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Dynamic behavior of biological systems is commonly represented by non-linear models such
as ordinary differential equations. A frequently encountered task in such systems is the
estimation of model parameters based on measurement of biochemical compounds. Non-
linear models require special techniques to estimate the uncertainty of the obtained model
parameters and predictions, e.g. by exploiting the concept of the profile likelihood. Model
parameterswith significant uncertainty associatedwith their estimates hinder the interpretation
of model results. Informing thesemodel parameters by optimal experimental designminimizes
the additional amount of data and therefore resources required in experiments. However,
existing techniques of experimental design either require prior parameter distributions in
Bayesian approaches or do not adequately deal with the non-linearity of the system in
frequentist approaches. For identification of optimal experimental designs, we propose a two-
dimensional profile likelihood approach, providing a design criterion which meaningfully
represents the expected parameter uncertainty after measuring data for a specified
experimental condition. The described approach is implemented into the open source
toolbox Data2Dynamics in Matlab. The applicability of the method is demonstrated on an
established systems biologymodel. For this demonstration, available data has been censored
to simulate a setting in which parameters are not yet well determined. After determining the
optimal experimental condition from the censored ones, a realistic evaluation was possible by
re-introducing the censored data point corresponding to the optimal experimental condition.
This provided a validation that our method is feasible in real-world applications. The approach
applies to, but is not limited to, models in systems biology.

Keywords: experimental design, profile likelihood, systems biology, mathematical model, parameter uncertainty,
prediction uncertainty, confidence distribution

1 INTRODUCTION

With Fisher’s pioneering work on optimizing the design of agricultural experiments lying a century
in the past, the design of informative experiments has long since become a foundation for most
quantitative sciences. While there are undeniably practical aspects of conducting an experiment to
generate the data used for analysis, planning a successful experiment requires consideration of
statistical concepts even before any data is collected as this can help to develop the “logic of
experimentation” (Bishop et al., 1982).
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In systems biology, the underlying models used for analyses
become increasingly complex. This is due to the fields aspiration
to provide holistic descriptions of biological systems which are
able to capture not only static properties of a system but the
dynamic interactions of the system’s components (Kitano, 2002;
Nurse andHayles, 2011). For these systems, mathematical models
are established to reduce the complexity of the biological
components to their relevant features. The process of
“building a model” is an intertwined process of finding a
model which adequately describes the observed dynamics
given the existing biological knowledge and providing the
quantitative inputs for this model through experimentation
(Kreutz and Timmer, 2009). The aim of systems biology is to
construct “useful” models (Wieland et al., 2021), i.e. models that
yield biological insights. Assessing whether a model is useful can
be “notoriously difficult” (Liepe et al., 2013), even more so if the
data obtained from experiments is insufficient to inform the
model. Therefore, close cooperation of experimenters and
theoreticians throughout the process increases the chance of
generating data that is suitable for this task.

Biochemical processes can often be represented as ordinary
differential equations (Nurse and Hayles, 2011; Liepe et al., 2013;
Raue et al., 2013) which are often adequate representations of
molecular dynamics. In general, this means that the observed
biochemical compounds will be non-linearly related to the model
parameters. Although such models are able to describe the system
realistically, non-linearity proves to be a challenge in the analysis
of the models properties. One consequence of non-linearity is the
frequent absence of analytical solutions to the differential
equations which determine the time-evolution of the biological
states involved. Consequently, estimation of model parameters by
optimization of the objective function, which measures the
deviation of the model predictions to the measured data, is
limited to numerical approaches (Raue et al., 2013). The
difficulty of this “inverse problem” (Liepe et al., 2013) of
determining the model parameters which describe the
observed data the best is exacerbated in biological systems.
Characterization of these systems can lead to a model with
many parameters and biological states with the available data
being noisy (Kreutz and Timmer, 2009). Additionally, the system
is generally only partially observable, i.e. not all biochemical
compounds in the model can be measured (Raue et al., 2009).

A major task in developing experiments in this defined setting
is to propose practically feasible experiments which decrease the
uncertainty about the value of parameters of interest. A well-
known result from the classical theory of non-linear experimental
design is that the optimal design depends on the “true model
parameters,” i.e. the parameters that govern the true evolution of
the system (Busetto et al., 2013), e.g. illustrated for the setting of
Fisher’s dilution series experiments (Cochran, 1973). However,
we are interested in inferring exactly these unknown parameters.
A solid initial guess about the parameter values would solve the
problem, but given the complex nature of the modeled systems,
prior knowledge is usually sparse (Kreutz and Timmer, 2009;
Bazil et al., 2012). A natural approach is then to design
experiments sequentially (Cochran, 1973; Ford et al., 1989),
i.e. measure the data in batches, updating the knowledge about

the initial parameter values for each experimental design
iteration.

Much of the classical literature on designing the optimal
experiment is based on the Fisher information matrix (Ford
et al., 1989; Atkinson and Donev, 1992; Fedorov, 2010). This
is a natural approach in linear systems, as the inverted Fisher
information matrix determines the covariance matrix of the
estimated model parameters. Appropriate characteristics of
this covariance matrix are then optimized by a suitable
experimental design (Atkinson and Donev, 1992; Faller et al.,
2003). However, application of the Fisher information matrix is
known to be troublesome in non-linear systems if the amount of
data is limited and statistical properties are far from asymptotic.
The Wald confidence intervals implied by the Fisher information
matrix might then only crudely reflect the existing uncertainty.
Confidence intervals generated by the profile likelihood approach
have more desirable properties in the finite sample case (Meeker
and Escobar, 1995) and allow for the conceptional and
operational definition of practical identifiability (Raue et al.,
2009). Experimental planning in frequentist statistics should
therefore make use of this powerful concept of quantifying
parameter uncertainty and identifiability.

Approaches to the experimental design problem have also been
developed in a Bayesian framework. The conceptual foundation of
updating prior parameter knowledge given the newly measured data
in Bayesian statistics provides natural solutions to the problem of
experimental design. The information gain of an experiment can be
reasonably quantified bymeans of the Shannon information (Lindley,
1956) and application of this theory to Bayesian experimental design
provides a tool to plan optimal experiments for parameter inference
(Huan and Marzouk, 2013; Liepe et al., 2013) and model
discrimination (Busetto et al., 2013). However, we focus on a
frequentist approach as it is usually not feasible to provide
reasonable priors for all model parameter in the systems biology
context.

There exist frequentist methods for experimental design if it is
infeasible to provide prior information for all model parameters.
If sets of parameters which are compatible with existing data
about the system were known, the corresponding set of model
trajectories would indicate for which observables and for which
time points the model prediction is not yet reasonably
constrained; such experimental conditions would then be
“experimentally distinguishable” (Bazil et al., 2012). This set
was previously constructed from efficient sampling of the
parameter space (Bazil et al., 2012) or exploring the
parameters along the likelihood profiles (Steiert et al., 2012).
The latter method was applied in the DREAM6-Challenge
(Dialogue for Reverse Engineering Assessments and Methods)
and has been awarded as the best performing approach (Steiert
et al., 2012). However, this approach assesses the impact of
different sets of model parameters on the model predictions.
In order to optimally design experiments which decrease
parameter uncertainty, the logic of the design scheme has to
be reversed: Instead of assessing the impact of different model
parameters on the model prediction, the impact of different
measurement outcomes on the parameter estimate of interest
has to be assessed.
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We propose a frequentist approach for optimal experimental
design which realizes the full potential of the profile likelihood
approach by extending the previously best-performing method
(Steiert et al., 2012). For a specified experimental condition, we
quantify the expected uncertainty of a targeted parameter of
interest after a possible measurement. The parameter uncertainty
after any specific measurement outcome is determined by the
respective profile likelihood, effectively yielding a two-
dimensional likelihood profile when accounting for different
possible measurement outcomes. The range of reasonable
measurement outcomes given the current data available before
the measurement is quantified via the concept of validation
profiles (Kreutz et al., 2012). The two-dimensional likelihood
profile provides both the range of reasonable measurement
outcomes of an intended experiment and their impact on the
parameter likelihood profile. Hence, this allows for a definition of
a design criterion which represents the expected average width of
the confidence interval after measuring data for a certain
experimental condition. The two-dimensional likelihood
profiles therefore provide quantitative information usable for
sequential experimental design and additionally serve as an
intuitive tool to visualize the impact of an experiment on the
uncertainty of the parameter of interest.

2 MATERIALS AND METHODS

2.1 Mathematical Model
We introduce the concept of ordinary differential equation
models, because they are frequently used for modeling of the
dynamics of biological systems. However, we want to
emphasize that the introduced method for experimental
design is generic and only requires specification of a
suitable likelihood function.

Biological quantities such as the concentration of a molecular
compound are represented by mathematical states x(t) and are
assumed to follow a set of ordinary differential equations

_x(t) � f(x, p, u) (1)

which generates the trajectories according to the unknown
underlying true dynamic model parameters p0. The function f
is typically defined by translating biochemical interactions, e.g. by
the rate equation approach. The trajectories depend on the
specific experiment conducted which is denoted by the
experimental perturbations u, representing interventions such
as external stimulation of the system or knockout of specific
genes. The set of model parameters will usually include the initial
values x0 of the model states.

Estimation of the true parameters typically requires
measurement of time-resolved data on these states. However,
some states in the considered system might not be observable at
all or only indirectly accessible, e.g. if only a sum of different states
can be observed (Raue et al., 2009). Additionally, measured data
will usually be subject to random errors. Therefore, the set of
observables

y(t) � g(x(t), sobs) + ϵ (2)

defines the types of data that can be measured. In this equation, ϵ
describes the random error of the measurement which is usually
assumed to be normally distributed, i.e. N (0, σ2(x(t), serr)), but
not necessarily homogeneous across measurements, i.e. the
magnitude of the noise might depend on parameters serr.
Random variations in biological systems usually occur on a
relative scale (Limpert et al., 2001) and are thus proportional
to the current value of the state. This implies that errors are
frequently normally distributed if the observables are considered
on a logarithmic scale. The observation function g determines
how the states are mapped unto the observables. This mapping
will on many occasions introduce new unknown parameters sobs
such as scale parameters. The set of all parameters is denoted by
θ = {p, x0, sobs, serr}.

The measured data of the system provides a set of scalar values
yi which each corresponds to an experimental condition Di

containing all information necessary to interpret the value yi.
The experimental condition is uniquely defined as the measured
observable, the time point of measurement and the
corresponding experimental perturbation.

The objective function which indicates the agreement of
experimental data with the model prediction given some
parameters θ and measured data Y = {y1, . . ., yn} is the
likelihood function

L(θ|Y) � ∏
i

ρ(yi|Di, θ) (3)

with ρ indicating the probability density for the considered
data point. Maximizing this likelihood leads to the maximum
likelihood estimate θ̂(Y) which indicates the parameters for
which the fit between data and model predictions is optimal.
Numerical optimization of this function is preferably
performed by minimizing the monotonously transformed
function LL = − 2 ln(L) to improve numerical stability. If
the data is independently normally distributed and
variances are known, this transformation has the
advantageous properties that the optimization of the
objective function is equivalent to least squares optimization.

2.2 Profile Likelihood
2.2.1 Parameter Profile Likelihood
The task of parameter inference is not completed with the
identification of the maximum likelihood estimate. In general,
other parameter estimates may provide other model trajectories
which might fit similarly well to the given data. Additionally,
replications of the same experiment will lead to different
measurement results and therefore also different parameter
estimates due to variance in the biological samples and the
measurement process. From a frequentist standpoint, methods
are required to construct confidence intervals for either individual
parameters or multiple parameters jointly, which have a pre-
defined coverage probability of containing the true parameter
value if the experiment were to be replicated. Within the context
of this paper, we focus exclusively on confidence intervals for
individual parameters.

The commonly encountered Wald confidence intervals are
based on a quadratic approximation of the likelihood and fail if
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the model features non-linear dynamics (Meeker and Escobar,
1995; Raue et al., 2009). The quadratic approximation of the
likelihood depends on the parametrization of the model, may not
respect boundaries of the parameter space and cannot capture
global behavior such as the existence of local optima.

A more refined tool which reduces the high-dimensional
likelihood onto the one-dimensional parameter of interest pi is
the profile likelihood

PLpi(β|Y) ≔ − 2 ln
L(β, ω̂(β)|Y)
L(β̂, ω̂|Y)( ) (4)

with the parameter vector θ = {β, ω} being split into the parameter
of interest pi = β and the nuisance parameters pi≠j = ω. The hats
indicate maximum likelihood estimates, i.e.

ω̂(β) � argmax
ω

L(β,ω|Y) (5)

are the nuisance parameters which maximize the likelihood if β is
fixed to a specific value. The parameter profile likelihood is
invariant under one-to-one parameter transformations and can
accurately reduce complex shapes of the underlying likelihood
function to an adequate one-dimensional representation.
Confidence intervals can be constructed from the parameter
profile by Wilks’ Theorem (Wilks, 1938) and take the form

CIα � {β|PLpi(β|Y)< icdf(χ21, α)}. (6)

with icdf representing the inverse cumulative distribution
function. Note that high values of the profile likelihood
defined in Eq. 4 correspond to lower values of the likelihood.
This implies that parameter values β associated with a large
profile likelihood value PLpi(β|Y) are less likely to correspond
to the true parameter value. Therefore, only parameter values
with a profile likelihood value below a certain confidence
threshold are included in the corresponding confidence interval.

Informally, Wilks’ theorem implies that asymptotically, these
confidence intervals will attain the correct coverage probability α
as they become equivalent to the Wald approximation. However,
the finite sample properties of the profile likelihood intervals are
superior. The notion of parameter profiles allows identifiability
analyses on the parameters (Raue et al., 2009). Parameters can be:
1) Identifiable, in which case the width of the defined confidence
interval is finite. 2) Structurally non-identifiable, in which case the
profile likelihood is flat. This implies that any change of the
parameter of interest can be compensated by changing other
model parameters. 3) Practically non-identifiable, in which case
the profile likelihood is not completely flat, but does not cross the
confidence threshold to both sides such that the size of the
confidence interval is infinite. While structural non-
identifiability can only be resolved either by reparametrization
of the model or qualitatively new experiments, practically non-
identifiability can usually be resolved by providing higher quality
data from similar experiments. Identifiability is distinct from the
frequently encountered concept of sloppiness (Chis et al., 2016)
which plays no role for the experimental design as discussed
within this study. Due to the advantageous theoretical as well as
practical properties of the profile likelihood, parameter

uncertainties in this study are exclusively discussed in terms of
their corresponding likelihood profile.

2.2.2 Validation Profile Likelihood
The parameter profile likelihood allows for the evaluation of the
uncertainty of parameters given the current data. For some
applications, assessing the “prediction uncertainty,” i.e. the
uncertainty about the outcome of measuring at a certain
experimental condition, might be more relevant. In a
frequentist setting, one can readily extend the concept of the
parameter profile likelihood to this setting in the form of the
“validation profile likelihood” (Kreutz et al., 2012), also called
“predictive profile likelihood” (Bjornstad, 1990), in which case the
likelihood is reduced to the dimension of the measurement
outcome of interest. Formally, this profile is defined by

VPL(z|y) ≔ − 2 ln
L(θ̂(Y, z)|Y, z)

L(θ̂(Y)|Y, F(θ̂(Y)|Dz))
( ) (7)

with z defined as the outcome of measuring at experimental
condition Dz and F(θ̂(Y)|Dz) defined as the respective model
prediction given parameters θ̂(Y). The interpretation of this
validation profile likelihood is completely analogous to the
parameter profile likelihood since the same coverage statement
as in Eq. 6 holds (Kreutz et al., 2012) if the random variable z is
normally distributed. It should be remarked that the statement
about the coverage is slightly adapted in the sense that the
coverage probability is true if Y and z are repeatedly drawn.
Just as parameter uncertainty is reasonably quantified by the
parameter profile likelihood, uncertainty of the measurement
outcome for an experimental condition of interest is specified
by the validation profile likelihood.

2.3 Experimental Design Task
Understanding the task of designing an informative experiment
requires clarification. We start by introducing the common
terminology of the theory of optimal experimental design. The
design regionK is the set of all experiments that can be conducted
and a design point (or experimental condition) D within this
design region labels a possible experiment which returns a data
point (Fedorov, 2010). In our context, the design region K is
designed as the set of all admissible triples of measurable
observables g, possible time points of the experiment t as well
as all external perturbations u considered. A design point D is
then defined as the triple D = {g, t, u} (Kreutz et al., 2012). The
collective of all conducted experiments can therefore be
represented as the set of corresponding design points which is
called the design of the experiment. This design is more
commonly represented by a probability measure ξ on the
design space K which compactly specifies all design points for
which measurements outcomes are available. (Ford et al., 1989;
Fedorov, 2010).

The problem we are concerned with is the reduction of
uncertainty for a single parameter by conducting an
experiment at an informative design point. This means that
given a set of admissible design points, we want to decide
which of these experimental designs will best reduce the
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existing uncertainty about a pre-specified parameter. To put this
into a more formal framework, we are looking for a design
criterion Φ: K → R which quantifies the most informative
experiment in this context. Note that the optimal experimental
design will usually depend on the unknown true parameters of the
system. Additionally, we want to emphasize that we are
concerned only with a single best experiment and not a batch
of parallel experiments conducted at the same time.

2.4 Measuring Parameter Uncertainty
2.4.1 Classical Theory
The optimal experimental design depends on the choice of a
reasonable design criterion. Classical design theory solves this
problem by applying the Fisher information matrix as the
appropriate measure of information and establishing design
criteria based on this matrix M(θ, ξ), i.e. the design criterion
takes the formΦ(M(θ, ξ)) (Ford et al., 1989; Atkinson and Donev,
1992; Fedorov, 2010). The Fisher information matrix is
concerned with the local behavior of the likelihood function
around a specified parameter, which in application usually
means in the neighborhood of the current maximum
likelihood estimate of the parameters (Faller et al., 2003). For
the same reasons discussed earlier, we propose that it is more
adequate to utilize the profile likelihood of the parameter of
interest pi to construct a measure of information which we can
use to design an optimal experiment.

2.4.2 Confidence Distribution
There is no unique way to define the information available in the
likelihood profile {(β, PLpi(β))|β ∈} of the parameter of interest
pi. Instead of thinking in terms of the available information about
the parameter, it is instructive to think in terms of existing
uncertainty which we want to minimize by the experiment. In
practical applications it is common that profile likelihoods are
evaluated to obtain the respective 95%-confidence intervals
CI0.95(pi) which serve as a measure of existing uncertainty.
This comes with two notable issues: The 95%-interval might
not be finite, which complicates the interpretation of existing
uncertainty. This can be resolved in the definition of the model’s
parameter space, which is constrained by parameter boundaries
which span orders of magnitude and thus only weakly constrain
the possible parameter values. On a more conceptual level,
working with arbitrary fixed confidence levels is discouraged
(Wasserstein and Lazar, 2016) and uncertainty is more
comprehensively assessed if all confidence levels are
considered simultaneously.

This issue can be resolved by confidence distributions (Xie and
Singh, 2013) which can be thought of simultaneously containing
the information about the confidence intervals to all levels. This
concept allows the construction of an object that has the form of a
distribution estimator for the parameter of interest pi in the realm
of frequentist statistics. The corresponding confidence density
ρparpi

(β) has the property that each interval [β1, β2] which satisfies

∫β2
β1
ρparpi

(β)dβ � α is an α%-confidence interval for the parameter pi.
Conceptually, we can derive the confidence density ρparpi

(β) for a
parameter from the set of confidence intervals {CIα(pi)|α ∈ [0, 1]}

obtained from its likelihood profile. However, we will not use the
concept explicitly andwe remark that in the case offinite sample size,
the obtained confidence distributions are not exact. By associating
the parameter of interest pi with their corresponding confidence
distribution ρparpi

, we have a theoretically well-founded quantity on
which the uncertainty of the parameter can be quantified.

2.4.3 Uncertainty as a Scalar Quantity
Ranking different experiments by their information content
requires a way to order their corresponding design criterion
values. A necessary step to achieve this is to reduce the
confidence distribution of a parameter to a scalar value. We
suggest utilizing the average confidence interval width

�w(pi|Y, z) � ∫
1

0

w(CIα(pi|Y, z))dα (8)

to summarize the information content of the confidence
distribution. The function w assigns the width to the
corresponding confidence interval. Different confidence
interval widths are averaged by weighting with their respective
confidence measure dα. The measure dα specifies the confidence
that the true parameter value is covered by the interval CIα+dα(pi),
but not by CIα(pi). Evaluation of this average confidence interval
width does not require the explicit confidence distribution but
only the individual confidence intervals. Thus, it can be directly
calculated from the profile likelihood. In practice, we will only
consider confidence intervals up to the 95%-level to ensure
practical feasibility.

2.5 Two-Dimensional Profile Likelihood as a
Design Criterion
In the previous sections, we proposed to quantify parameter
uncertainty via the profile likelihood approach by definition of an
average profile width in Eq. 8, which summarizes the existing
uncertainty about the parameter of interest. Optimal
experimental design aims at minimizing this measure of
uncertainty by choosing an experimental condition for the
next measurement which optimizes a suitable design criterion.
However, for a given experimental condition D it is a priori
unknown which value will result from a future measurement.
This implies that the parameter profile likelihood PLpi(β|Y, z)
and therefore the average profile width �w(pi|Y, z) depends on the
measurement outcomes z. In Figure 1A, the original parameter
profile before the measurement (black line) is practically non-
identifiable at the 95%-level for the parameter of interest.
Depending on the measured data point zi, the uncertainty
about the parameter of interest is reduced to different degrees
as indicated by the corresponding parameter profiles (blue lines).
Since the measurement outcome is unknown, it is unclear what
the uncertainty will be after the measurement.

The plausibility of different possible measurement outcomes
can be accounted for by weighting the average profile widths for
different measurement outcomes by their likelihood of occurrence.
As discussed in Section 2.2.2, this plausibility measure is implied by
the validation profile likelihood. Figure 1B shows the validation
profile for the specified design: z2 corresponds to the current
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maximum likelihood prediction for this experimental condition and
is therefore the most likely measurement outcome given the current
evidence, while z3 has a higher validation profile value than z1 and is
therefore less likely. Therefore, the validation profile likelihood
implies a predictive distribution which can be defined in analogy
to the confidence distribution derived from the parameter profile
likelihood. The corresponding predictive density ρpred(z|Y) associates
different measurement outcomes with our confidence that the
specific outcomes occur.

The concept of summarizing parameter uncertainty for a
fixed measurement outcome and subsequent aggregation of
different possible measurement outcomes based on the
predictive density can be combined to construct a design
criterion for an experimental condition of interest. To this
end, each expected parameter profile width �w(pi|Y, z) is
weighted with the certainty ρpred(z|Y) of observing

measurement outcome z and the expected average profile
width follows as

W(pi|Y,D) � ∫ �w(pi|Y, z)ρpred(z|Y)dz. (9)

W(pi|Y, D) exclusively depends on the given data Y and the
experimental condition D of a subsequent experiment and thus
by definition constitutes a design criterion. This quantity can be
interpreted as the expected average profile width after
measuring at the experimental condition D, where the
average is taken over different parameter confidence levels
and the expectation is taken over different possible
measurement outcomes, weighted by their predicted
plausibility. Given a set of experimental conditions {D1, . . .,
Dn}, the optimal experiment D* to inform parameter pi is the
one which minimizes W(pi|Y, D) given the current data Y, i.e.

FIGURE 1 | (A): Likelihood profiles of a hypothetical parameter of interest. Different measurement outcomes z1, z2, z3 for the same experimental condition lead to
different updated parameter profiles which assess uncertainty about a parameter of interest. (B): Validation profile of the considered hypothetical experimental condition.
This profile assesses the likelihood of a newmeasurement: The smaller the validation profile value, themore likely the respective outcome (C): 2D-Likelihood profile for the
parameter of interest under some given experimental condition. The vertical axis corresponds to different possible measurement outcomes. If the outcome on the
vertical axis would be observed, the profile likelihood after the measurement is given by the corresponding horizontal cross-section through the two-dimensional profile.
In this example, lower values of the measurement outcome lead to narrow parameter confidence intervals after the measurement. (D): 2D-Likelihood profile on a
confidence scale. Intervals of the same size on the y-axis hold equal confidence that a measurement will yield a data point in the corresponding interval. The prediction
confidence levels on the vertical axis illustrate that the sampled two-dimensional likelihood profile covers most of the plausible measurement outcomes.
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D* � arg min
D∈{D1 ,...,Dn}

W(pi|Y,D). (10)

The information necessary to evaluate the design criterion in
Eq. 9 is summarized by a two-dimensional likelihood profile,
defined as

PL2D(z, β|Dz) ≔ − 2 ln
L(β, ω̂(β|Y, z)|Y, z)

L(θ̂(Y)|Y, F(θ̂(Y)|Dz))
( ). (11)

For any fixedmeasurement outcome z, the resulting parameter
profile likelihood can be extracted from this quantity.
Simultaneously, the two-dimensional likelihood profile
contains information about the plausibility of different
measurement outcomes. Figure 1C illustrates this relationship:
The profiles in Figure 1A are horizontal cross-sections from the
two-dimensional likelihood profile (blue lines). The minimal
profile value of each horizontal cross-section defines the path
of the validation profile in Figure 1B (solid red line). The
confidence intervals (dashed red lines) depend on the different
possible measurement outcomes: Some measurement outcomes
lead to more information about the parameter of interest than
others as indicated by narrower confidence intervals.

The process of averaging confidence interval widths over the
various parameter confidence levels and taking the expected value
over the possible plausible data realizations is visualized in
Figure 1D. The displayed two-dimensional profile is based on
the same data as depicted in Figure 1C, but it has been
transformed onto a different scale. The minimum of each
horizontal cross section is shifted to the common null value,
but still represents the trajectory of the validation profile. For the
transformed two-dimensional likelihood profile, the vertical axis
is proportional to the prediction confidence levels, i.e. intervals
with the same length correspond to an equal confidence of
yielding a measurement value in the given intervals. This
transformation reveals that the interval [z1, z3] is a 83%-
prediction interval for a future measurement outcome given
the experimental condition. The horizontal gray patches at the
top and the bottom of Figure 1D correspond to all the
measurement outcomes for which the original two-
dimensional profile likelihood was not sampled, because they
are unlikely to occur. The trend of different parameter confidence
intervals as a function of different data points is illustrated for five
discrete confidence levels (shades of red). On this scale, the
expected average profile width W(β|Y, D) is equal to the
average of all the colored areas, where the smaller confidence
intervals are included in the larger ones.

2.6 Experimental Design Workflow
Utilization of two-dimensional likelihood profiles as a tool for
experimental design requires a ready-to-use workflow in
applications. We provide an example for this workflow in a
fully sequential experimental design scheme to put the
previous definitions into a more practical context. Figure 2
shows a flowchart of the steps involved in this workflow.
Starting from an initial data set, the model parameters are
estimated and the profile likelihood is calculated for all model
parameters to obtain information about existing parameter

uncertainties. The likelihood profiles are calculated by
numerical evaluation of Eq. 4 for a finite set of profile
parameters. If there are non-identifiable parameters, the
biologically most relevant parameter is targeted for
improvement by the experimental design scheme.

After a representative set of experimental conditions has
been defined, the design criterion in Eq. 9 needs to be
evaluated for each of the experimental conditions by the
following steps. First, a validation profile is calculated for
the experimental condition. This validation profile provides
the range of relevant measurement outcomes for the respective
experimental condition. Therefore, the space on which the
two-dimensional likelihood profile needs to be sampled is
finite. This space is sampled by evaluating the parameter
profile likelihood for a representative set of measurement
outcomes. The expected average profile width is calculated
from the two-dimensional likelihood profile by employing the
discrete counterparts of all expressions appearing in Eq. 9. At
this point the details are more of technical than conceptual
relevance and we want to emphasize that an automated
implementation of this algorithm is available and referred
to at the end of this manuscript. The final step of the
workflow is now to choose the experimental condition
which provides the minimal value for the design criterion
as the target for the next measurement. This workflow can be
repeated after a new data point has been generated to
determine a sequence of informative measurements.

3 RESULTS

We illustrate the process of choosing the best experimental design
for a parameter of interest by two examples. The first example is
based on simulated data for a simple model with two consecutive
reactions in which compound A is converted to compound B
which is then converted to compound C and is therefore termed
as ABC model in the following. This example will serve to
illustrate the interpretation of the two-dimensional profile
likelihood. The second example is based on the published
experimental data for a model of erythropoietin (EPO)
degradation (Becker et al., 2010) for which data has been
censored in order to mimic a setting in which experimental
design can be applied. This example serves to explain the full
workflow of the sequential experimental design scheme in an
application setting and illustrates the practical feasibility of our
approach.

3.1 Experimental Design in the ABC-Model
The ABC model describes a simple case of a model in which the
model predictions non-linearly depend on the model parameters.
The reactions are illustrated in Figure 3A: State A is converted to
state B with the rate p1 and B is subsequently converted into
compound C with rate p2. In a biochemical setting, these three
states might represent three conformations of three activation
states in terms of different phosphorylations. The dynamics of
this system are determined by the following differential
equations:
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_A � −p1A
_B � p1A − p2B
_C � p2B.

In order to illustrate the two-dimensional likelihood profile
approach on a simple model for which we know the true
underlying parameters, we defined the true model parameters
and simulated data from this model. In this true model, the initial
concentrations of state B and state C were set to zero which was
assumed to be known for inference, such that the system is
characterized by the three parameters {p1, p2, A0} which were
assumed to be unknown and have to be estimated from data. The
data set simulated from the true model parameters is sparse: state
A has been assumed to not be observable and the two data points
available for each state B and C have been generated with an
initial concentration log(A0) = 0 from log-normal distributions
with a standard deviation σlog = 0.2 After simulation of the data,
the model parameters {p1, p2, A0} are optimized to estimate their
values and the corresponding state trajectories.

The true as well as the estimated state trajectories are
illustrated in Figure 3B: While the model predictions fit the
data well, there is still considerable disagreement of the
underlying true model and the best model fit. This is
especially true for state A, considering that the differences
between trajectories are analyzed on a log-scale, which
measures relative differences. An analysis of parameter
uncertainty reveals that parameter p2 is identifiable, as
information for state B and C suffices to inform this rate. By
similar reasoning, there is less information available for

parameter p1 and the corresponding profile likelihood reveals
that the parameter is practically non-identifiable over the whole
considered parameter space, as illustrated in Figure 3C.

In our example, we want to inform this practically non-
identifiable parameter p1 by choosing a measurement out of
three possible experimental conditions. For demonstration
purposes, the three experimental conditions of measuring
either state A, B or C at the time point t = 40 are considered.
The corresponding two-dimensional likelihood profiles are
illustrated in Figure 3D. If it was possible to measure
observable A, this would be highly informative and in fact
guarantees that the parameter p1 is identifiable no matter the
outcome of the measurement. This is intuitive, since the
measurement of the yet unobserved quantity A highly
constrains the possible dynamics. It should be noted that
possible outcomes for the observable A vary across orders of
magnitudes which can be attributed to the fact that the dynamics
for A are poorly constrained given the current data set. The two-
dimensional profiles associated with observable B and C reveal
that the parameter p1 will likely not be identifiable even after the
measurement. However, the magnitude of outcomes will yield at
least an upper or a lower bound for the parameter of interest:
Large values of B and C put an upper limit on p1, as this means
that the reaction can not be arbitrarily fast, while low values of B
and C put a lower limit of p1 because the reaction can not be
arbitrarily slow. A not immediately obvious result from the two-
dimensional profiles is that measuring observable B is more
informative than measuring observable C as seen from the
calculated design criterion. This example illustrates that two-

FIGURE 2 | Workflow for the sequential experimental design scheme. Starting from the current data set (top left), the target parameter is chosen and relevant
experimental conditions are specified. Calculating the two-dimensional profile likelihood and evaluating the expected average profile width for each experimental
condition (box) reveals the optimal condition for the next measurement. Dotted rectangles specify the state of the for loop, while text without rectangles correspond to the
experimental design steps involved.
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dimensional likelihood profiles provide qualitative as well as
quantitative information about how experiments impact
parameter uncertainty.

3.2 Experimental Design in the
Erythropoietin Degradation Model
The modeled system for the degradation of erythropoietin (EPO)
(Becker et al., 2010) is an example of a non-linear model with
intertwined reactions of biochemical states. EPO acts as a ligand
by binding to the corresponding cell receptor to form a complex.
This complex is internalized and then EPO is degraded. The
mathematical model provided the insight that a combination of
EPO receptor turnover and recycling guarantees that biochemical
response to a broad range of ligand concentrations is possible
(Becker et al., 2010).

A scheme of reactions in the biological system is illustrated
in Figure 4A. The model features six dynamic states: EPO
(Epo) and degraded EPO (dEpoe) outside of the cell, EPO
receptors (EpoR) and EPO–EPO receptor complexes
(EpoEpoR) on the cell membrane, and internalized
EPO–EPO receptor complexes (EpoEpoRi) and degraded

EPO (dEpoi) inside of the cell. The reactions illustrated in
the figure can be translated into the following set of differential
equations (Becker et al., 2010):

d

dt
EpoR � kt · (EpoR0 − EpoR) − kon · Epo · EpoR + koff · EpoEpoR + kex · EpoEpoRi

d

dt
Epo � −kon · Epo · EpoR + koff · EpoEpoR + kex · EpoEpoRi

d

dt
EpoEpoR � kon · Epo · EpoR − koff · EpoEpoR − ke · EpoEpoR

d

dt
EpoEpoRi � ke · EpoEpoR − kde · EpoEpoRi − kdi · EpoEpoRi − kex · EpoEpoRi

d

dt
dEpoi � kdi · EpoEpoRi

d

dt
dEpoe � kde · EpoEpoRi .

There are seven dynamic parameters (kt, kon, koff, kex, ke, kde,
kdi) and two unknown initial conditions (Epo0, EpoR0) in the
model which are biologically interpretable as well as six further
parameters which appear only in the observation function and
not in the dynamic model. Because EPO can be traced with a
radioactive marker, the concentration of EPO can be measured
outside of the cell (EPOexternal), on the cell membrane
(EPOmembrane) and inside of the cell (EPOinternal). This
provides us with three different observables for the six
dynamic states, i.e. the model is only partially observable.

FIGURE 3 | (A): States and parameters in the ABC-model. The model has three parameters: Two rate constants p1 and p2, and the initial concentration A0. The
initial concentrations of B and C are assumed to be zero. (B): Trajectories of the ABC-Model. The dots correspond to the sparse data simulated from the true model. In
this example, state B and C were assumed to be observable, but have only been observed at early time points. The true trajectory of state A yet differs considerably from
the estimated trajectory. (C): Likelihood profile of the practically non-identifiable parameter p1. Because the initial concentration of state A is unknown, this
parameter is difficult to estimate without information about state A. (D): 2D-Likelihood profiles for the three states A, B and C if measured at time point t = 40. The
illustrated profiles are presented on a confidence scale according to Figure 1D. If state A was observable, the finite width of the 2D-profile to the 95% level indicates that
any measurement outcome will make the parameter p1 identifiable. Note that possible values for A scatter across six orders of magnitude because the predictions for A
are barely informed. Measuring state B or C will likely put an lower or upper limit on the parameter p1.
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The parameters of the model are identifiable except for one
parameter given the complete data set of the study. In order to
illustrate experimental design considerations, a model which is
not yet well informed by data is required. Thus, we censored one

half of the complete data set for all observables which respectively
correspond to the later stages of the dynamics. This serves two
purposes: First, we reduced the information content of the data,
thus creating non-identifiabilities for some parameters. Second,

FIGURE 4 | (A): Scheme of the biological dynamics in the EPO degradation model (Becker et al., 2010). There are six model states (black text) which interact
through different biological reactions (gray arrows) and three observables (colored text). EPO is transported into the cell and degraded there. (B): Model trajectories for
the observables of the EPO-model. The plotted curves are the best fit trajectories for three different data sets: the censored data set used at the start of the experimental
design analysis, the data set after adding three sequentially proposed data points, and the uncensored published data set. The numbers indicate the order of the
sequentially measured data points. (C): Change of parameter likelihood profiles during the sequential experimental design procedure. The targeted parameter always
became identifiable after data for the optimal experimental condition proposed by the two-dimensional likelihood approach was added into the model. Incorporating the
three optimal data points into the model already produces results of similar accuracy compared to the published data set with 36 additional data points.
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we gain access to biological data for 3 (observables) x 4 (time
points) = 12 experimental conditions which can be used to mimic
real measurements.

The best fit model trajectories for the three observables are
illustrated in Figure 4B for three sets of data (shades of gray). One
set of trajectories corresponds to the censored data set, the next
set corresponds to an optimal sequential experimental design
with three additional measurements and the last set of trajectories
corresponds to the original full data set with 3 (observables) x 4
(time points) x 3 (replications) = 36 additional data points. The
predictions change significantly when adding the three optimal
data points to the censored data set, while adding the rest of the
data only changes the model trajectories slightly.

The three optimal data points were determined by applying
the workflow for the sequential experimental design scheme
shown in Figure 2. The iterative improvement of the
likelihood profiles of the non-identifiable parameters by this
workflow is illustrated in Figure 4C. Starting with the
censored data set, five parameters are non-identifiable. This
comprises the external and internal EPO degradation rate kde
and kdi, the complex dissociation constant koff, the receptor
turnover rate kt and the complex recycling rate kex.

The internal EPO degradation rate kde was targeted by the first
experiment, and has been made identifiable after measuring
EPOexternal at a late stage of the dynamics. Note that
retrospectively, this choice was highly tailored to the
identification of kde, as the profile likelihood for the other
parameters only changed slightly. This underlines that
experiments proposed by our approach aim specifically at
improving the knowledge about the targeted parameter of
interest.

In the second experiment, the internal EPO degradation rate
kdi was targeted. The corresponding optimal experiment is a
measurement of EPOmembrane at a late time point. Because this
design is optimal at an earlier time point than the first
measurement, this suggests that the first measurement of
EPOexternal already carries information which could have been
obtained from measuring EPOmembrane at the same time point,
highlighting that model dynamics are highly intertwined.
Imitating the measurement for the proposed experimental
design again shows that the targeted parameter is identifiable
after the experiment, while the others are still practically non-
identifiable.

The third iteration of experimental design targeted the
complex dissociation constant koff and revealed that measuring
EPOexternal at an earlier time point is now more informative than
measuring the observable EPOinternal, for which late time
measurements are still not available. This highlights the fact
that determination of the optimal experimental design is
difficult by intuitive considerations and experimental design
approaches provide non-trivial insights. This measurement
removed the non-identifiability of both the targeted parameter
koff and also the turnover rate kt which was not considered when
planning the experiment.

A fourth iteration of the sequential experimental design was
not conducted because the two-dimensional likelihood profiles
for the last non-identifiable parameter kex indicate that a single

additional data point for any of the remaining experimental
conditions does not provide enough information to make the
parameter identifiable. In fact, this is in line with the results of the
final model with all data available, as the parameter is still
practically non-identifiable given the complete data set. The
two-dimensional likelihood profiles corresponding to the four
experimental design iterations are illustrated in the
Supplementary Figures S1–S4.

The comparison of parameter likelihood profiles for the design
with three optimally chosen measurements with the full data set
design of 36 new data points is shown in the last two rows of
Figure 4C. The similarity of all profiles across all parameters
indicates that three optimally chosen experimental conditions
already yield much of the information contained in the set of all
36 data points. This underlines the ability of optimal
experimental design to reduce the amount of data needed to
remove non-identifiabilities for the parameters of interest.
Therefore, application of the optimal sequential experimental
design on a realistic biological model demonstrated the feasibility
and merits of the two-dimensional likelihood profiles as an
approach for experimental design.

4 DISCUSSION

4.1 Experimental Design by
Two-Dimensional Likelihood Profiles
A well-planned experiment can save time and resources.
Therefore, optimal experimental design aimed at reducing the
amount of data needed to inform the model is desirable in any
context, but this task is often non-trivial for complex models such
as those encountered in systems biology. We established a
method for optimal experimental design aiming at reducing
parameter uncertainty for a single parameter of interest in a
frequentist setting. To this end, we define two-dimensional
likelihood profiles which contain information about the likely
parameter uncertainty after a measurement. Our approach for
experimental design employs the theoretically appealing concept
of likelihood profiles, which can serve as a measure for
uncertainty in parameter estimates but also for a measure of
uncertainty of measurement outcomes. These measures can be
conceptually understood to imply confidence densities for
parameters or predictive densities for measurement outcomes
with strictly frequentist concepts. The presented approach allows
for the evaluation of the impact of an experiment in a qualitative
as well as in a quantitative manner.

The two-dimensional profile likelihood approach for
experimental design was employed in two examples to
illustrate its properties and establish feasibility of the method.
The ABC reaction model features a non-linear relationship
between model states and parameters and served to illustrate
the features of two-dimensional likelihood profiles. In order to
show practical feasibility of the approach in a realistic setting, an
established erythropoietin degradation model (Becker et al.,
2010) was investigated. To this end, half of the full data set
has been censored to simulate a realistic setting for experimental
design in which some model parameters were practically
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non-identifiable. A fully sequential experimental design
procedure indicated that only 3 of the 36 censored data points
were required to successfully remove all possible parameter non-
identifiabilities.

4.2 Implementation and Limitations
The numerical implementation is provided as part of the
Data2Dynamics (Steiert et al., 2019) modeling environment in
MATLAB. The algorithm exploits the existing one dimensional
profile likelihood calculation in order to construct the two-
dimensional profile likelihood. Computationally, this amounts
to about ~1,000 local optimizations per two-dimensional
likelihood profile, where local optimization is to be understood
as deterministic optimization from a good initial guess for the
parameters. Robustness of these fits is generally easier to obtain if
the available data is appropriate for the size of the model, such
that the model dynamics are constrained to some degree.

Problems associated with limited data availability go beyond
numerical issues and are rooted in the structure of our approach.
As a frequentist method, all information used in our experimental
design scheme must stem from the data already measured. We
have not assessed how much data needs to be initially available
before a systematic experimental design procedure is practically
feasible. However, the issue of lacking prior knowledge is not
exclusive to our approach and amore general theme in non-linear
experimental design. For the application in systems biology,
initial data is often needed in proposing a suitable model, such
that there will usually be data to start off with.

A practical limitation induced by insufficient data occurs if
the range of reasonable measurement outcomes can not be
predicted by the model, i.e. the validation profile reveals a
practical non-identifiability of the model prediction. The
existence of this non-identifiability complicates the
estimation of the expected parameter uncertainty in the
two-dimensional profile likelihood approach, because it
relies on the prediction of the measurement outcomes given
the model and current data. On the one hand, this fully utilizes
the information available in the model, but on the other hand
this constrains the applicability of the approach if the
prediction for the measurement outcome is insufficiently
constrained by the available model data. In case the model
prediction of interest is not identifiable, a weak quadratic prior
can be added to the validation profile in order to guarantee a
finite sample space. This heuristic approach increases the
scope of possible application settings. We emphasize that
our experimental design procedure works best from a
computational as well as methodical point of view if enough
data is available such that model predictions are at least loosely
constrained.

The usual assumption of the correctness of themodel structure
is especially important in our proposed method because it utilizes
the model for predicting likely outcomes of the experiment and
for calculating existing parameter uncertainties. This assumption
is usually implicitly contained in any design strategy, but we
emphasize that the full exploitation of the likelihood in our
approach implies that the proposed experimental design will
benefit greatly from solid prior knowledge about the model

structure. This does not apply to prior knowledge about model
parameters, because likelihood profiles account for parameter
uncertainties.

The relationship between confidence intervals and likelihood
profiles critically depends on the distributional assumption for
the corresponding likelihood profile in Eq. 6. The implicit
assumption that these likelihood ratios are χ21 distributed for
the true parameter set in general holds only asymptotically.
However, as this is general practice in the interpretation of
likelihood profiles, we follow this procedure and underline
that improving upon this assumption offers opportunities for
improving the assessment of parameter uncertainties.

4.3 Comparison to Existing Methods
There are two conceptually different methods in the literature
which we want to discuss, neglecting approaches based on the
Fisher information matrix as reasoned before. One branch of
methods deals with a Bayesian approach to experimental design
which utilizes the Shannon information of the posterior
distribution to plan optimal experiments. The other branch of
methods discusses the concepts of frequentist approaches which
find experimental designs by sampling relevant regions of the
parameter space in order to assess the sensitivity of model
predictions with respect to these parameters.

The Bayesian approach (Busetto et al., 2013; Huan and
Marzouk, 2013; Liepe et al., 2013) is conceptually similar to
our approach, but only applicable if suitable prior parameter
distributions are available. The posterior parameter distribution
after a possible measurement depends on unknownmeasurement
outcomes which can be resolved by averaging the posterior
distribution over the Bayesian predictive density. Similarly, our
proposed frequentist method utilizes a predictive density for the
measurement outcomes and a confidence density for the
parameter estimates, eliminating the need for prior
distributions. These “distributional estimators” (Xie and Singh,
2013) are implicitly derived from the likelihood profiles. This
theoretical framework suggests the use of confidence and
predictive densities in quantifying the confidence that an
interval of parameter values or measurement outcomes
contains the true parameter value or, respectively, a future
measurement outcome.

Our method explicitly determines the impact of different
plausible measurement outcomes of an experimental design on
the parameter estimate of interest in order to derive a design
criterion. This is different to existing frequentist approaches
(Bazil et al., 2012; Steiert et al., 2012) which consider the
sensitivity of model predictions to the different parameters
which are consistent with the current data. Predictions which
largely vary under these acceptable parameters indicate
experimental conditions which are likely informative as they
constrain the set of possible model dynamics. This approach
has been awarded as best performing in the DREAM6 challenge
(Steiert et al., 2012), although the feedback of the possible
measurement results on the model parameter is not
considered directly. This hinders intuitive interpretation of
how a possible experiment feeds back into the parameter of
interest and lacks a quantitative assessment of what constitutes
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a large variation of model predictions. Reversing the logic of this
approach by considering the impact of likely model predictions
on the parameter of interest leads to our refined approach,
although this requires a higher computational cost.

4.4 Implications for Research
Our proposed approach can be used to select the most
informative experimental design for a targeted parameter of
interest. This is often relevant if there are certain biological
parameters of interest which are not identifiable given the
current data. We want to emphasize that although we
discussed reduction of uncertainty for a single target
parameter of interest, generalization to reducing the
uncertainty for a model prediction, i.e. for a function of model
parameters, is straightforward. The detailed quantitative and
qualitative information gain by comparing two-dimensional
profiles for the different experimental conditions comes with a
higher computational cost compared to other approaches. As
such, the detailed information provided by our method might be
especially useful if experimental measurements require
considerable time and resources and as such accuracy is
favored over computational efficiency.

The experimental design approach only requires the existence
of a suitable likelihood function and is therefore applicable in a
broad spectrum of applications. We emphasize the novelty of our
approach in employing confidence and predictive distributions as
frequentist distributional measures for the confidence in
parameter and measurement outcomes, which serve a similar
function as Bayesian probabilities. Exploring the interaction of
these concepts provides a point of interest for further research in
frequentist experimental design.

4.5 CONCLUSION

To summarize, we established an experimental design procedure
which aims at reducing the uncertainty for a parameter of
interest. This design procedure reduces the likelihood function
to a two-dimensional likelihood profile: One dimension informs
our confidence of observing a certain measurement outcome for
the given experimental condition, while the other dimension
informs our confidence in the model parameter corresponding
to the underlying true parameter. Testing our experimental
design procedure on a simple model with simulated data and
on a real model with experimental data revealed that our
approach accurately predicted relevant experimental designs.

Our method provides detailed information about possible
experimental conditions on an easily interpretable quantitative
as well as qualitative level.
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