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Breast cancer is the most common malignancy and the leading cause of cancer-related
deaths in women. Recent studies have investigated the prognostic value of the tumor
microenvironment (TME)-related genes in breast cancer. The purpose of this research is to
identify the immune-associated prognostic signature for breast cancer evaluate the
probability of their prognostic value and compare the current staging system. In this
study, we comprehensively evaluated the infiltration patterns of TME in 1,077 breast
cancer patients downloaded from TCGA by applying the ssGSEA method to the
transcriptome of these patients. Thus, generated two groups of immune cell infiltration.
Based on two groups of low infiltration and high infiltration immune cell groups, 983
common differentially expressed genes were found using the limma algorithm. In addition,
studying potential mechanisms, the GSEA method was used to indicate some pathways
with remarkable enrichment in two clusters of immune cell infiltration. Finally, the seven
immune-associated hub genes with survival as prognostic signatures were identified by
using univariate Cox, survival, and LASSO analyses and constructed a TME score. The
prognostic value of the TME score was self-validated in the TCGA cohort and further
validated in an external independent set from METABRIC and GEO database by time-
dependent survival receiver operation. Univariate and multivariate analyses of
clinicopathological characteristics indicated that the TME score was an independent
prognostic factor. In conclusion, the proposed TME score model should be
considered as a prognostic factor, similar to the current TNM stage, and the seven
immune-related genes can be a valuable potential biomarker for breast cancer.
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INTRODUCTION

Breast cancer is one of the major malignancies among females, and mortality remains the second
main cause of cancer-related deaths worldwide (Siegel et al., 2019). Currently, similar to other
cancers, the diagnosis of breast cancer mainly depends on pathological tests, imaging examinations,
and the assessment of tumor markers (McDonald et al., 2016). The TNM staging system is a wildly
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used in clinical practice to guide treatment decisions and predict
the prognosis of breast cancer patients. For better prognostic
value, the current version of the TNM stage has been updated in
the past decade, but it has not increased significantly (Nitsche
et al., 2011). Recently, increasing attention has been paid to the
research on the tumor microenvironment (TME) for its
tremendous potential development capacity in the prognosis of
patients with breast cancer (Baxevanis et al., 2021).

More studies have shown the role of the TME in cancer
progression and therapeutic responses (Jiang et al., 2018).
Emerging evidence related to TME revealed that it is crucial to
patient outcomes. (Fridman et al., 2012). Successful elimination
of tumors through immunotherapy requires activating the
immune system. Unfortunately, the depletion or short-lived
activation of immune cells and inhibition of
microenvironment formation leads to resistance to
immunotherapy (Tang et al., 2016). In addition to its effects
on immunotherapy, the efficiency of chemotherapy and
radiotherapy is also affected through its preexisting properties
and induction therapy (Klemm and Joyce, 2015). Immune-
associated genes and infiltration of immune cells in TME play
a vital role in the properties of tumors, such as proliferation and
development (Gonzalez et al., 2018). Therefore, characterizing
the immune-associated genes with overall survival may present a
prospective reference for breast cancer therapy and prognosis.

In this study, we used computational algorithms based on bulk
tumor expression data that systematically profiled the immune
cell landscape of the TME in 1,077 breast cancers (Aran et al.,
2017). Then, we identified the signature of seven immune-
associated hub genes that are related to the prognosis of
differentially expressed genes (DEGs). Finally, we constructed
a TME score that can be a novel prognostic factor for breast
cancer instead of current the TNM stage.

MATERIALS AND METHODS

Collection and Clustering of Breast Cancer
Data
We systematically searched for the public breast cancer gene-
expression datasets with fully annotated clinical data. We
gathered 1,077 patient data on breast cancer genes and
retrieve the corresponding clinical information from The
Cancer Genome Atlas (TCGA) data portal (Weinstein et al.,
2013). All data were analyzed using R (version 3.6.1) and R
Bioconductor packages. The gene expression of GSE 103091 was
obtained from Gene Expression Omnibus (GEO) database. 1904
samples from the METABRIC cohort were included in this study
for further validation (Supplementary Table S1). We acquired
28 immune-related cells and types for further analysis
(Charoentong et al., 2017). The different TME cell infiltration
patterns with tumors were grouped using hierarchical
agglomerative clustering (based on Euclidean distance and
Ward’s linkage). The ssGSEA was performed on the types of
immune infiltrating cells, immune-associated functions, and the
pathways related to immunization in the expression data of breast
cancer using the R package “GSVA”. A consensus clustering

algorithm was applied to determine the number of clusters in the
meta-data set and the Asian Cancer Research Group (ACRG)
cohort to assess the stability of the discovered cluster. This
procedure was performed using the Consensus Cluster Plus R
package and was repeated 1,000 times to ensure the stability of the
classification (Monti et al., 2003). According to the results of
ssGSEA, low- and high- infiltration immune cell groups were
classified in breast cancer samples from TCGA.

Verification of the Effectuality of Immune
Clustering
Using the R package “ESTIMATE”, gave immune and stromal
cells in the TME scores based on the expression levels of specific
genes (Yoshihara et al., 2013). ESTIMATE algorithm was used to
count the tumor purity of 1,077 breast cancer samples to validate
the effectuality of ssGSEA clustering and to create a heatmap and
statistical map. Using the R package “ggpubr” generated the
vioplots of ESTIMATE score, immune score, stromal score,
and tumor purity in the two clusters. A principal component
analysis (PCA) was applied using the R package “ggord” to
further verify the cluster grouping. In order to investigate the
difference among immune cell subtypes, we used hierarchical
cluster by ConsensusClusterPackage to count the proportion of
28 immune cells in all breast cancer samples (Charoentong et al.,
2017). We also used K-M analysis to validate the difference
between two clusters by using the R package “survival”.

Identification of Differentially Expressed
Genes in Breast Cancer
The patients were grouped into two TME clusters based on
immune cell infiltration for identifying the genes associated
with TME cell infiltration patterns. The DEGs among these
group was deterR package (Ritchie et al., 2015), which
implements a Bayesian approach to estimate gene expression
changes using moderated t-tests. DEGs among TME subtypes
were determined by significance criteria (logFC>1 and p < 0.01)
as implemented in the R package limma. Gene set enrichment
analysis was performed between low- and high- immune cell
infiltration clusters of DEGs using R package “ClusterProfiler”
(Yu et al., 2012).

Distinction and Conformation of
Immune-Associated Gene Prognostic
Signature for Breast Cancer
We downloaded clinical information with breast cancer in the
TCGA dataset and used univariate Cox analysis to discern the
immune-associated gene that was significantly associated with
overall survival using the R “survival” package. Then, the LASSO
regression analysis was performed to screen the hub genes
according to the results in the univariate Cox regression
analysis related to survival using the R “glmnet” package. A
1000-round cross-validation for tuning parameter selection
was used to prevent overfitting and the partial likelihood
deviance met the minimum criteria. Finally, we used the
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LASSO regression analysis to generated a prognostic signature of
breast cancer via the expression level of immune-related hub
genes and their relevant coefficients. The Kaplan-Meier (K-M)
curves and time-dependent receiver-operating characteristic
(ROC) were applied to assess the clinical prognostic capability
of the TME score which was constructed by hub genes using the R
packages “survival” and “survminer”. Moreover, to assess
whether the TME score can indeed be rated as an independent
factor of overall survival of breast cancer patients, multivariate
and univariate Cox regression analyses were performed with
TME score and clinicopathological characteristics as variables
using the R package “survival” again.

Statistical Analysis
The normality of the variables was tested using the Shapiro-Wilk
normality test (Ghasemi and Zahediasl, 2012). For comparisons of

two groups, statistical significance for normally distributed
variables was estimated by unpaired Student’s t-tests, and non-
normally distributed variables were analyzed using the Mann-
Whitney U test. For comparisons of more than two groups,
Kruskal-Wallis tests and one-way analysis of variance were used
as nonparametric and parametric methods, respectively (Hazra
and Gogtay, 2016). Correlation coefficients were computed using
the Spearman and distance correlation analyses. Two-sided
Fisher’s exact tests were used to analyze the contingency tests.
To identify significant genes in the differential gene analysis we
applied the Benjamini-Hochberg method to convert the p values to
false discovery rates. The K-M method was used to generate
survival curves for the subgroups in each data set, and the
statistical significance of differences was determined using the
log-rank test. The hazard ratios for univariate analysis were
calculated using a univariate Cox proportional hazards model.

FIGURE 1 | (A) Unsupervised clustering of TME cells for 1,077 patients in the TCGA cohort. (B) Kaplan-Meier curves for OS of 1,077 patients in TCGA cohort (log-
rank test, p < 0.001). (C) Expression difference of ESTIMATE score, Immune Score, Stromal Score, and Tumor Purity in two clusters. (D) Principal component analysis
(PCA) of two TME clusters modification pattern. (E) The fraction of TME cells in two clusters. The statistical difference of two TME clusters was compared through the
Kruskal-Wallis test. *p < 0.05; **, p < 0.01; ***p < 0.001; ****p < 0.0001.
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A multivariate Cox regression model was generated using the
heatmap function. All statistical analyses were conducted using the
R software. Statistical significance was set at p < 0.05 (two-sided).

RESULT

Generation and Validation of Breast Cancer
Clustering
We obtained 1,077 breast cancer data from the TCGA. To realize
the status of immune cell infiltration, the transcriptome data of
breast cancer samples were grouped by the ssGSEA. A sufficient
28 immune-related cells and types in breast cancer samples were
obtained. An unsupervised hierarchical clustering algorithm was
used to assign the breast cancer samples into two clusters (cluster
1 and cluster 2) based on immune infiltration (Figure 1A). Also,
we found that the low infiltration of immune cell cluster survival
rate was significantly worse than the high infiltration cluster
through the K-M curve in breast cancer patients (Figure 1B,
Supplementary Table S2). The ESTIMATE score, stromal score,
immune score, and tumor purity were calculated based on the
infiltration level of breast cancer using the ESTIMATE algorithm
to reflect the availability of the above clustering result. The violin
plot has shown that the high infiltration of immune cell cluster
(cluster 2) has a higher score than the low infiltration of immune
cell cluster (cluster 1) in the stromal score, immune score, and
ESTIMATE score (Figure 1C). The PCA plot further validated
the precision of cluster grouping (Figure 1D). Figure 1E
indicates that the significant differences in immune cell
infiltration in the two TME clusters.

Identification of DEGs Between Low and
High Infiltration of Immune Cell Clusters
We identified the DEGs between the high infiltration of the
immune cell group (cluster 2) and the low infiltration of the

immune cell group (cluster 1) by using a significance criterion
(logFC>1 and adj. p < 0.01). A total of 983 DEGs were
preliminarily screened by limma and obtained 361 upregulated
and 622 downregulated genes, respectively (Figure 2A).

Functional Annotation by GSEA Enrichment
Analysis
The GO analysis showed that genes in the high and low immune
cell infiltration cluster in the TCGA database were almost related
to immune response both in regulating and activating the cell
surface receptor signaling pathway, regulation of leukocyte
activation, and so on (Figure 2B).

Distinction and Evaluation of Seven
Immune-Associate Genes Prognostic
Signature for Breast Cancer
For further analysis, we used 1,077 breast cancer samples with
complete clinical data. Univariate Cox regression analysis and
LASSO regression analysis were used to identify seven immune-
associated genes, including SEC14L2, IGHD, IGHA1, CHAD,
PCSK6, BIRC3, and CCDC74B, which were most significantly
associated with overall survival (Figures 3A,B). The details of
immune-related genes are comprehensively displayed in the circus
plot (Figure 3C). We further studied the prognosis value of each
immune-related gene for breast cancer patients and demonstrated
its correlation in immune cell infiltration (Figures 3D,E).

Then, we assigned patients into high TME score and low TME
score groups using the cutoff value (cut off -1.904) obtained with
the Survminer package. Kaplan-Meier (K-M) curves and log-rank
test were revealed that the low TME score group had a significantly
better survival than the high TME score group (p < 0.001), showing
that the TME score has an effective prognostic value (Figure 4A,B,
Supplementary Table S2). Then we also test the prognosis value of
seven immune-associated genes in METABRIC cohort. It showed

FIGURE 2 | (A) The DEGs visualization was screened by limma. (B) GO enrichment analysis of the DEGs.
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FIGURE 3 | (A) The optimal penalty parameter values were confirmed by 1,000 round cross-validation. (B) Seven hub genes related to prognosis were analyzed by
LASSO Cox analysis. (C) Each of seven genes on chromosomes was shown in Circos plots. (D) The contribution made by each of the seven genes to survival
differences. (E) Correlation matrix of immune cell infiltration and the expression levels of seven immune-associated genes.

FIGURE 4 | (A–C) The TME score and Kaplan-Meier curve analysis of seven immune-associated gene signature in TCGA-BRCA and METABRIC cohort. (D–F)
ROC curves measuring the predictive values of the TME score at 1, 2, and 3 years in overall, training and external validation set, respectively.
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that low TME score group also has better survival than high TME
score group (Figure 4C).

Assessment of Tumor Microenvironment
Score as Independent Prognostic Factor in
TCGA and GSE103091
The multivariate and univariate Cox regression analyses are
applied to test whether the TME score calculated by the seven
immune-associated hub genes was a latent independent
prognostic factor. The Univariate and multivariate Cox
regression analyses showed that TME score can be an
independent prognostic factors (p < 0.001) (Table 1).

In addition, the TME score stably maintained a powerful and
independent factor in the training set, testing set, and external
validation sets. Time-dependent ROC was applied to evaluate the
precision of predicting overall survival of breast cancer at 1, 2 and
3 years between the high and low TME scores. The area under the
ROC (AUC) values at 1,2,3 years were 0.732,0.712, and 0.687,
respectively, in the training set and 0.731,0.735, and 0.75,
respectively, in the internal testing. To validate whether our
prognostic classifier had similar predictive ability in different
populations, we applied it to the external validation set
(GEO103091), and the result is 0.654, 0.849, and 0.708 at 1, 2,
and 3 years, respectively (Figures 4D–F). The GO analysis of the
low TME score group has showed that these were associated with
B cell activation, cell chemotaxis, cell junction organization, cell
matrix adhesion, cell substrate adhesion andmore (Supplementary
Figure S1). The KEGG analysis of the low TME score group has
indicated that they were associated with the JAK-STAT signaling
pathway, cytokine receptor interaction, leukocyte trans-endothelial
migration, and so on (Supplementary Figure S2).

DISCUSSION

Breast cancer is the most frequent and deadly malignant tumor
among women around the worldwide, because of its complicated

TME, it is a highly heterogeneous disease (Sousa et al., 2019). The
high heterogeneity of breast cancer exists in the molecular level of
tumor cells, as well as in the TME (Baker et al., 2018). In addition,
breast cancer tissue is not just composed of cancer cells, also
mixed with several types of normal cells, such as immune cells,
stromal cells, and fibroblasts (Bai et al., 2019). The relationship
between TME and the properties of BRCA, such as tumor
progression, invasion, and metastasis has been widely
recognized (Bussard et al., 2016). Thus, we identified and
validated the prognosis value of seven immune-associated
genes with the survival of breast cancer datasets obtained
from TCGA.

In this study, unsupervised hierarchical clustering algorithm
was applied to classified the samples into two clusters based on
the enrichment of 28 immune cell types. There were significant
differences between low- and high- infiltration of immune cell
clusters in the immune score, stromal score, ESTIMATE score,
and tumor purity. In addition, the K-M analysis revealed that the
breast cancer patients in the high immune cell infiltration cluster
had a higher survival rate and that the survival rate of the two
clusters was significantly different. We also discovered seven
innovative immune-related genes based on the TCGA-BRCA
cohort, which were successfully validated in an external
independent set from METABRIC and GEO cohort. The
overall survival time of the low-TME score group was
significantly better than that of the high-TME score group.
Univariate and multivariate Cox regression analyses showed
that the seven immune-associated hub genes were an
independent prognostic factors in both TCGA and GES
103091 datasets. Moreover, the AUC confirmed that the seven
immune-related genes were comparable and superior to the TNM
stage in predicting the overall survival of breast cancer patients.
To further analyze the relationship between the TME score group
and TNM stage. Therefore, these results suggest an excellent
prediction capability for the seven immune-associated hub genes.

Seven immune-related hub genes, including SEC14L2, IGHD,
IGHA1, CHAD, PCSK6, BIRC3, and CCDC74B were studied.
Proprotein convertase subtilisin/Kexin type 6 (PCSK6) is a

TABLE 1 | Univariate and multivariate analyses of clinicopathological characteristics and TMEscore with overall survival in TCGA BRCA cohort.

Characteristics Univariate analysis HR (95% CI) pvalue Multivariate analysis HR (95% CI) Pvalue

TMEscore 2.875 (2.008–4.117) <0.001 2.674 (1.76–4.061) <0.001
Age 1.032 (1.02–1.045) <0.001 1.029 (1.015–1.044) <0.001
Stage
Stage II 1.59 (0.92–2.749) 0.097 1.29 (0.525–3.166) 0.579
Stage III 3.033 (1.71–5.38) <0.001 2.032 (0.578–7.144) 0.269
Stage IV 13.035 (6.426–26.438) <0.001 5.306 (1.333–21.123) 0.018

pathologic_T
T2 1.298 (0.863–1.953) 0.211 0.957 (0.497–1.842) 0.896
T3 1.576 (0.935–2.655) 0.087 0.895 (0.378–2.119) 0.801
T4 3.976 (2.142–7.378) <0.001 1.283 (0.483–3.409) 0.617

pathologic_M 4.869 (2.906–8.157) <0.001
pathologic_N
N1 1.851 (1.252–2.735) 0.002 1.42 (0.841–2.398) 0.19
N2 2.743 (1.641–4.585) <0.001 1.812 (0.712–4.609) 0.212
N3 4.106 (2.27–7.428) <0.001 1.778 (0.717–4.41) 0.214

HR, hazard ratio; CI, confidential interval.
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proteinase that regulates the proteolytic activity of various
precursor proteins and protein maturation. A previous study
revealed that PCSK6 significantly enhanced cell motility,
migration, and invasion abilities when they overexpressed in
MDA-MB-231 breast cancer cells in vitro (Lapierre et al.,
2007). In addition, blocking PCSK6 expression in breast
cancer MA-MB-231 cells inhibited their proliferation, invasion
and migration abilities (Wang et al., 2015). In addition, PCSK6
was also reduced cell cycle arrest and prevented apoptosis of
MDA-MB-231 cells and increased the expression level of the
phosphorylated forms of ERK1/2 and WNT3A. Meanwhile,
CCDC74B is a k-fiber crosslinker required for chromosomal
alignment, thus by promoting the k-fiber stability and
maintaining the spindle integrity to ensure proper
chromosome alignment and cell division (Zhou et al., 2019).
SEC14L2/TAP (tocopherol-associated protein) is a tocopherol-
binding protein that regulates transcription and cholesterol
metabolism (Porter, 2003). It is highly expressed in the breast,
prostate, liver, and brain, the contrast was observed in many
human tissues (Zimmer et al., 2000). A previous study
demonstrated that TAP was downregulated in breast cancer;
therefore, TAP/SEC14L2 may function as a tumor suppressor
in breast tumors (Wang et al., 2009). BIRC3 (cellular IAP2) is a
member of the human IAP family (Liang et al., 2020). It is
overexpressed in malignant breast cancer compared to primary
breast cancer, and is also linked to resistance to anti-cancer agents
(Frazzi, 2021). Chondroadherin (CHAD) is a cartilage matrix
protein thought to mediate adhesin in isolated chondrocytes
(Camper et al., 1997). Low levels of CHAD have been
associated with poor survival in hepatocellular carcinoma
(Deng et al., 2017). IgA are produced in the airways and
gastrointestinal tract, as well as in the lactating breast. IGHA1
and IGHA2mRNA levels are highly correlated and are associated
with improved prognosis with a higher immune activity in breast
cancer (Larsson et al., 2020). IgD is a membrane-bound B cell
receptor, and the B cell express IgD before the class switch. These
results confirmed that the seven TME-associated immune genes
affect the prognosis of patients with cancer.

We then further investigated the correlation between TME
score and clinical characteristics in patients with breast cancer
using the multivariate Cox and univariate Cox regression
analyses. According to the result, the TME score showed good
potential as an independent prognostic factor in patients with

breast cancer (p < 0.001). Moreover, some studies have clarified
the probability of TME score as a prognostic factor in several
cancers. It is demonstrated its predictive value for immune
checkpoint blockade (Zeng et al., 2019).

The limitations of our study are as followed. All the data and
results were through a drying test and further research and
confirmation is needed to reduce the bias from clinical
practice, such as actual animal experiments.

In conclusion, we developed and validated the TME score
which could be independent prognostic signatures for breast
cancer based on the seven immune-related gene signatures.
Our study may guide the prediction of prognosis and survival
in patients with breast cancer and may provide potential targets
for immunotherapy.
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