3 domain (PDB file:2XKC) and with the RecG OB-fold. The alignment was done using TM-align (Zhang and Skolnick,
2005). This figure was adapted from (Bianco, 2021). In the images at the bottom of panels (A–C), the representative OB-fold and SH3 domains are rotated towards the
viewer so that the β-barrels can be viewed from the top down.
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enable a single fold to impart distinct DNA binding properties to
unrelated proteins with unique functions. However, as alluded to
above, OB-folds do not only bind DNA but also proteins and
phospholipids enabling additional levels of control critical to
genome stability (Zhao et al., 2019; Ding et al., 2020).

Early insight into how proteins could bind to OB-folds to
compete with ssDNA binding came from the work of Agrawal
and Kishnan who compared the structures of SH3 domains to
OB-folds (Agrawal and Kishan, 2001). SH3 domains are ~50
residue modules that are ubiquitous in biological systems and
which often occur in signaling and cytoskeletal proteins in
eukaryotes (Dalgarno et al., 1997; Kay et al., 2000; Ponting
et al., 1999; Sudol 1998). The SH3 domain has a characteristic
fold which consists of five or six beta-strands arranged as two
tightly packed anti-parallel beta-sheets arranged into a barrel
form and is almost identical in structure to the OB-fold (Figures
1B,C) (Agrawal and Kishan, 2001). Critical to their function (and
germane to this review), SH3 domains bind PXXP-containing
ligands in a pocket sandwiched between the RT-Src (RT) and
nSrc loops (Figure 1B) (Yu et al., 1992; Musacchio et al., 1994).
This pocket corresponds to the canonical ssDNA binding pocket
of many OB-folds and this model of binding is frequently used to
regulate and stabilize OB-fold partner proteins.

In this review, examples of OB-fold genome guardians are
presented and how they bind to and modify different DNA

substrates will be discussed. This is followed by sections on
protein binding, and how this is used to stabilize genome
guardians as well as enable their regulation. Finally, using the
E. coli SSB interactome as an example, the control of OB-fold
function in maintaining genome integrity will be presented. Here
the competition between ssDNA and protein binding to control
interactome partners will be illuminated. These discussions will
highlight the unique aspects of each OB-fold and how the
variability in this small domain is utilized to create families of
proteins whose overall function is to guard the genomes of the
organisms in which they are active.

OB-folds in Genome Guardians
Proteins whose function is to maintain the integrity of the
genome and safeguard it are classified as genome guardians.
Many guardians such as the DNA helicase RecBCD and the
recombinases RecA and Rad51 contain neither OB-folds nor SH3
domains (Chen et al., 2008; Conway et al., 2004; Singleton et al.,
2004). However, the number of genome guardians utilizing OB-
folds to mediate changes in DNA is increasing (Figure 3)
(Agrawal and Kishan, 2003; Bochkarev and Bochkareva, 2004;
Flynn and Zou, 2010; Gao et al., 2018; Nguyen et al. 2020). Recent
work has shown that the SSB interactome is the first family of OB-
fold genome guardians identified in E. coli (Bianco, 2021).
However, SSB interactome members are not the only OB-fold

FIGURE 2 | The OB-fold in genome guardians presents itself in different forms. Six representative OB-folds are shown. Panels A, B and F are prokaryotic while
panels (C–E) are from eukaryotic proteins. As in Figure 1, images were generated using Chimera with helices colored red and β-sheets in purple. The orientation of each
OB-fold is the same as in (A) such that the α-helix is located at the top of each structure to enable direct visual comparison. (A) SSB is the single-strand binding protein
from E. coli (PDB file 1EYG); (B)RuvA is part of the E. coliHolliday Junction branchmigration complex (PDB file 1C7Y); (C) The OB-fold from one of the subunits of a
homohexameric MCM hexamer (PDB file 4ME3). (D) is the third OB-old present in the 70 kDa subunit of the eukaryotic Replication Protein A (functional homologue of
E. coli SSB) (PDB file 4GOP); (E) is the OB-fold from DNA ligase III (PDB file 3L2P) and (F) is the OB-fold from RecO, a recombination mediator also from E. coli (PDB file
1U5k).
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proteins guarding the bacterial genome as shown for RuvA, which
is not an interactome partner but contains OB-folds (Rafferty
et al., 1996). In eukaryotes, the OB-fold family of genome
guardians is large and likely to increase in size as additional
structures are determined (Flynn and Zou, 2010). Thus the
concept of OB-fold genome guardians is universal and at
present includes at least 40 proteins and this list is likely to grow.

Representative members of the prokaryotic and eukaryotic
OB-fold genome guardian families are shown in Figure 3.
Included in this figure are the canonical single-strand DNA
binding proteins, SSB in E. coli, and RPA and the human
SSB1 complex from eukaryotic cells. There are also nucleases
(Exo I and RecJ), recombination mediators (BRCA2 and RecO),
DNA ligases, polymerases (Pol II), and helicases (PriA, RecG, and
theMCM complex) as well as telomere end-binding (CTC1—part
of the CST complex, POT1, TPP1, and TAP82) and branch
migration complex proteins (RuvA). Visible inspection of the
proteins selected, reveals that the number of OB-folds per
polypeptide varies from one to as many as seven and the
substrate-binding partner capabilities of each domain present
per protein complex is also variable. This is perhaps best
exemplified by CTC1 which has a total of 7 OB-folds (Lim
et al., 2020). The first 4 have no demonstrated substrate
specificity; the fifth or OB-fold E, binds protein exclusively
and OB-folds 6 and 7 bind to telomere ssDNA and, ssDNA
and protein, respectively. There are also examples of OB-folds
such as those in SSB and RPA that bind to DNA non-specifically
including tails of G4 quadruplexes, whereas POT1 and CTC1
proteins bind to sequence-specific ssDNA in telomere ends with

high affinity (Wold and Kelly, 1988; Kim et al., 1992;
Nandakumar et al., 2010; Ray et al., 2013; Rice et al., 2017;
Shastrula et al., 2018; Lim et al., 2020). For the CST complex
(which contains CST1) its DNA substrate-specificity is length-
dependent: specific when ssDNA is short and non-specific as
DNA length increases (Miyake et al., 2009; Hom and Wuttke,
2017). SSB, RPA70, POT1, and CTC1 contain OB-folds that bind
to ssDNA but SSB and RPA bind to both ssDNA non-specifically
and proteins, and, like SH3 domains, the SSB OB-folds also bind
to acidic phospholipids (Fan and Pavletich, 2012; Zhao et al.,
2019; Bianco, 2021). Within the domains that bind proteins, the
mechanism of binding also differs, with some binding in the cleft
formed between the RT and nSrc loops (POT1 and SSB) and
others being partially wrapped by the binding partner (BRCA2)
(Yang et al., 2002; Bianco et al., 2017; Chen et al., 2017; Rice et al.,
2017; Ding et al., 2020). Finally, there are examples of proteins
that bind to duplex DNA and again, their mechanism of binding
is distinct. For RuvA, it binds to Holliday junctions while DNA
ligases bind to nicked duplexes and MCM proteins bind to both
ss- and dsDNA. This is explained in more detail in the next
section (Iwasaki et al., 1992; Parsons et al., 1992; Ellenberger and
Tomkinson, 2008; Tomkinson and Sallmyr, 2013; Shi et al., 2018).

The variability in OB-fold types is utilized by genome
guardians to orchestrate the myriad of protein-DNA and
protein-protein interactions required to maintain the integrity
of the genome (Flynn and Zou, 2010; Amir et al., 2020). In the
sections that follow, the mechanism of substrate binding by OB-
folds and the ways that genome guardians use this binding to
protect the genome are discussed. As there are so many genome

FIGURE 3 |OB-fold genome guardians are ubiquitous. Schematics of representative family members from both prokaryotes and eukaryotes are shown. The figure
is adapted from reference (Flynn and Zou, 2010). Each OB-fold is drawn the same size for simplicity and the different colours within each domain reflect the binding or
substrate preferences ascribed to each protein. For Exonuclease I, the OB-fold is embedded within an extended SH3 domain (Breyer and Matthews, 2000). Family
members are presented in different colors for clarity. The OB-folds of SSB, RuvA and POT1 have an additional coloured bar to indicate lipid binding, catalytic
activity, and interruption by a Holliday Junction Resolvase domain, respectively. The “?” indicates an OB-fold of unknown function. The boxes indicate these OB-fold
proteins exist in a complex. For details on the function of each protein the reader is referred to (Tye, 1999; Bianco, 2010; Flynn and Zou, 2010; Sarbajna andWest, 2014;
Wu et al., 2016; Nguyen et al., 2020; Bianco, 2021).
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FIGURE 4 | OB-folds interact with different DNA substrates and effect different outcomes. (A) the four OB-folds of SSB form an intimate complex with ssDNA
(coloured orange and light blue) which is wrapped around the tetramer (PDB file: 1EYG). Inset: space-filling image to show how ssDNA is protected. DNA strand
colouring is the same as in the ribbon diagram and SSBmonomers are coloured light grey and neutral. (B) the ssDNA from the complex in (A). (C)DNA ligase III utilizes its
OB-fold (coloured green) to bind to the minor groove of dsDNA (light blue) opposite a nick [PDB file: 3L2P; (Cotner-Gohara et al., 2010)]. (D) The bent and
underwound DNA from the structure in (C). (E) A side view of the RT-loop of the DNA ligase III OB-fold interacting with the widened minor groove of the nicked duplex.
(F)–(I), The RuvA tetramer utilizes catalytic OB-folds to facilitate branch migration. Four images of the RuvA tetramer are shown [PDB File: 1C7Y; (Ariyoshi et al., 2000)].
The apo form is shown in (F) so that the four OB-folds (coloured in green) can be seen with the acidic residues indicated in red. (G) RuvA binds to a HJ (PDB File: 1M6G
(Thorpe et al., 2003)), converting it into a planar X configuration. The orientation in G is the same as in (F). (H)One subunit of RuvA is presented in a side viewwith the OB-
fold in the same position as Figure 2B. Here, the extended nSrc loop places the acidic residues into the center of the junction. (I) These residues catalyze drive strand
separation as arms of the Holiday Junction are translocated across the surface of the tetramer. Here translocation is driven by ATP hydrolysis in flanking RuvB hexamers
(not shown). (J) and (K) The OB-folds in MCM proteins are arranged around the center of the ring to facilitate binding to ssDNA (PDB file: 4POG). In panel J, the protein-
DNA complex is viewed from the top so that the positions of the Zn fingers can be seen (beneath the transparent yellow spheres). The positions of 2, ssDNA fragments
are also visible in this view. In panel K, the complex is viewed from the bottom with highly conserved arginines coloured in red with those from 4 of 6 subunits in proximity
to the ssDNA [R124 and 186; (Froelich et al., 2014)]. For further details of translocation in the CMG complex see (Meagher et al., 2019).
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guardians, it is not possible to discuss all possibilities. Instead, key
proteins for which structures and biochemistry are available have
been selected to highlight how the core of the OB-fold is used to
guard the integrity of the genome (Arcus, 2002; Agrawal and
Kishan, 2003; Theobald et al., 2003; Richard et al., 2009; Ashton
et al., 2013; Wu et al., 2016; Nguyen et al., 2020; Bianco, 2021).

OB-folds Interact With DNA Substrates in
Unique Ways to Effect Distinct Outcomes
The variation in OB-folds suggests that proteins containing these
domains may bind to DNA substrates in distinct ways to effect
different reaction outcomes while maintaining genome integrity.
To demonstrate how this can occur, 4 genome guardians were
selected. The first is the E. coli SSB protein which is the canonical
single-strand DNA binding protein (Meyer and Laine, 1990;
Lohman and Ferrari, 1994). The second is DNA ligase III
which binds to a nicked duplex and facilitates the sealing of
the nick (Cotner-Gohara et al., 2010; Simsek and Jasin, 2011).
RuvA, like SSB, is a tetramer but instead of having the OB-folds
exposed to accommodate ssDNA, the folds are centrally located
and interact with dsDNA during branch migration (Ariyoshi
et al., 2000; Yamada et al., 2002). Fourth, the MCMDNA helicase
forms a ring-shaped structure, and like RuvA, the OB-folds are
positioned in the center of the ring and contact the ssDNA
(Froelich et al., 2014).

E.coli SSB is the most well-studied single-strand DNA binding
protein (Chase and Williams, 1986; Meyer and Laine, 1990;
Kowalczykowski et al., 1994; Lohman and Ferrari, 1994;
Shereda et al., 2008; Bianco, 2021). The role of this protein is
to bind to exposed ssDNA and to as many as twenty partners that
constitute the SSB interactome to regulate their activities
concerning genome stability (Costes et al., 2010; Ryzhikov
et al., 2011; Yu et al., 2016; Huang and Huang, 2018). The
active form of SSB is a stable homo-tetramer (Sancar et al.,
1981). Each monomer is divided into two domains defined by
proteolytic cleavage: an N-terminal domain comprising the first
115 residues and a C-terminal tail spanning residues 116 to 177
(Curth et al., 1996). The tail is comprised of an intrinsically
disordered linker and acidic tip (Lohman and Ferrari, 1994;
Shereda et al., 2008; Kozlov et al., 2015; Bianco, 2017). For

further details see the section “OB-fold regulation” including
Figure 6.

The N-terminal domains are visible in all crystal structures
to date, are responsible for tetramer formation, and are almost
exclusively OB-fold [Figures 2A, 4A; (Raghunathan et al.,
2000; Savvides et al., 2004)]. ssDNA binding by this domain
is non-specific and occurs via the wrapping of the
polynucleotide around the SSB tetramer using an extensive
network of electrostatic and base-stacking interactions with
the phosphodiester backbone and nucleotide bases,
respectively [Figure 4A and (Chrysogelos and Griffith,
1982; Kuznetsov et al., 2006; Raghunathan et al., 2000)].
Within this complex, ssDNA bound to the tetramer is
wrapped and bound securely in the OB-folds where it is
protected (Figures 4A,B). In addition to ssDNA binding,
OB-folds are also responsible for binding to the linker
region of nearby SSB tetramers resulting in cooperative
ssDNA binding (Bianco, 2017; Ding et al., 2020). The
linker, which has not been visualized in crystal structures to
date, mediates protein-protein interactions using a mechanism
similar to that employed by SH3 domains binding to PXXP
ligands (Kaneko et al., 2008; Su et al., 2014; Huang and Huang,
2018; Nigam et al., 2018; Ding et al., 2020). Linker binding by
the SSB OB-fold, its competition with ssDNA for binding, and
the role this plays in protein function will be elaborated in the
section “OB-fold regulation”.

DNA ligase III functions in nuclear and mitochondrial DNA
replication and repair pathways (Sallmyr et al., 2020). Like other
ATP-dependent eukaryotic DNA ligases and the widely used T4
enzyme, DNA ligase III contains a common catalytic region
consisting of a nucleotidyltransferase domain and an OB-fold
[Figure 4C; (Ellenberger and Tomkinson, 2008; Shi et al., 2018;
Tomkinson and Sallmyr, 2013) (Cotner-Gohara et al., 2010)]. In
addition, the enzyme also possesses an α-helical DNA binding
domain that is critical to the DNA clamping mechanism (see
below). In sharp contrast to SSB, these three domains encircle
nicked, double-strand DNA with each making contacts with the
duplex, thereby sequestering the 3′-OH and 5′-PO4 (Ellenberger
and Tomkinson, 2008; Shi et al., 2018). This clamping or
jackknife mechanism is conserved in other ligases and holds
the dsDNA in a distorted conformation where the DNA is bent,

FIGURE 4 | (Continued).
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underwound and the minor grove adjacent to the nick is
significantly widened [Figure 4D; (Cotner-Gohara et al.,
2010)]. The OB-fold via its RT loop binds to the minor
groove opposite the nick, secures the DNA within the active
site of the nucleotidyltransferase domain, and functions to
position the nicked DNA substrate during all the remaining
steps of the ligation reaction (Pascal et al., 2004; Cotner-
Gohara et al., 2010). Thus for DNA ligase III, the role of the
OB-fold is to participate in the jackknife mechanism and to bind
to theminor groove of the duplex thereby positioning the DNA so
that efficient ligation can occur.

The RuvA tetramer is intrinsic to the branch migration
process catalyzed by RuvAB (West, 1997). In contrast to both
SSB and DNA ligase III, it binds to intact DNA in the form of a
Holliday junction (HJ). RuvA has several roles which include
(i) changing the configuration of a Holliday junction to an
open-square structure that is energetically more favorable for
branch migration; (ii) targeting RuvB to the junction and
stimulating its DNA helicase activity; (iii) coupling strand
separation to duplex rewinding and (iv), facilitating binding
of RuvC leading to resolution. Structural analysis of RuvA
reveals that the protein consists of three domains. Domains I
and II constitute the core of the protein and are responsible for
tetramer formation and HJ binding [Figure 4F; (Ariyoshi
et al., 2000; Nishino et al., 1998)]. Domain III is flexible, is
not visible in the structures shown, interacts with RuvB, and
modulates its ATPase and consequently its branch migration
activity (Nishino et al., 1998; Nishino et al., 2000). Each RuvA
monomer contains a single, N-terminal OB-fold in Domain I,
with each contributing an acidic pin, comprised of residues

E55 and D56, crucial to the branch migration process [Figures
4F–I; (Ingleston et al., 2000)].

HJs are dynamic structures that fluctuate between at least four
different conformations in the presence of divalent metal cations, one
of which is shown in Figure 4 between panels F and G (Hyeon et al.,
2012; Joo et al., 2004; McKinney et al., 2003; Wyatt andWest, 2014).
RuvA binding halts these conformational dynamics converting the
HJ into an open planar configuration a requirement for efficient
branch migration [Figures 4G,I; (Gibbs and Dhakal, 2018;
Lushnikov et al., 2003; Panyutin et al., 1995)]. In this
configuration, the extended nSrc loop of each RuvA monomer is
positioned in the center of theHJ in preparation for strand separation
coupled to rewinding during the branch migration process
(Figure 4H). Concurrently, the HJ is inclined 10° upwards from
the ideal plane on the surface of RuvA (Figure 4I). Once two RuvB
hexamers are bound to opposite ends of the RuvA tetramer, branch
migration ensues and requires a screw motion and lateral pulling or
pumping of the dsDNA, which passes through the center of the RuvB
hexamers, and over the surface of the tetramer. Here RuvA uses the 4
acidic pins comprised of E55 and D56 contributed from the n-Src
loop of each OB-fold to direct the path of each nascent single DNA
strand through the complex (Stasiak et al., 1994; Rafferty et al., 1996;
Ariyoshi et al., 2000; Ingleston et al., 2000; Putnam et al., 2001). Thus
in this context, the RuvA OB-folds are providing an additional
catalytic function to the RuvAB complex, that is strand separation
and rewinding coupled to ATP hydrolysis-coupled dsDNA
translocation by the RuvB hexamers.

The MCM proteins form a hexameric ring that in archaea is
comprised of six identical subunits while in eukaryotes, the complex
is a heterohexamer with subunits arranged in a specific order (Davey

FIGURE 5 | OB-folds bind to protein and DNA separately to control protein function. (A) The POT1-TPP1 complex (PDB file 5UN7). The third OB-fold of POT1 is
coloured in green and the region of the TPP1-POT1 binding domain that sits in the canonical ssDNA-binding grooves is coloured orange. The orientation of the image on
the left positions the OB-fold to a position similar to that of the OB-folds in Figure 3. The image on the right is rotated to show the location of the 310-helix in its binding site
and the position of Q623 (pink). (B) The structure of the three OB-folds and tower domain of BRCA2 are shown in complex with ssDNA (red) and DSS1 (black)
(Yang et al., 2002) (PDB file 1MJE). (C)Molecular dynamics simulations of the apo-BRCA2 complex (left) and of the complex following DSS1 binding (right). These high-
resolution images were provided by Dr. Bahadur, IIS, Kharagapur, India (Alagar and Bahadur 2020).
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et al., 2003; Maiorano et al., 2006; Tye, 1999). The MCM complex
assembles with five other subunits comprised of Cdc45 and GINS
(Go, Ichi, Nii, andSan; five, one, two, and three in Japanese; consisting
of Sld5, Psf1 (partner of Sldfive 1), Psf2 and Psf3), to form the
replicative DNA helicase, Cdc45-MCM-GINS or CMG (Ilves et al.,
2010). For all MCMs the OB-folds of each subunit are positioned
within the center of the channel where they can interact with both ds-
and nascent ssDNA (Figure 4J). Two parts of the OB-fold facilitate
these interactions. The extended RT-loop of the OB-fold of MCM
subunits is interrupted a 310-helix which is itself interrupted by a Zn-
finger (Figure 2C). A recent structure of the budding yeast S.
cerevisiae CMG bound to a forked DNA revealed that the zinc
fingers of each MCM, extend from the complex to contact the
unwound duplex DNA ahead of the MCM ring (Yuan et al.,
2020). The nascent unwound ssDNA interacts with the canonical
OB-fold where highly conserved arginine residues extend from the
barrel of the OB-fold and are thereby positioned in the center of the
channel to make contact with the nascent ssDNA (Figure 4K). Thus
in this case the OB-fold contacts both ss and dsDNA.

OB-fold Regulation Is Central to Genome
Stability
Modifications to the central β-barrel structure of the OB-fold
allow proteins to bind to and modify DNA in a variety of ways

that were unlikely to have been predicted when the structures of
the first OB-folds were determined (Murzin, 1993). If left
unregulated, DNA binding by these proteins could have
disastrous consequences for genome stability as they could
cause excessive strand separation and/or spurious melting of
duplex DNA that otherwise might be lethal to the cell as
suggested previously (Pant et al., 2004; Shokri et al., 2006; von
Hippel and Delagoutte, 2001). It follows then, that binding must
be regulated. This can be achieved in different ways with three
examples of protein/OB-fold binding presented.

The shelterin complex is responsible for maintaining the
integrity of telomeres (de Lange, 2005). In humans, this
complex consists of six subunits, TRF1, TRF2, TIN2, RAP1,
POT1, and TPP1 (Diotti and Loayza, 2011) Of these, POT1
and TPP1 contain OB-folds that are relevant to this section
(Figure 3) (Liu et al., 2004; Theobald and Wuttke, 2004;
Wang et al., 2007). POT1 and TPP1 function together by
forming a stable heterodimer that protects chromosome ends
and regulates telomerase activity (Wang et al., 2007; Xin et al.,
2007). These two proteins bind one another via the protein
binding domain of TPP1, also known as the POT1-binding
motif (Figure 5A, left) (Chen et al., 2017; Rice et al., 2017).
This interaction is crucial to POT1 function as it enables its
localization to the telomere as well as regulating its binding. The
structure of this complex reveals that, in addition to other

FIGURE 6 | The SSB interactome is regulated by linker/OB-fold binding. A section of an SSB-ssDNA complex is shown in the center. Within this complex, the OB-
folds (light brown) of some subunits are bound to ssDNA (red) while others bind to the linkers (blue) of adjacent SSB monomers. The regions of the linker responsible for
mediating OB-fold binding are the PXXPmotifs (inset, upper right). When bound to ssDNA, the linkers of monomers 1 and 2, bind to the OB-folds of monomers 1′ and 2′,
respectively. Concurrently, the linkers of monomers 1′ and 2′ bind to the OB-folds of monomers 3 and 4, and their linkers bind to monomers 3′ and 4′, respectively.
The ability of ssDNA and a peptide corresponding to the linker of SSB to bind to SSB OB-folds was initially shown using molecular modeling [lower right inset; (Bianco
2017)] and later by experiments [details in the text; (Ding et al., 2020)]. SSB linkers also bind to the OB-fold of partners as shown for RecG bound to the SSB-ssDNA
complex with the structure of the RecG OB-fold in the lower left inset. Here the OB-fold is shown in green with relevant residues coloured in purple and orange. When
mutated, residues in purple result in a 10- to 25-fold reduction in SSB binding in vivo, whereas those in orange result in only a 3- to 6-fold reduction (Ding et al., 2020).
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interactions, the C-terminal one-third of the POT1 binding motif
of TPP1 binds to the third OB-fold of POT1 (Figure 5A). A 310-
helix is located in the canonical, OB-fold ssDNA binding groove
positioned between the RT and nSrc loops. The binding of TPP1
to POT1 stabilizes POT1 (Chen et al., 2017). This interaction is
disrupted by mutations, with one of these, Q623, located within
the POT1 OB-fold binding site for TPP1 (Figure 5A, right panel).
When POT1-TPP1 binding is eliminated, POT1 becomes
unstable with a shorter half-life, resulting in lower protein
levels coupled to an activated DNA damage response at
telomeres (Chen et al., 2017).

In mammalian cells, BRCA2 is a large and intricate example of
OB-fold regulation within a single, multi-functional protein (et al.
2002; Thorslund and West, 2007; Thorslund et al., 2010; Shahid
et al., 2014). BRCA2 binds to multiple protein partners and to
DNA, to mediate the repair of DNA double-strand breaks and
inter-strand cross-links by RAD51-mediated homologous
recombination (Dray et al., 2006; Saeki et al., 2006; Le et al., 2021).

The structure of the C-terminal domain of the protein which is
critical for the interaction with DNA revealed how binding and
regulation could occur (Yang et al., 2002). This region of BRCA2
protein contains a helical domain and 3 OB-folds, with one
interrupted by what has been called the tower domain
(Figure 5B). The tower consists of two long, antiparallel
helices capped by a three-helix bundle that has been proposed
to bind dsDNA within the context of a tailed duplex (Schneider
et al., 1998; Yang et al., 2002; Thorslund et al., 2010). The three
OB-folds lie in close linear proximity, with two of them bound to
ssDNA (red) and the third bound to the Deleted in split-hand/
split-foot syndrome protein (DSS1; black). DSS1 is an
intrinsically disordered, 70-residue peptide involved in
multiple cellular functions including DNA repair (Marston
et al., 1999; Kojic et al., 2003; Kragelund et al., 2016;
Schenstrom et al., 2018). It is required for BRCA2 stability
and the control of BRCA2 function in homologous
recombinational repair (Li et al., 2006; Zhou et al., 2009). In
the absence of DSS1, recombinational repair is virtually
eliminated and this is due to increased degradation of BRCA2
(Li et al., 2006; Kristensen et al., 2010).

The binding of BRCA2 to an ssDNA/dsDNA junction is
mediated by OB-folds 2 and 3 and likely the tower domain.
The OB-folds bind to ssDNA while the tower is proposed to bind
duplex DNA. This binding facilitates the nucleation of RAD51
filaments on the single-stranded tails of a processed, dsDNA
break that are bound by RPA (Thorslund et al., 2010; Zhao et al.,
2015). In addition to stabilizing BRCA2, DSS1 functions as an
allosteric effector of BRCA2 and not as a DNAmimic as proposed
(Alagar and Bahadur, 2020; Le et al., 2020; Zhao et al., 2015; Zhou
et al., 2009). Here DSS1 binding to OB-fold 1 and the adjacent
helical region results in structural changes in the C-terminal
domain as well as the conversion of BRCA2 dimers into
monomers (Alagar and Bahadur 2020; Le et al., 2020). It is
conceivable that these effects are linked, but this has not been
demonstrated. Using molecular dynamics simulations, Algar and
Bahadur showed that the binding of DSS1 to the C-terminal tail of
BRCA2 stabilizes this region (Figures 5B,C) (Alagar and
Bahadur, 2020). This follows because apo BRCA2 (not bound

to either DSS1 or DNA) showed a greater level of fluctuations in
the helical domains and OB-folds 1 and 2, relative to the DSS1-
BRCA2 complex. The effect of binding of DSS1 to OB-fold 1 may
be propagated to OB-fold 2 and the tower, resulting in the
restriction in conformational changes. In summary, the
binding of an intrinsically disordered peptide to one OB-fold
results in stabilization of protein structure and this influences
both BRCA2 activity and possibly DNA binding as well.

The second example of an intrinsically disordered protein
regulating OB-fold function is seen in the prokaryotic SSB
interactome (Bianco, 2021; Lecointe et al., 2007; Shereda et al.,
2008). Here, a 20-member, OB-fold, DNA-binding protein family
is regulated by one member, the SSB protein whose OB-folds are
in turn, controlled by acidic phospholipid, ssDNA, and protein
binding in a competitive fashion (Ding et al., 2020; Harami et al.,
2020; Zhao et al., 2019). The key region of SSB regulating
interactome function is the intrinsically disordered linker or
linker, which is positioned between the OB-fold and acidic tip
of the protein (Figure 6, Key and inset top right). Here, the linker
uses one or more of its conserved PXXP motifs to mediate
protein-protein interactions by binding to the canonical
ssDNA binding pocket positioned between the RT and nSrc
loops of the OB-folds in either SSB or interactome partners
where it competes with ssDNA (Figure 6, insets bottom right
and bottom left). This binding forms the essence of the linker/
OB-fold model while the tip functions as a regulator of the tail
region and as a secondary protein binding site (Bianco, 2021;
Ding et al., 2020; Zhao et al., 2019). The binding mechanism
employed in the linker/OB-fold model to regulate the SSB
interactome is similar to that used by SH3 domains to bind
PXXP motifs to mediate target protein function (Bianco et al.,
2017; Saksela and Permi, 2012; Yu et al., 1994). This follows
because SH3 domains are structurally almost identical to OB-
folds and, there are 3 PXXPmotifs in the linker region of each SSB
monomer (Figures 1C, 6, inset top right) (Agrawal and Kishan,
2001; Bianco, 2017).

The binding of SSB to ssDNA results in a conformational
change in the protein so that the C-termini are more exposed
(Kozlov et al., 2010; Williams et al., 1983). When ssDNA
binding involves multiple tetramers, it occurs cooperatively
and results in shortening of the DNA length (Chrysogelos and
Griffith, 1982; Krauss et al., 1981; Ruyechan and Wetmur,
1975). The change in ssDNA length occurs because the
polynucleotide is wrapped around each tetramer
(Figure 4A). Concurrently, each tetramer also binds to its
neighbors via linker/OB-fold interactions (Figure 6, center).
Within this complex, some OB-folds bind to DNA while others
bind exposed linker PXXP-motifs of adjacent tetramers
[Figure 6, lower right; (Bianco, 2017; Ding et al., 2020)].
This results in an extensive network of linker/OB-fold
interactions forming a stable complex that protects the
ssDNA requiring elevated concentrations of salt or
translocation by DNA motor proteins to disrupt them
(Figure 6, center) (Lohman and Ferrari, 1994; Manosas
et al., 2013; Green et al., 2016; Bianco, 2017; Bianco et al.,
2017). Not surprisingly, mutation of the PXXP motifs
eliminates cooperative binding to ssDNA (Ding et al., 2020).
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The conformational change in the protein associated with
binding of SSB to ssDNA also makes linkers available for
interactome partner binding which facilitates these proteins
being loaded onto the DNA, their functions regulated, and, in
some cases, this is accompanied by SSB dissociation (Bell et al.,
2015; Sun et al., 2015; Bianco et al., 2017; Nigam et al., 2018; Ding
et al., 2020; Hwang et al., 2020;Wang et al., 2020). One example of

an interactome partner is the RecG DNA helicase which binds to,
and regresses stalled DNA replication forks into Holliday
junctions (McGlynn et al., 2001; Singleton et al., 2001;
Manosas et al., 2013; Lloyd and Rudolph, 2016; Bianco, 2020).

RecG has a single OB-fold in the wedge domain, responsible
for fork binding (Mahdi et al., 1997; Singleton et al., 2001). This
OB-fold binds to the linker of SSB, resulting in loading of the

FIGURE 7 |OB-folds in fork rescue helicases are used in different ways to modify fork structures. (A) RecG catalyzes fork regression, which is the net movement of
the fork in a backward direction away from the site of a fork impediment. This results in the formation of a chicken foot intermediate or Holliday Junction. (B) RecG is
shown as a ribbon diagram with the OB-fold coloured green and the remainder of the protein including the helicase domains, coloured neutral (PDB file 1GM5). The
enzyme is bound to a fork with a gap in the nascent leading strand. ATP hydrolysis by the helicase domains is used to push the OB-fold through the fork. This results
in the coupling of the unwinding of the nascent fork arms to the rewinding of DNA duplex both in the wake of advancing enzyme as well as ahead of the OB-fold a shown
in the schematic in panel (C). (D) PriA is shown bound to the leading strand arm of the fork (PDB file 6DGD). Here it utilizes its OB-fold (coloured green) to bind to the 3′-
OH group (red) positioned at the fork with high affinity. This enables PriA to unwind the nascent lagging strand arm of the fork (light blue) so that the replicative helicase
DnaB can be loaded onto the exposed ssDNA of the template lagging strand as shown in the schematic in panel E.
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helicase onto DNA concomitant with the remodeling of RecG
(Bianco et al., 2017; Ding et al., 2020; Sun et al., 2018; Sun et al.,
2015; Tan et al., 2017). When the key residues of the linker/OB-fold
interface, namely the PXXP motifs of SSB or separately, the OB-fold
of RecG are mutated, SSB-RecG binding is eliminated (Ding et al.,
2020). It is worth noting that when those residues that are part of the
binding site of the helicase for the leading strand arm of the fork are
mutated, SSB binding is reduced asmuch as 25-fold and fork binding
is also eliminated (Figure 6, inset lower left) (Bianco and
Lyubchenko, 2017; Briggs et al., 2005; Singleton et al., 2001). This
is consistent with the model that that these binding sites overlap and
that DNA and SSB binding is competitive (Bianco and Lyubchenko,
2017; Briggs et al., 2005; Sun et al., 2015). As the PriA and RecO OB-
folds are essential for SSB binding, the linker/OB-fold model likely
applies to all SSB interactome members which have an OB-fold as
proposed (Figure 3; left side) (Kozlov et al., 2010; Inoue et al., 2011;
Ryzhikov et al., 2011; Bianco et al., 2017; Ding et al., 2020; Hwang
et al., 2020; Bianco, 2021).

The Role of OB-folds in Fork Remodeling
The RecG and PriA DNA helicases are members of the SSB
interactome, the first family of OB-fold genome guardians
identified in prokaryotes (Bianco, 2021). Each of these
proteins binds to SSB via linker/helicase OB-fold interactions,
resulting in the loading of these enzymes onto stalled (RecG) or
regressed (PriA) DNA replication forks, concomitant with their
remodeling (Buss et al., 2008; Sun et al., 2015; Yu et al., 2016; Ding
et al., 2020; Wang et al., 2020). These DNA helicases also use their
OB-folds to bind to and alter or remodel the fork structure in
unique ways.

RecG catalyzes fork regression, where a stalled DNA
replication fork is moved in a backward direction, away from
the site of DNA damage, resulting in the formation of a Holliday
Junction (Figure 7A). To do this, the helicase domains bind to the
parental duplex DNA ahead of the fork while the OB-fold binds
to the fork with high affinity (Figure 7B) (Singleton et al., 2001).
The helicase domains use the energy from the hydrolysis of ATP
and product release to generate >35pN of force to push the OB-
fold through the DNA (Manosas et al., 2013). The OB-fold then
couples DNA strand separation to duplex rewinding both in the
wake of the advancing enzyme as well as ahead of it, resulting in
Holliday junction formation (Figure 7C). This process occurs at
an average rate of 269 ± 2bp/sec and processivity of 480 ± 20 bp
(Manosas, Perumal, Bianco, Ritort, Benkovic and Croquette
2013). How the RecG-OBfold binds to forks is distinct from
that of theMCMhexamer. For RecG, the barrel interacts with and
splits the arms of the fork to facilitate strand separation followed
by rewinding [Figure 7B; (Singleton et al., 2001)]. For MCMs, the
extended RT-loop binds to duplex DNA while the OB-fold barrel
binds to nascent ssDNA [Figures 2C, 4J,K; (Meagher et al.,
2019)].

PriA binds to forks once RecG has catalyzed regression and/or
additional processing has taken place to restore the fork structure
(Marians 1999; Marians 2000). In contrast to RecG, PriA uses its
OB-fold to bind to the 3′-OH group on the nascent leading strand
arm of the restored fork with high affinity (Figure 7D, red base)
(Mizukoshi et al., 2003; Sasaki et al., 2007) (Mizukoshi et al., 2003;
Nurse et al., 1999). This binding is critical to both the activation of
the ATPase activity as well as efficient ATP hydrolysis and is
significantly enhanced by SSB (Manhart andMcHenry, 2013; Tan
and Bianco, 2021; Tanaka et al., 2007). This serves to enhance the
ability of PriA to discriminate the correct fork structure by as
much as 140-fold, orienting the DNA helicase on the fork so that
it can unwind the nascent lagging strand arm (Figure 7E). Duplex
unwinding ensures that the preprimosome (a complex of PriA,
PriB, DnaT, PriC, DnaB, and DnaC) can be loaded onto the
template lagging strand and that replication restart proceeds in
the correct direction (Lee and Marians, 1987; Jones and Nakai,
1999; Jones and Nakai, 2001). This involves the loading by PriA,
of the replicative DNA helicase, DnaB onto the lagging-strand
template via a complex series of protein-protein interactions
reminiscent of primosome (preprimosome + primase)
assembly for ϕX174 DNA (Masai and Arai, 1996; Jones and
Nakai, 1999; Marians, 1999; Marians, 2000).

SUMMARY

OB-fold genome guardians are essential proteins that perform a
myriad of functions to maintain the integrity of the genome. To
facilitate these functions, the small β-barrel (SBB) at the heart of
the OB-fold structure is modified by the addition of loops and or
additional domains to create domains with distinct properties.
The domain is then placed in a unique position or positions in
each protein so that diverse DNA substrates can be processed
and/or protected in the correct way to facilitate genome stability.
The family of OB-fold genome guardians is now known to extend
to both eukaryotic and prokaryotic members, reinforcing the
importance of these proteins in the maintenance of genome
integrity in all organisms (Bianco, 2021).
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