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The energy landscape perspective is outlined with particular reference to biomolecules that
perform multiple functions. We associate these multifunctional molecules with multifunnel
energy landscapes, illustrated by some selected examples, where understanding the
organisation of the landscape has provided new insight into function. Conformational
selection and induced fit may provide alternative routes to realisation of multifunctionality,
exploiting the possibility of environmental control and distinct binding modes.
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1 INTRODUCTION

Since the first work on protein folding over 50 years ago (Levinthal, 1966; Levinthal, 1968; Anfinsen,
1972; Anfinsen, 1973), the advance of new experimental and computational techniques has led to a
greatly improved understanding of proteins and nucleic acids. In addition to insights into the
structural properties of biomolecules in their functional forms, this work has revealed alternative
functional roles. Not only has this research provided a better understanding of the folding process
(Karplus, 2011; Wolynes et al., 2012; Wolynes, 2015), but the importance of folding and misfolding
in disease has been analysed (Chiti and Dobson, 2017). This improved understanding has enabled
the design of new functional biomolecules [for example (Dou et al. 2018), facilitated by the
emergence of design principles based on the fundamental principles governing protein folding
(Huang et al., 2016; Baker, 2019). While this progress has occurred over a relatively long time scale,
the immediate impact was put into focus during the last 2 years, when these techniques were applied
to the SARS-CoV2 virus and its molecular constituents to understand structure and function [for
example (Bai and Warshel, 2020; Sikora et al., 2021)], to identify potential drugs [for example
Shoemark et al. (2021)], and in combination with bioinformatics tools (Waman et al., 2021).

Given the large number of experimental and computational methods commonly used to
investigate biomolecules (Röder et al., 2019), it is not surprising that the corresponding results
can sometimes seem contradictory and difficult to reconcile. These issues can arise for a variety of
reasons. For example, differences in environmental conditions, as well as non-equilibrium effects due
to the long timescales associated with biomolecular motions impact both experiment and simulation
(Wales and Salamon, 2014). Not only do these effects combine to provide challenges in
understanding molecular biological assemblies and their functionality, but they also complicate
the design and development of de novo biomolecules. Consequently, a viewpoint that allows us to
unify and interpret a range of experimental and computational findings is highly desirable.

One key organisational principle emerged from efforts to resolve Levinthal’s paradox, namely the
existence of an underlying, funnelled energy landscape (Leopold et al., 1992; Onuchic and Wolynes,
2004; Bryngelson et al., 1995). Starting from the potential energy function, this landscape can be
analysed from first principles and contains all the information necessary to describe kinetic,
thermodynamic and structural properties of a given molecular system (Wales, 2003). Any
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method, whether experiment or simulation, samples this energy
landscape, but the sampling is often implicit.

The focus of this Perspective involves direct exploration of the
potential energy landscape. Here we exploit the natural coarse-
grained representation in terms of local minima and the transition
states that connect them, which are characterised using geometry
optimisation. This framework provides a general description
applicable to any molecular system (Wales, 2003). State-of-the-
art algorithms allow us to explore such landscapes in the context of
a specific set of environmental conditions for a given protein or
nucleic acid sequence, and for their complexes. The theoretical
insight obtained from simulations can be directly translated into
experimental observables; mechanistic explanations for these
properties can readily be obtained. This approach elucidates the
underlying structural causes for the behaviour of molecular
systems, and emergent observable properties, providing both a
conceptual and a computational framework (Joseph et al., 2017;
Röder et al., 2019). The methodology is briefly summarised in §2,
followed by an overview of some recent applications. In particular,
we highlight recent analysis of multifunnel biomolecular energy
landscapes including intrinsically disordered proteins.

2 THE POTENTIAL ENERGY LANDSCAPE
FRAMEWORK

Our exploration of potential energy landscapes is based on
geometry optimisation techniques, and we extract observable
thermodynamic and kinetic properties using standard tools of
statistical mechanics and unimolecular rate theory (Forst, 1973;
Laidler, 1987). There are three distinct but complementary
aspects to the calculations. Basin-hopping global optimisation
is employed to locate the global minimum and other low-lying
structures on the landscape (Li and Scheraga, 1987; Wales and
Doye, 1997; Wales and Scheraga, 1999). Here, steps are taken
between local minima based on the potential or free energy
(Sutherland-Cash et al., 2015) difference and a parameter with
dimensions of energy, which determines the probability of
accepting an uphill move. Many variants of basin-hopping
exist, featuring alternative move sets, accept/reject criteria
(Leary and Doye, 1999; Shang and Wales, 2014), and
ensembles (Calvo et al., 2016). The common feature that
accelerates the exploration is the local minimisation that
focuses sampling on a discrete set of structures.

Exploration of the low-lying minima via basin-hopping can be
coupled with a method such as parallel tempering (Swendsen and
Wang, 1986; Geyer, 1991; Hukushima and Nemoto, 1996) that
can sample high energy parts of landscape, where the barriers are
generally small. This combination provides methods capable of
overcoming broken ergodicity problems, such as basin-sampling
(Wales, 2013).

2.1 Characterising Kinetic Properties Based
on Energy Landscape Explorations
Characterising molecular rearrangements and the associated
kinetics requires computation of transition states, here

defined geometrically as stationary points with a single
imaginary normal mode frequency (Murrell and Laidler,
1968). The corresponding algorithms for computing
transition states and pathways are relatively mature, and
details are available elsewhere (Wales, 2003; Joseph et al.,
2017; Wales, 2018; Röder et al., 2019). We refer to pathways
defined by local minima and intervening transition states as
discrete paths. Having obtained an initial discrete path between
target product and reactant states we can expand the resulting
database of minima and transition states in various ways to
converge the rates of interest (Joseph et al., 2017; Wales, 2018;
Röder et al., 2019). The database constitutes a kinetic transition
network (Rao and Caflisch, 2004; Noé and Fischer, 2008; Prada-
Gracia et al., 2009; Wales, 2010), and we refer to the harvesting
of discrete paths as discrete path sampling (DPS) (Wales, 2002;
Wales, 2004) by analogy to transition path sampling methods
based on explicit dynamics (Bolhuis et al., 2002; Dellago and
Bolhuis, 2009). The discrete and dynamical approaches are
complementary; the geometry optimisation techniques on
which DPS is based are largely agnostic to barrier heights

FIGURE 1 | Disconnectivity graph for the HA2 system marking the
locations of the pre-fusion and post-fusion minima (Burke et al., 2020).
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and enable rare events to be analysed on experimental time
scales, subject to well-defined approximations.

Post-processing analysis of kinetic transition networks provides
rates via mean first passage times, along with a variety of pathway
characteristics. The landscapes of interest generally feature highly

metastable states corresponding to relatively slow rare events.
Extracting observable dynamical properties requires methods
based on graph transformation (Trygubenko and Wales, 2006;
Wales, 2009; Stevenson and Wales, 2014; MacKay and Robinson,
2018; Swinburne andWales, 2020), which overcome the numerical

FIGURE 2 | (A) The disconnectivity graph for the energy landscape of an amyloid-βmonomer adapted from (Röder andWales, 2018b) exhibits a shallow landscape
with small subfunnels, while (B) the landscape for the H4 histone tail, adapted from (Röder, 2021), supports multiple funnels with distinct structural ensembles. (C)
Schematic representation of how bindingmay affect shallow energy landscapes. (D)Conformational selection based on amultifunnel energy landscape allows binding to
alternative partners for a single peptide or protein.
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problems associated with linear algebra approaches. The first
passage time (FPT) distribution can also be analysed, using
methods such as kinetic path sampling Athènes and Bulatov,
2014; Athènes et al., 2019), which also exploits graph
transformation. This distribution contains far more information
than themean value (Swinburne et al., 2020). For example, we have
applied kinetic path sampling to analyse the FPT for tryptophan
zipper peptide tryptophan zipper1 (TZ1) (Cochran et al., 2001),
revealing a bimodal distribution, which can be directly interpreted
in terms of the underlying energy landscape (Sharpe and Wales,
2020). Additional properties such as committor probabilities,
reactive visitation probabilities, and productive paths can also
be obtained (Sharpe and Wales, 2021a; Sharpe and Wales,
2021b), providing a clear resolution of dynamical bottlenecks.

3 THE IMPORTANCE OF THE ENERGY
LANDSCAPE TOPOGRAPHY

A key advantage of exploring the energy landscape explicitly is that
the organisation is obtained directly. Energy landscapes for proteins
and nucleic acids that have evolved to perform a single function are
expected to be funnelled (Bryngelson and Wolynes, 1987,
Bryngelson and Wolynes, 1989; Leopold et al., 1992; Onuchic
et al., 1997; Morcos et al., 2014), allowing fast and reliable
folding, and overcoming Levinthal’s paradox (Levinthal (1969)).
According to the principle of minimal frustration, the native state is
characterised by formation of all native contacts required by the
sequence, leading to a single funnel in the potential energy landscape
(Bryngelson and Wolynes, 1987; Leopold et al., 1992). However,
competing structures might be stabilised in multiple funnels, leading
to multifunnel energy landscapes, which are observed for many
biomolecules [for example Cragnolini et al., 2017; Röder andWales,
2018a; Joseph et al., 2019)].

3.1 Structural Heterogeneity and Multiple
Functions
It is probably not surprising that multifunnelled energy landscapes
are commonly observed, since many biomolecules adopt different
configurations for alternative functions. Distinct structures require
stabilisation to guarantee a sufficient population, since unpopulated
structures cannot function. Because such stabilisation needs to be
competitive to facilitate control, it leads to separation into distinct
ensembles and funnels. Thus, the energy landscape will be
multifunnelled. This association between multiple funnels and
multiple functions extends the principle of minimal frustration.
We expect the energy landscape to support a number of funnels
associated with the distinct functions (Röder and Wales, 2018c).

3.1.1 Nucleic Acid Landscapes
The energy landscape picture described for proteins is also
applicable to nucleic acid folding (Thirumalai and Woodson,
1996; Thirumalai, 1998; Chen and Dill, 2000). However, the
structural plasticity is even more pronounced in nucleic acids
(Tinoco and Bustamante, 1999; Li et al., 2008; Solomatin et al.,
2010), and represents a key challenge in the description of RNA

structures (Schroeder, 2018). Nonetheless, the explicit
exploration of energy landscapes for nucleic acids is possible,
and provides important insight into the structural variation
compatible with a given sequence (Cragnolini et al., 2017;
Xiao et al., 2019; Röder et al., 2020).

3.1.2 Defining Structural Ensembles in
Multifunnel Energy Landscapes
While the organisation is revealed by energy landscape explorations,
the question remains how to study and analyse the associated,
distinct structural ensembles. While energy landscapes are
sometimes represented using low-dimensional projections, our
approach preserves all degrees of freedom, thus avoiding possible
projection errors. The best way to visualise the landscape
organisation is using disconnectivity graphs (Becker and Karplus,
1998; Wales et al., 1998), which allow us to identify the funnels on
the energy landscape directly. This intrinsic separation of the
structures into funnels can also serve as the definition of
structural ensembles, where each ensemble is a subgraph of the
tree graph representation of the energy landscape. This approach
allows us to identify conserved structural motifs within each
ensemble, providing a robust definition and analysis of different
configurations (Röder et al. 2020).

4 EXAMPLES

The computational energy landscape framework has been applied
for a wide range of biomolecules. This research includes commonly
studied systems such as ubiquitin (Röder and Wales, 2018a), key
transformations of nucleic acids (Cragnolini et al., 2017;
Chakraborty and Wales, 2018; Xiao et al., 2019), smaller
disordered peptides (Joseph and Wales, 2018), and biomolecular
interactions and binding (Röder et al., 2020). Some of these case
studies have been highlighted in previous reviews (Joseph et al.,
2017; Röder et al., 2020]. Here, we present two recent examples; the
first showing how the methodology can be applied to larger and
more complex molecular rearrangements, and the second
examining phosphorylation of a protein, and how these
chemical modifications modify the landscape.

4.1 Influenza a Hemagglutinin Fusion
Pathway
Infection by Influenza A is associated with binding of the trimeric
hemagglutinin (HA) surface glycoprotein to sialic acid at the
termini of glycans in a host cell. First, the HA protein is
cleaved into two chains, HA1 and HA2. A key event in the
infection pathway is the dissociation of the N-terminal region
of HA2 from a helical stem and formation of an extended helix in a
“spring-loading”mechanism (Carr and Kim, 1993). The landscape
for this process has been characterised to connect pre-fusion (Lin
et al., 2012) and post-fusion coiled-coil structures, using a minimal
model based on amino acids 33–172 of HA (Burke et al., 2020).

The predicted pathway involves a two-stage process for
conversion of the B-loop into a helical conformation, while
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the highest barriers are associated with rearrangements that result
in reorientation of helical sequences (Burke et al., 2020). The
corresponding landscape exhibits a significant range of
substructures on various energy and length scales. At the most
coarse-grained level there are two principal funnels, associated
with the pre- and post-fusion structures, separated by a high
barrier (Figure 1). This overall structure is consistent with a
switch, with an essentially irreversible transformation on the
relevant experimental time scale.

4.2 A Phosphorylated Protein
Phosphorylation can induce significant changes in the relative
stabilities of alternative protein conformations, and hence change
the organisation of the energy landscape. Such changes have been
seen for a variety of intrinsically disordered proteins, suggesting that
reorganisation may be associated with specific stabilisation of
marginally metastable states and the associated funnels in the
energy landscape. We have investigated one particular example,
namely eukaryotic translation initiation factor 4E (eIF4E) binding
protein 2 (4E-BP2), a 120-residue system that exhibits local
secondary structure (Fletcher et al., 1998). In the
unphosphorylated state, 4E-BP2 competes with eukaryotic
translation initiation factor 4G (eIF4G) for binding to eIF4E, and
the resulting complex exhibits α-helical structure (Fukuyo et al.,
2011). Phosphorylation can occur at up to five sites, and stabilises a
four-stranded β-sheet structure, with low affinity for eIF4E (Bah
et al., 2015). The balance of stability is shifted to the β-sheet upon
phosphorylation at two sites, but in this state the protein retains
some affinity for eIF4E. This balance is also strongly affected by
mutations.

To understand these effects we explored the energy landscapes of
the doubly phosphorylated wild type (pWT) protein and two
mutants, p(D33K) and p(Y54A/L59A) (Kang et al., 2020). All the
potential and free energy landscapes exhibit multifunnel
organisation, with four states competing with the folded
conformation in pWT. Differences in relative stability can be
interpreted in terms of missing hydrogen-bonds, and the
p(D33K) landscape exhibits the most frustration, with four states
of similar stability separated by high barriers. Some of the states with
minority equilibrium populations in pWT include α helical structure
in the binding motif, which would explain the residual affinity for
eIF4E, and could account for NOE signals that do not arise from the
dominant folded conformations. The minority states also feature
stabilisation from hydrogen-bonds to the two phosphate groups.
Hence phosphorylation causes reorganisation of the multifunnel
landscape, which appears to be associated with control of binding
affinity functionality. This changes is reminiscent of the
reorganisation caused by mutations (Röder and Wales, 2018c),
and can also be observed in nucleic acids (Sharpe et al., 2020);
Röder et al., 2021).

5 INTRINSICALLY DISORDERED SYSTEMS

While globular proteins associated with a single function are
expected to exhibit a single funnel landscape, a multifunnel
organisation seems necessary to support additional structural

ensembles, and hence funnels, required to fulfil distinct
functions. In contrast to the energy landscapes characterised for
structural glass-formers (de Souza and Wales, 2008; Niblett et al.,
2016; de Souza andWales, 2016), we expect to see a relatively small
number of well-defined funnels in such cases. The question then
arises: where on this continuous spectrum of energy landscape
topographies do we find intrinsically disordered proteins?
Descriptions in terms of glassy landscapes may arise from the
observation of structural heterogeneity and kinetic trapping in
experiments. Due to those features, the experimental and
computational study of such systems is more complicated
(Baker and Best, 2014; Bhattacharya and Lin, 2019); Strodel,
2021). It is noteworthy that the same observations may be
made about non-coding, but functional, RNAs, which also
exhibit structural heterogeneity and kinetic trapping. However,
these system are rarely described as disordered.

5.1 Distinct Energy Landscape
Topographies Exist for IDPs
Further questions arise when we look closer at energy landscapes
for intrinsically disordered systems. A NMR study of the Nuclear
Coactivator Binding Domain, an intrinsically disordered system,
revealed the existence of two distinct states, resembling fold-switch
proteins (Kjaergaard et al., 2013). In contrast, the free energy
landscape of the pKID region of the cAMP response element-
binding (CREB) protein exhibits a shallow funnel, allowing for
structural heterogeneity, while upon binding the funnel becomes
steeper, leading to well defined structure (Chong and Ham, 2019).
Systems described as intrinsically disordered proteins and peptides
therefore fall into at least two categories: namely molecules that
exhibit a number of competing states, where no state is
thermodynamically preferred, and those exhibiting a shallow
energy landscape, with no or little topographic bias.

This observation has a number of important consequences.
Firstly, in both cases the energy landscapemight be altered through
external influences, promoting a subset of dominant structures.
Secondly, the existence of multifunnel energy landscapes, which
are associated with controlled biological function, might hint at an
evolutionary development towards specific sequences. Which type
of energy landscape is exhibited is dependent on the sequence and
the resulting interactions, and can be discussed in these terms
(Uversky, 2019). Importantly, these structural preferences lead to
differences in binding behaviour, as observed in experiment (Arai
et al., 2015). The two bindingmechanisms described in this context
are induced fit and conformational selection. It is straightforward
to correlate these mechanisms with the organisation of the energy
landscape. Induced fit relies on flexibility and adaptation of the
structure to external drivers, i.e. the structure of the binding
partner, and is likely associated with the shallow energy
landscapes. The induced fit then restores the topographical bias
through the alteration of the folding funnel (Arai et al., 2015;
Chong andHam, 2019). In contrast, multifunnel energy landscapes
seem likely to be associated with conformational selection, with
specific interactions stabilising the alternative structural ensembles.
Schematic representations of these two ideas are shown in
Figure 2.
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This picture is supported by results from the explicit
exploration of energy landscapes, which yield important
insight into the corresponding organisation and structural
ensembles (Chebaro et al., 2015); Joseph and Wales, 2018).
For example, the amyloid-β monomer exhibits a shallow
folding funnel, with some minor substructure, and significant
structural heterogeneity (Röder and Wales, 2018b). In contrast,
the energy landscape for the H4 histone tail exhibits multiple
funnels, with essentially identical energies, but widely varying
associated structural ensembles (Röder, 2021). Disconnectivity
graphs for both examples are shown in Figure 2.

Aggregates of misfolded proteins are likely to be associated
with high energy barriers and a more frustrated energy landscape
(Strodel, 2021; Röder and Wales, 2018b). This observation is
perhaps not surprising, given the large number of possible
interactions for even two or three peptides with structural
heterogeneity. However, this class of energy landscape should
be distinguished from the structure expected for IDPs, which
arise from different considerations. This distinction is important
considering the association of multiple funnels and multiple
functions. Amyloid aggregation is a process that probably has
not been challenged by evolution, as it only occurs late in life.

6 MACHINE LEARNING AND ENERGY
LANDSCAPE EXPLORATION

Here we briefly consider the future potential of machine learning
methods for exploration of energy landscapes and hence
contributing to this perspective. Structure prediction based on
knowledge-based approaches can now locate low energy
conformations efficiently given appropriate data
(Tunyasuvunakool et al., 2021); some protein and peptide
targets, especially disordered systems, are not yet accessible
(Strodel, 2021). Predicting a single structure is not sufficient
for a survey of the landscape, as many biomolecules exhibit
multiple structural ensembles, which define multiple
functionality. However, identifying the structures that
underpin multifunnel landscapes may be a realistic target for
data driven methods, and would provide input for pathway
analysis employing geometry optimisation techniques, as
described above. Machine learning also has the potential to

accelerate some of this geometry optimisation directly
(Garrido Torres et al., 2019); Yang et al., 2021). The
prediction of nucleic acid structures represents a further
ongoing challenge.

Important advances have also been made in the application of
ML-based methods throughout the field of protein simulations
(Noé et al. (2020)). Examples include efficient and more accurate
potentials [for example Smith et al. (2017)], design of coarse-
grained potentials (Wang et al. (2019)), and work on general
frameworks to represent atoms and molecules based on the
underlying physics (Schütt et al., 2018; Musil et al., 2021). In
addition, subsequent analysis steps, for example the calculation of
kinetic properties, can also benefit from ML-based frameworks
(Mardt et al., 2018; Olsson and Noé, 2019). Such advances should
provide more accurate physically motivated models. The
bottleneck for most current simulations, especially those that
aim to explore large parts of the energy landscape, is the high
computational cost. Faster and more accurate methods will find
widespread applications for enhanced sampling (Ribeiro et al.,
2018; Noé et al., 2019) and treatment of high-dimensional
systems (Olsson and Noé, 2019), with new physical insight
beyond structure prediction.
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