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Minichromosomemaintenance proteins are DNA-dependent ATPases that bind

to replication origins and allow a single round of DNA replication. One member

of this family, MCM3, is reportedly active in most cancers. To systematically

elucidate the mechanisms affected by aberrant MCM3 expression and evaluate

its clinical significance, we analyzed multi-omics data from the GEO database

and validated them in cell lines and tumor samples. First, we showed the

upregulation of MCM3 in medulloblastoma (MB) at bulk and single-cell RNA

sequence levels and revealed the potential role of MCM3 via DNA replication.

Then we found the dysregulation of MCM3 might result from abnormal

methylation of MCM3. Moreover, we discovered that MCM3 might affect

varied biological processes such as apoptosis, autophagy, and ferroptosis

and that MCM3 was correlated with immune components such as fibroblast

and neutrophils, which were associated with overall survival in different

medulloblastoma subtypes. Furthermore, we found that MCM3 expression

was correlated with the IC50 values of cisplatin and etoposide. The

nomogram of MCM3-related genes showed the reliable and better

prediction of 1- and 5-year survival compared to current histological and

molecular classifications. Overall, the results of our study demonstrated that

MCM3might serve as a potential biomarker with clinical significance and better

guidance than current histological and molecular classifications for clinical

decision-making.
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Introduction

Medulloblastoma (MB), the leading cause of cancer-related death in children, is one of

the most common pediatric brain tumors (Hovestadt et al., 2020). In recent years,

individualized therapy models have emerged based on molecular subtypes and risk

stratification. Surgical resection, cytotoxic chemotherapy, and craniospinal irradiation

(for non-infants usually ≥3 years of age at diagnosis) constitute the standard therapy for
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MB. The estimated 5-year overall survival has remained

unchanged during the past two decades, ranging from 60% to

80% (Lannering et al., 2012; von Bueren et al., 2016). Despite these

high estimates, the drawbacks of current treatment strategies

include toxic effects on neurocognition and the neuroendocrine

systems, sluggish identical therapies concerning radiotherapy and

cytotoxic chemotherapy in developing children, lack of indicators

for novel clinical medications, etc. Therefore, more therapeutic

targets and less toxic strategies are required.

Non-invasive methods have made great advances with the

identification of molecular subtypes based on DNA methylation.

Similarly, as another clinical evaluation method, magnetic

resonance imaging (MRI) also helps the differentiation of

medulloblastoma from other pediatric brain tumors and risk

stratification based on different features of T1 and T2-weighted

MRI (Duc et al., 2020; Minh Thong and Minh Duc, 2020; Zhang

et al., 2022). In addition, cellular proliferation plays an essential

role in tumor content, especially in highly malignant cancers (Gu

et al., 2021; McCarthy et al., 2021; Newman et al., 2021; Qiu et al.,

2021). As the molecular mechanisms involved have been

uncovered gradually, increasing numbers of informative

biomarkers have been identified to evaluate the degree of

malignancy of various cancers, including proliferating cell

nuclear antigen (PCNA) and marker of proliferation Ki-67

(MKi67). Additionally, eukaryotic DNA replication guarantees

genome stability. The minichromosome maintenance (MCM)

proteins play a role as subunits of pre-replication complexes in

the G1 phase and bind to replication origins and restrict DNA

synthesis to a single round of DNA replication (Madine et al.,

1995; Sedlackova et al., 2020). MCM proteins can reflect the cell

cycle status due to their stable state during the cell cycle and

proteolysis in quiescent cells (G0) (Musahl et al., 1998; Madine

et al., 2000). Some studies have reported other functions of MCM

proteins in different cancers, such as their relationships to the

immune response in brain gliomas (Söling et al., 2005), execution

of apoptosis (Schwab et al., 1998), regulation of autophagy

(Puustinen et al., 2020), resistance to anti-tumor therapies

(Shrestha et al., 2021), and stemness of cancer cells (Wang

et al., 2020). The dysregulated expression of MCM3 has also

been demonstrated in varied tumors and could serve as a target

or prognostic biomarker (Stewart et al., 2017; Iglesias-Gato et al.,

2018; Zhao et al., 2020). To date, there is only one study has

reported the expression of MCM3 in various MB cell lines, and

evidence of its systematic roles in MB remains deficient.

The present study systematically analyzed the functions of

MCM3 in pediatric MB combined with clinical tumor specimens

via multi-mics bioinformatic analysis. The results revealed its

potential roles as a therapeutic target and a tool for better

guidance compared to current histological and molecular

classifications for clinical decision-making.

Materials and methods

Public data collection and construction of
the validation cohort

The normalized pediatric MB datasets of DNA

Methylation, mRNA array, and single-cell RNA sequencing

(including GSE85212, GSE54880, GSE85217, GSE42656,

GSE50161, and GSE155446) were obtained from Gene

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/

geo/) database. In addition, 62 clinical tumor tissues were

collected from children diagnosed with primary MB who

received surgical treatment in our medical center (Xinhua

Hospital Affiliated to Shanghai Jiao Tong University of

Medicine) between July 2012 and October 2017. The study

protocol was approved by the Ethics Committee of the Xinhua

Hospital Affiliated with Shanghai Jiao Tong University School

of Medicine (Approval No. XHEC-D-2021-076, Approval

Date. 2021-10-21). Written informed consents were

obtained from all patients.

RNA sequencing of clinical samples

RNA-seq service was provided by MAJORBIO (Shanghai,

China), and completed on a HiSeq4000 instrument. The RNA-

seq reads were mapped to the hg38 reference genome using

STAR (v2.5.3a) (Dobin et al., 2013). Fragments per kilobase of

transcript per million fragments mapped (FPKM) was

calculated, and a mean FPKM ≥ 1 was set as the threshold

to determine the active genes in all samples.

Expression features of MCM3 in different
cancers

The Gene Expression Profiling Interactive Analysis

(GEPIA.2) database was used to determine the differential

expression of MCM3 in various cancers (Tang et al., 2019).

The expression features in different brain tumors, biological

functions, and gene effects in MB cell lines were analyzed from

the CCLE database (Ghandi et al., 2019). The function of

MCM3 was investigated in the Biological General Repository

for Interaction Datasets-Open Repository for CRISPR Screens

(BioGRID ORCS) database (Oughtred et al., 2019). The gene

effects on cancer cells were studied using the DepMap

database (Tsherniak et al., 2017). The relationships between

MCM3 and clinical features were investigated with GEO data

and validated in our own data by utilizing the R programing

language.
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Differential gene expression and
functional enrichment analyses

Differential expression analysis was performed with two

datasets (GSE42656 AND GSE50161) using R/limma (Ritchie

et al., 2015). The differentially expressed genes (DEGs) were

obtained by the intersecting DEGs from the two datasets. The

DEGs from GSE50161 were analyzed by comparing the tumor

group to fetal and adult normal brain tissues, respectively, to

reduce the impact of developmental genes. The criteria for DEG

analysis were p < 0.05 and fold change (FC) > 2. The interaction

network between DEGs was predicted using the online STRING

tool (Szklarczyk et al., 2021). The hub genes and related biological

processes were identified in Cytoscape (ClueGO) (Shannon et al.,

2003).

Data processing and analysis of MCM3 in
single-cell RNA sequencing data

The count matrix obtained from GEO was processed using

the Seurat package to get the Seurat object, filtered with a

criterion of >500 and <7,800 genes, and normalized using the

NormalizeData function (Butler et al., 2018). Highly variable

genes between cells were then identified using the

FindVariableFeatures function for the subsequent principal

component analysis (PCA). Ten principal components were

presented for uniform manifold approximation and projection

(UMAP) dimension reduction to obtain a two-dimensional

representation of the cell state. The FindClusters function was

used for clustering with a selection of resolution of 0.3. The

singleR package was applied for cell annotation, in which non-

immune cells were treated as tumor cells for simplified analysis

(Aran et al., 2019). The expression values of MCM3 in different

clusters or groups were analyzed using the FeaturePlot function

in the Seurat package. Cells expressing MCM3 were extracted

and classified as showing high or low expression levels according

to the mean expression value. Moreover, the DEGs between them

were identified using the FindMarkers function and analyzed

with enrichment analysis to investigate the biological process

affected.

Effects of MCM3 dysregulation

Single-sample gene set variation analysis (ssGSVA) was

performed in R/GSVA to analyze the biological functions

between high and low-risk classifications of MCM3 (Sonja

et al., 2013). Gene ontology (GO) and pathway enrichment

analysis (Kyoto Encyclopedia of Genes and Genomes

(KEGG)) were performed in R/clusterProfiler (Yu et al., 2012)

to analyze the intersected processes shared between the MCM3-

correlated genes and DEGs. P values <0.05 and FDR <25% were

considered statistically significant. Immune infiltration was

evaluated using the “xCell” (Aran et al., 2017), “ESTIMATE”

(Yoshihara et al., 2013), and “CIBERSORT” (Newman et al.,

2015) packages in R. The immune indexes related to survival rate

were identified using the “survival” package in R. Their

correlations with MCM3 expression were also analyzed. The

genes related to apoptosis, autophagy, and ferroptosis were

obtained from corresponding online databases, including Gene

Set Enrichment Analysis (GSEA) (Subramanian et al., 2005),

AmiGo 2 (Park et al., 2015), HAMdb (Wang et al., 2018) and

FerrDb (Zhou and Bao, 2020).

DNA methylation analysis of MCM3 in MB

Missing values in the beta value matrixes were processed

using the “impute” package in R. The probes were filtered and

normalized using the “ChAMP” package (Andrew et al.,

2014). The data quality was then checked by principle

component analysis (PCA) and heatmaps. The

MCM3 probes were analyzed via differential, correlation,

and survival analyses to identify methylation sites affecting

MCM3 expression.

Prognostic model construction and
analysis of drug susceptibility

Survival data of GSE85217 was downloaded and filtered

(age <18 years). This discovery set was then randomly divided

into training and test sets in a 7:3 ratio. The data set of 62 RNA

sequencing data from our medical center was treated as the

independent validation set for the prognostic model. The overall

survival and MCM3-related genes were identified using

univariate Cox regression and lasso regression analyses. A

nomogram containing a multigene panel and clinical features

was used to predict the survival probability. The pRRophetic

package in R was used to predict the drug sensitivity of each

sample according to the gene expression matrix and to evaluate

the correlation between MCM3 expression and IC50 values

(Geeleher et al., 2014).

shRNA plasmid

For the generation of shRNA plasmids, double-strand

oligonucleotides were annealed and cloned into the CMV-

EGFP-F2A-puro vector. The oligonucleotides of shRNA were

synthesized by OBIO Technology (Shanghai, China). The target

oligonucleotides were:

shMCM3-1: GGATGAATCAGAGACAGAA; shMCM3-2:

GCAGTCAATCGGCATGAAT; shMCM3-3: GCCTCACAG

AATCCATCAA.
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Cell transfection

D425 and D458 cell lines were kind gifts from Shanghai Jiao

Tong University of Medicine School, China. The D283 and

D458 cell lines were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 1%

penicillin–streptomycin and 10% FBS. At 48 h post-infection,

the cells were harvested and subjected to protein extraction or

other cellular experiments.

RNA extraction and real-time RT-PCR

Total RNA was extracted using TRIzol Reagent (Takara,

9108) according to the manufacturer’s instructions. A High-

capacity cDNA Reverse Transcription Kit (Takara, RRO47A)

was used to perform the reverse transcription reactions.

Quantitative PCR was performed on an ABI VERTI Real-

Time PCR instrument. The relative mRNA levels were

normalized to GAPDH. The qPCR primer sequences were:

MCM3, 5′-TCAGAGAGATTACCTGGACTTCC-3′
(forward); 5′-TCAGCCGGTATTGGTTGTCAC-3′ (reverse).

Western blot assay

The target protein was extracted, and its concentration was

quantified using a BCA Protein Assay Kit (Pierce, 23227). Protein

samples were separated by sodium dodecyl sulfate-

polyacrylamide gel (SDS-PAGE) and transferred onto

polyvinylidene difluoride (PVDF) membranes (Millipore). The

membranes were blocked with 5% fat-free milk (BD Biosciences,

232100) and then incubated with primary antibodies against

MCM3 (1:1,000; Cell Signaling Technology, 13421S), MCM2 (1:

1,000; Cell Signaling Technology, 12191), MCM7 (1:2,000;

Proteintech, 66905-1), and CDC45 (1:1,000; Cell Signaling

Technology, 9405S), respectively. The secondary antibodies

were HRP-linked goat anti-mouse IgG (1 ml; Cell Signaling

Technology, 7076). The chemical fluorescence images of the

proteins were visualized using a chemiluminescent substrate

(Epizyme Biotech, Shanghai, China).

Cell proliferation assay

The effects of etoposide (XY91494, X-Y Biotechnology, China)

and cisplatin (ST1164, Beyotime, China) on cell proliferation under

different conditions were determined using Cell Counting Kit-8

(CKK-8) reagents (B34304, Bimake, China). Cells were plated in 96-

well plates (4 replicates per condition), treated with serial drug

concentrations, and incubated in normoxic conditions (37°C, 5%

CO2, 21% O2) for 24, 48, and 72 h. The CKK-8 assays were

performed to determine the IC50 values at each time point.

Results

Dysregulated MCM3 expression in
pediatric MB and identification of MCM3-
related signaling pathways and genes

The RNA-seq data of different brain tumor cell lines from the

Cancer Cell Line Encyclopedia (CCLE) showed the highest

MCM3 mRNA expression level in MB (Figure 1A). The

GEPIA 2 database also revealed higher MCM3 mRNA

expression levels in cancer tissues compared to those in

normal tissues in the Oncomine database (Supplementary

Figure S1A). The CRISPR function of MCM3 data from the

BioGRID ORCS database revealed its function in the cell cycle

and potential roles in immune response (Figure 1B). Differential

analysis in GSE42656 and GSE50161 showed

MCM3 upregulation in malignant samples compared to

normal (Figure 1C), adult (Supplementary Figure S1B), and

fetal brain tissues (Supplementary Figure S1C, Supplementary

Tables S1–S3). Moreover, 255 genes were dysregulated in the two

data sets based on the criteria of the absolute logFC >1 and the

adjusted p-value <0.05 (Figure 1D). The heatmap also showed

the differential expression of 255-DEGs (Figure 1E;

Supplementary Figures S1D,E). Hub genes analysis revealed

the core role of MCM3 in these DEGs (Supplementary Figure

S1F) and top 3 ranking among hub genes (Supplementary Figure

S1G). Enrichment analysis via STRING and ClueGO indicated

that DNA replication was the main pathway involved

(Figure 1F). The gene effect analysis of the DepMap database

also indicated the dependence of cancer cells on MCM3

(Figure 1G). In addition, knockdown of the MCM3 protein

level was performed by sh-MCM3 in both D283 and

D458 cell lines, which was confirmed by RT-PCR (Figure 1H)

and WB (Figure I). The cell viability decreased significantly at

72 h in the sh-MCM3 groups compared to that in the sh-Control

groups in both D283 and D458 cell lines. These results revealed

the dysregulation of MCM3 in cancers, especially MB, and that

MCM3 was essential for the survival of malignant cells in MB.

MCM3 drives the malignant
transformation of non-immune cells via
DNA replication-related pathways

A total of 38,328 cells were divided into 30 clusters

comprising six cell types including astrocytes, neurons,

B-cells, T-cells, macrophages, and monocytes (Figure 2A) by

SingleR. MCM3 expression in all clusters was heterogeneous

(Figure 2B). Heterogeneity was also observed in malignant cells,

namely non-immune cells, and non-tumor clusters (Figure 2C).

Compared to non-tumor cells, MCM3 was significantly

overexpressed in tumor cells (Figure 2D). We then

investigated the effect of MCM3 on cell biology processes at
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FIGURE 1
MCM3 expression levels among brain tumor cell lines (A). Functional annotation of MCM3 from the BioGRID ORCS database by CRISPR (B).
MCM3 upregulation in the tumor group of GSE50161 (C). 255 DEGs showed dysregulation in the three contrast sets (D). The normal and
medulloblastoma samples fromGSE50161 clustered respectively according to the expression of DEGs (E). Hub genes analysis viaCytoscape showing
the main biological functions with which MCM3 is involved (F). Gene effects (namely the dependency of the cell on genes) of MCM3 reflect its
essentiality for cancer cell survival (G). Confirmation of MCM3 knockdown by shRNA-1 and shRNA-3 on RNA level by QT-PCR (H) in both D283 and
D458 cell lines (H). Significantly decreased cell viability in sh-MCM3 cell lines (I).
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FIGURE 2
Cell annotations according to SingleR and cell classifications of malignant and non-malignant Cell annotations according to SingleR and cell
classifications of malignant and non-malignant cells (A). Heterogeneity of MCM3 expression in different clusters (B). Heterogeneity of MCM3 express
ion in tumor and non-tumor cells (C). MCM3 over-expression in tumor cells compared to non-tumor cells (D). Top 20 DEGs (E) and the top10 GO (F)
annotations of 159 DEGs between the two groups of malignant cells (high and low MCM3 expression).
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the single-cell level. A total of 7,536 cells expressing

MCM3 were classified as high and low levels according to

the mean MCM3 expression level. The top 20 DEGs of the

two groups were then identified (Figure 2E). GO analysis was

performed of the 159 DEGs after filtering for log fold-

change >0.25 and a minimum fraction of 0.25. Like the

enrichment analysis in bulk RNA sequencing, the biological

processes associated with DNA replication and cell cycle were

significantly enriched, in addition to double-strand break repair

(Figure 2F). Therefore, MCM3 overexpression might be

associated with the malignant transformation of cells via the

dysregulation of DNA replication and cell cycle.

FIGURE 3
GO enrichment analysis of DEGs for different MCM3 expression levels showing the dysregulation of the cell cycle and DNA replication (A). GO
analysis of MCM3-correlated genes and DEGs revealed overlap only for “Double-strand break repair via break-induced replication”, with only four
genes in this biological process differentially expressed and significantly correlated with MCM3 (B). Significant correlations of MCM3 with MCM2,
MCM7, and CDC45 were (C–E). MCM2, MCM3, MCM7, and CDC45 are the main components of the pre-replicative complex (F). MCM7 and
CDC45 are correlated with MCM3 at the protein level via WB analysis in D283 and D458 cell lines (G).
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MCM3 affects tumorigenesis via CDC45-
MCM2-7-GINS helicases

To investigate the potential mechanism by which

MCM3 drives tumorigenesis in MB, we performed GSEA on

samples with high and low MCM3expression levels.

Dysregulation of MCM3 expression was mainly associated with

cell cycle and DNA replication (Figure 3A). Moreover, enrichment

analysis of the MCM3-correlated genes and 255 DEGs respectively

showed an intersection only for “Double-strand break repair via

break-induced replication” (Figure 3B). Only four genes—MCM2,

MCM3, MCM7, and CDC45—met both the criterion of different

expression, and were correlated with MCM3 expression and were

included in further analysis (Figures 3C–E). The results of the

enrichment analysis demonstrated their important roles in

recruitment in the pre-replicative complex (pre-RC) during the

initiation of DNA replication (Figure 3F). Furthermore, in both

D458 and D283 cells, the protein levels of MCM7 and

CDC45 significantly decreased as with MCM3 knockdown

(Figure 3G). MCM2 is more stable than other MCMs and

might maintain its protein level by reducing cytoplasmic

proteolysis, or some other mechanism (Sedlackova et al., 2020).

Therefore, MCM3 might play a role in MB via the dysfunction of

pre-replicative complex and CDC45-MCM-GINS (CMG)

helicases formed by MCM2, MCM3, MCM7, and CDC45.

MCM3 expression is related to clinical
parameters

Table 1 includes data from 628 patients with prognosis data

from GSE85217 and 62 patients with prognosis and RNA-seq

data from our cohort. MCM3 expression did not change

significantly with age (Figure 4A) or between sexes

(Figure 4B); however, children with metastasis showed lower

MCM3 expression levels (Figure 4C). Moreover, MCM3 was

significantly correlated with histology and molecular subtypes

(Figures 4D,E). Thus, more malignant histology and molecular

subgroups, such as Large Cell and Anaplastic (LCA), Sonic

Hedgehog (SHH)-MB, and Group3-MB, showed higher

expression levels of MCM3. In addition, the patients from

GSE85217 were classified into high and low-risk groups

according to the cut-off value determined by ROC analysis

after excluding adult samples. The low-MCM3 group showed

better overall survival (Figure 4F), which was validated in our

cohort (Figure 4G). Furthermore, our cohort showed that

patients with high MCM3 expression had a high risk of

metastasis (Figure 4H). In addition, the Sankey plots also

revealed higher proportions of low-risk patients in WNT and

Group4 MB, and better prognosis in the low-risk group

(Figure 3I). Therefore, MCM3 expression was related to

current major clinical parameters and had potential clinical

significance.

MCM3 dysregulation remodels the
immune microenvironment and affects
multiple cell death-related processes

To systematically investigate the effect of

MCM3 dysregulation in MB, we first analyzed tumor-

infiltrating cells via three algorithms, including ESTIMATE,

CIBERSORT, and XCELL. The results revealed the differential

infiltration of immune cells, such as cytotoxic lymphocytes,

fibroblasts, CD4 T cells, macrophages, etc. (Supplementary

Figure S2). MCM3 was correlated with varied components of

the immune microenvironment based on the ESTIMATE score

(Figure 5A). Subgroup analysis of four molecular subgroups

revealed that the varied immune components were associated

with OS in different subtypes, such as fibroblasts in SHH

(Figure 5B), neutrophils and stromal score in SHH

(Supplementary Figures S3A,B), neutrophils in WNT MB

(Supplementary Figure S3C), and stromal and estimate scores

TABLE 1 Data of RNA-seq included for Kaplan-Meier analysis.

GSE85217 Our cohort

(n = 628) (n = 62)

Gender

Female 212 (33.8%) 25 (40.3%)

Male 405 (64.5%) 37 (59.7%)

NA 11 (1.8%) NA

Age

Mean (SD) 7.30 (4.10) 5.20 (3.22)

Median (Min, Max) 7.00 (0.24,17.3) 4.45 (0.334,16.1)

Histology

Classic 340 (54.1%) 41 (66.1%)

Desmoplastic 86 (13.7%) 7 (11.3%)

LCA 67 (10.7%) 9 (14.5%)

MBEN 17 (2.7%) 5 (8.1%)

NA 118 (18.8%) NA

Metastasis

Yes 165 (26.3%) 28 (45.2%)

No 333 (53.0%) 34 (54.8%)

NA 130 (20.7%) NA

Dead

Yes 147 (23.4%) 21 (33.9%)

No 398 (63.4%) 41 (66.1%)

NA 83 (13.2%) NA

Overall Survival (years)

Mean (SD) 4.88 (3.66) 3.93 (2.74)

Median (Min, Max) 3.92 (0.0192,19.0) 3.29 (0.186,10.0)

NA 90 (14.3) NA
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in Group4 MB(Supplementary Figures S3D,E). In addition,

other biological processes were also analyzed, including

apoptosis, autophagy, and ferroptosis (Figure 5C). First, the

DEGs and MCM3-correlated genes were analyzed with the

three process-related genes to obtain the intersection genes;

for example, CDK5RAP3 and TOP2A in apoptosis, DNM3,

GABARAPL1, GABBR2, OPTN (Supplementary Figures

S3F–I), SCNA and MAPK10 in autophagy (Figure 5C), and

MT3 in ferroptosis (Figure 5C). Only DNM3, GABARAPL1,

GABBR2, SNCA (Supplementary Figures S3J -L), CDK5RAP3,

TOP2A, SCNA and MAPK10 (Figure 5C) were associated with

OS. Therefore, MCM3 might affect the development of MB via

these genes.

Abnormal MCM3 demethylation may
contribute to its expression dysregulation

Considering the epigenetic disorders in pediatric brain

tumors (Lin et al., 2016; Northcott et al., 2017; Petralia et al.,

2020), we investigated the cause of MCM3 dysregulation at the

methylation level. The PCA and heatmap revealed significant

differences between the tumor and normal groups (Figure 6A),

while the heatmaps demonstrated the acceptable quality control

(Figures 6B–C). MCM3 probes were then obtained according to

the beadchip annotation. Among the 14 probes for MCM3,

probes 7 and 13 were filtered, respectively, after data

normalization of GSE85212 and GSE54880. “cg02243303” and

FIGURE 4
Relationships between MCM3 expression and clinicopathologic features. Correlation of MCM3 expression with age (A), sex (B), metastasis
status (C), histology (D) and molecular subtypes (E). MCM3 expression is correlated with OS in samples from children (GSE85217, n = 628) (F).
Validation of the prognostic value of MCM3 in our patient cohort (G). Correlation of MCM3 expression level with metastasis in our cohort (H).
Relationships among molecular subtype, MCM3 risk classification, and survival state (I).
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“cg21858961” differed significantly between normal and tumor

groups and were associated with OS (Figures 6D–E). Moreover,

MCM3 expression was correlated with the methylation level of

the two sites (Figures 7F–G). Therefore, “cg02243303” and

“cg21858961” hypomethylation might be involved in

MCM3 regulation in MB.

FIGURE 5
Correlations of MCM3 with fibroblasts, endothelial cells, neutrophils, cytotoxic lymphocytes, estimate score, and stromal score (A). Association
of fibroblasts with OS in the SHH subtype (B). Kaplan–Meier analysis of genes related to apoptosis, autophagy, and ferroptosis that were correlated
with MCM3 and differentially expressed. CDK5RAP3, TOP2A, SNCA, MAPK10 are correlated with MCM3 and associated with OS (C).
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The prognostic model based on MCM3-
related genes performs better than
current tumor classifications

We next investigated the clinical significance of MCM3. First,

given its extensive influence, genes correlated with MCM3

(11,008 genes) and associated with OS (RAP2B, ARHGEF40,

ADGRG6, ALS2CL, FZD4, TJP2, EIF2AK3, FBLIM1, DGLUCY,

C6orf141, APLN, FCRL1, ZCCHC13, ZMYND15, FAM163B,

LBHD1, UEVLD) were included in univariate and lasso

regression analyses to construct gene signatures (Supplementary

Figures S4A,B). Kaplan–Meier analysis revealed that a low risk score

showed a dramatically longer OS compared to that for a high risk

score (Figure 7A). The testing data set for internal validation

(Supplementary Figure S4C) and our cohort data (Supplementary

Figure S4D) also confirmed the prognostic value of the gene

FIGURE 6
The PCA and heatmap showing the significant difference between normal and tumor samples (A,B) and the high correlation within groups (C).
The “cg02243303” and “cg2185896” probes are significantly associated with OS (D,E) and negatively correlated with MCM3 expression (F,G).
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FIGURE 7
Significant association of the gene signature based on MCM3-related genes with OS (A). The AUC values of the training set, internal validation
set, and our cohort are higher than those for histological classification and molecular subtyping (B). The forest plot showed that the gene signature
was the only independent factor (C). DCA demonstrating the better performance of the risk score compared to the current histological classification
andmolecular subtyping (D). Positive expression of MCM3 expression with sensitivity to etoposide (E) and cisplatin (F). Decreased IC50 values of
cisplatin (G) and etoposide (H) in the sh-MCM3 groups in both D283 and D458 cell lines.
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signature. The AUC of 5-year survival was 0.83 (Figure 7B).

Although the AUC values of the validation set and our cohort

were relatively lower, all were significantly higher than those of

histological and molecular subtypes (Figure 7B). Moreover, the

multivariate Cox regression analysis revealed that only the risk

score was the independent factor (Figure 7C). In addition, the

nomogram model predicting 1-year and 5-year probabilities can

be explored on the website (https://cll12345.shinyapps.io/

DynNomapp/). The C-index of the nomogram was 0.784 (CI: 0.

723–0.831), suggesting its reliability. Moreover, decision curve

analysis (DCA) of the nomogram showed that the prognostic

model performed better than the current strategies for MB

classification (Figure 7D). Finally, owing to the predominance of

conventional chemotherapies in the treatment of MB, we evaluated

the correlation between MCM3 expression and drug sensitivities.

Patients with low MCM3 expression were more sensitive to

etoposide and cisplatin treatment (Figures 7E,F). Furthermore,

we validated the decrease in the IC50 of etoposide and cisplatin

by knocking down MCM3 expression in both D283 and D458 cell

lines (Figures 7G,H). Therefore, MCM3 might be used to guide

prognostic assessment and MCM3 targeted therapy might be a new

potential strategy to reduce chemotherapy doses, which is of great

significance for individualized chemotherapy in children.

Discussion

The results of this study demonstrated the dysregulation of

MCM3 in most common cancers and showed its expression level

in MB cell lines of pediatric brain tumors, which indicated its

potential correlation with tumorigenesis. The CRISPR screening

data, covering multiple cancer cell lines from the BioGRIDORCS

database, also indicated its essential role in malignant cells and

potential relationships with apoptosis, autophagy, and

ferroptosis. We then showed MCM3 overexpression in MB, its

core place in DEGs, and the biological process it drove at bulk

and single-cell RNA-seq levels. We also investigated the

correlations between MCM3 and clinical features, finding that

the MCM3 expression level was related to high-risk

clinicopathologic and molecular subtypes and poor prognosis.

We further performed GSEA based on high and low

MCM3 expression levels and found that MCM3 might

promote tumorigenesis through the dysfunction of the pre-

replicative complex and CDC45-MCM-GINS (CMG) helicases

formed byMCM2, MCM3,MCM7, and CDC45. Considering the

reported relationships with immune response, apoptosis,

autophagy, and ferroptosis, we also found that MCM3 was

correlated with immune microenvironment components and

might affect genes related to the above biological processes,

such as CDK5RAP3, TOP2A, OPTN, MAPK10, etc., which

indicated that MCM3 might affect tumorigenesis through a

variety of mechanisms. In addition, we investigated the

mechanisms of MCM3 dysregulation at the DNA methylation

level and identified two differential sites that were associated with

OS and correlated with MCM3 expression, which indicated that

abnormal methylation might result in MCM3 dysregulation.

Finally, we discovered the correlation of MCM3 expression

with sensitivity to chemotherapy medications, including

etoposide and cisplatin.

MCM3, a member of the MCM family of DNA-dependent

ATPases that bind to replication origins and support a single

round of DNA replication, has demonstrated dysfunction in

most cancers. As shown in Figure 1, MCM3 is upregulated in

various tumors compared to normal tissues. MB is a highly

heterogeneous tumor with the highest incidence andmalignancy.

Molecular subtypes have been described as a reference for

prognosis and individual therapy; however, the high costs of

this analysis limit its popularity in primary medical care. Thus,

there is an urgent need to identify low-cost biomarkers to guide

clinical decision-making. As reported in other tumors, MCM3 is

also upregulated in MB based on bulk RNA-seq data. Moreover,

we also investigated its expression at the single-cell level. As

shown in Figure 2, MCM3 was overexpressed in tumor cells and

might be related to malignant transformation.

The present study also evaluated the impact of

MCM3 dysregulation according to previous reports (Söling

et al., 2005; Puustinen et al., 2020). First, we studied the

association of MCM3 expression within the MB

microenvironment via different methods. We found the

differential immune infiltration between high and low

MCM3 expression levels, including higher infiltration levels of

cytotoxic lymphocytes in the high MCM3 group and higher

infiltration levels of fibroblasts and M2 macrophages in the low

MCM3 group. Moreover, immune components such as

neutrophils and fibroblasts, as well as stromal and estimate

scores, were associated with OS in MB subtypes, indicating the

potential role of MCM3 by affecting immune infiltration. We also

evaluated the association ofMCM3with apoptosis, autophagy, and

ferroptosis-related genes, in which some differentially expressed

genes were correlated with MCM3 and associated with OS.

Therefore, MCM3 might also influence prognosis via these

genes, which requires further robust experimental verification.

Considering the low mutation burden of pediatric brain

tumors, we investigated the mechanism of MCM3 expression

dysregulation. As expected, 2 of 13 sites in MCM3 showed

hypermethylation in MB and were associated with OS.

Moreover, the hypermethylation state was significantly

correlated with MCM3overexpression. Previous studies also

reported that MCM3 hypomethylation could increase its

expression in hepatocellular carcinoma (Hua et al., 2020) and

osteosarcoma (Zhou et al., 2021), and was negatively associated

with prognosis. We also identified that “double-strand break

repair via break-induced replication” might be the most affected

biological processes in GSEA of MCM3 correlated and

differential genes between the high and low MCM3 expression

groups (Figure 3B). Meanwhile, MCM7 and CDC45, which were
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involved in this process, were correlated with MCM3 and

differentially expressed between normal and tumor tissues.

Our results also verified that MCM3 expression was

correlated with other clinical parameters, especially molecular

subtypes and OS, with low-risk classification based on

MCM3 expression commonly observed in the WNT MB and

surviving groups (Figure 4). This indicated that MCM3 might be

a low-cost biomarker for MB risk classification. MCM3 could

also guide for chemotherapy selection according to its robust

correlation (r2 = 0.54 and r2 = 0.33) with cisplatin and etoposide,

which might contribute to individualized therapy to reduce their

toxic side effects in children (Figures 7E,F).

Despite the results, this study has several limitations. First,

while our results demonstrated the correlations between

MCM3 and multiple biological processes through

bioinformatics analysis, further validation studies are needed

to reveal the crosstalk between them. Second, further studies

of the MCM-associated mechanisms via CMG helicases might

also provide a direction for novel target development. In

addition, although our prognostic model demonstrated a

better performance than current histological and molecular

subtypes, further clinical translation is needed.

Conclusion

Overall, we systematically studied abnormal MCM3 expression

and affected biological processes in bulk and single-cell RNA-seq. Our

results showed MCM3 overexpression in MB and its relationships to

clinical parameters. We also discovered that MCM3 might affect

varied biological processes by aberrant methylation of MCM3 and

dysregulation of the complex consisting of MCM2, MCM3, MCM7,

and CDC45. Importantly, our results indicated that MCM3 might

serve as a potential biomarker of prognosis prediction and better

guidance compared to current histological and molecular

classification systems for clinical decision-making.
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SUPPLEMENTARY FIGURE S1
Dysregulation ofMCM3 inmost cancers compared to corresponding normal
tissues . MCM3 upregulation in the tumor group compared to adult normal
samples from GSE42656 (B). MCM3 upregulation in the tumor group
compared to fetal normal samples fromGSE42656 (C). The adult normal and
medulloblastoma samples from GSE42656 clustered according to the
expression of 255-DEGs (D). The fetal normal and medulloblastoma
samples from GSE42656 clustered respectively according to the expression
of 255-DEGs (E). The core position of MCM3 among DEG interactions (F).
Ranking of MCM3 within the top three hub genes (G).

SUPPLEMENTARY FIGURE S2
Estimation of tumor-infiltrating cells via three algorithms, including
ESTIMATE, CIBERSORT, and XCELL, showing differential infiltration of
immune cells, including cytotoxic lymphocytes, fibroblasts, CD4 T cells,
macrophages, etc.

SUPPLEMENTARY FIGURE S3
Association of neutrophils with OS in the SHH subtype . Association of
stromal score with OS in the SHH subtype (B). Association of
neutrophils with OS in WNT MB (C). Association of stromal score
with OS in the Group4 subtype (D). Associations of estimate score
with OS in Group4 MB (E). Negative correlations of the expression of
autophagy-related genes (DNM3, GABARAPL1 GABBR2, and OPTN)
with MCM3 expression (F–I). Relationship of the expression of
autophagy-related genes (DNM3, GABBR2 and GABARAPL1) with
OS (J–L).

SUPPLEMENTARY FIGURE S4
Lasso regression analysis with MCM3-correlated genes in GSE85217, in
which 17 genes constituted themulti-gene signature . Association of the
risk score with OS in the internal validation set (C). Association of the
risk score with OS in our cohort (D).
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