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Recent years have seen several hybrid simulation methods for exploring the
conformational space of proteins and their complexes or assemblies. These methods
often combine fast analytical approaches with computationally expensive full atomic
molecular dynamics (MD) simulations with the goal of rapidly sampling large and
cooperative conformational changes at full atomic resolution. We present here a
systematic comparison of the utility and limits of four such hybrid methods that have
been introduced in recent years: MD with excited normal modes (MDeNM), collective
modes-driven MD (CoMD), and elastic network model (ENM)-based generation,
clustering, and relaxation of conformations (ClustENM) as well as its updated version
integrated with MD simulations (ClustENMD). We analyzed the predicted conformational
spaces using each of these four hybrid methods, applied to four well-studied proteins,
triosephosphate isomerase (TIM), 3-phosphoglycerate kinase (PGK), HIV-1 protease (PR)
and HIV-1 reverse transcriptase (RT), which provide extensive ensembles of experimental
structures for benchmarking and comparing the methods. We show that a rigorous multi-
faceted comparison and multiple metrics are necessary to properly assess the differences
between conformational ensembles and provide an optimal protocol for achieving good
agreement with experimental data. While all four hybrid methods perform well in general,
being especially useful as computationally efficient methods that retain atomic resolution,
the systematic analysis of the same systems by these four hybrid methods highlights the
strengths and limitations of the methods and provides guidance for parameters and
protocols to be adopted in future studies.
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INTRODUCTION

Under physiological conditions, proteins sample a distribution of
conformations while retaining their native fold. Indeed, the
dynamic equilibrium of accessible conformations often
underlies the regulation of protein function and allosteric
mechanisms or their adaptability to bind various ligands or
drugs (Haliloglu and Bahar, 2015; Zhang et al., 2020; Wingert
et al., 2021). Several studies in the last decade have confirmed the
importance of structural dynamics in facilitating, if not driving,
the interactions and function of biomolecular systems in the cell
(Bahar et al., 2010; Orellana, 2019; Thirumalai et al., 2019;
Resende-Lara et al., 2020). In particular, the role of structural
dynamics in supporting catalytic activity is a topic of interest
(Yon et al., 1998; Bahar et al., 2010; Jiang et al., 2011), with the
understanding that enzymes are mechanochemical entities (Yang
and Bahar, 2005) and conformational mechanics often
complement chemical events by enabling domain or loop
movements required for activation.

The determination of 3D coordinates of proteins and their
complexes/assemblies has accelerated in recent years thanks to
advances in experimental methodologies. Specifically, the
developments in cryo-electron microscopy (cryo-EM) and
X-ray free-electron laser (FEL) crystallography have revealed
multiple snapshots of flexible and complex molecular systems
(Branden and Neutze, 2021). In parallel with rapidly growing
structural data, theoretical and computational methods that
exploit those data toward gaining insights into mechanisms of
function have gained importance. While traditional methods,
exemplified by molecular dynamics (MD) simulations work as
primary tools for studying dynamic events at full atomic details,
they still fall short of providing an adequate description of
cooperative events at time scales beyond microseconds for multi-
domain/multi-subunit systems. On the other hand, analytical
methods and coarse-grained (CG) models, exemplified by
Normal Mode Analysis (NMA) with elastic network models
(ENMs), permit us to solve for the spectrum of modes uniquely
accessible to supramolecular systems, providing mathematically
exact and physically plausible information on cooperative events,
albeit neglecting anharmonicity and atomic details.

Several approaches have been developed aiming to increase the
specificity of CG approaches while retaining the high resolution of full
atomic simulations. Many ENM-based approaches have focused on
the optimization of the basic parameters, spring constants and cutoff
distances/functions for inter-residue interactions (Hinsen, 1998; Yang
et al., 2009; Kaynak et al., 2018; Kaynak and Doruker, 2019; Koehl et
al., 2021), but such studies fall short of providing atomic level
information. Instead, another research line, the development of
the so-called hybrid methods that combine MD and NMA (using
either ENMs or full atomic models) proved to be useful in recent
years. These methods have demonstrated two key advantages: 1) an
accurate description of cooperative changes in structure, usually
described by low frequency normal modes (NMs), and 2)
providing atomic details and incorporating local non-linear effects
fromMD simulations that ‘recalibrate’ these conformational changes
(Krieger et al., 2020). Such methods are also beneficial for flexible
fitting to cryo-EM maps (Costa et al., 2020) where methods

employing either MD or NMA are typically used (Miyashita and
Tama, 2018).

In this article, we provide a comparative analysis of such hybrid
methods developed for efficient sampling of the conformational space
and the possible transitions between functional states. We focus on
four methods: ClustENM (Kurkcuoglu et al., 2016), its recent
extension ClustENMD (Kaynak et al., 2021), MD with excited
NMs (MDeNM) (Costa et al., 2015), and collective MD (CoMD)
(Gur et al., 2013). ClustENM produces successive generations of
conformers by deforming along low frequency modes, clustering the
conformers, and performing energyminimization at full atomic scale.
ClustENM conformers have been effectively used in ensemble
docking studies for protein-ligand, protein-protein and protein-
DNA/RNA pairs (Kurkcuoglu and Doruker, 2016; Can et al.,
2017; Kurkcuoglu and Bonvin, 2020), including supramolecules
like the ribosome. The recent extension, ClustENMD, uses short
MD simulations for the refinement of the generated conformers. The
MDeNM method is a multi-replica protocol designed to enhance
conformational exploration in a subspace defined by a set of low-
frequency NMs, also including the couplings with localized motions
occurring within the Cartesian space. In this method, additional
atomic velocities are introduced along different linear combinations
of NMs. Even thoughNMs are usually computed in vacuum, they are
used as privileged directions in MD simulations with an explicit
representation of the surrounding medium. MDeNM has
demonstrated its power in conformational sampling in several
studies revealing important protein functional movements (Dudas
et al., 2020; Dudas et al., 2021a; Fagnen et al., 2020; Fagnen et al.,
2021) and has also been successfully used in ensemble docking studies
(Dudas et al., 2021b). CoMD provides a combination of ENM-NMA
and targeted MD, coupled with energy minimization to adaptively
generate a series of conformers.

The metrics for evaluating the performance of these methods
deserve attention. For example, while the ability to reproduce
crystallographic B-factors has been adopted as a metric in many
studies, the comparison of ENM-NMA predictions with the
covariance derived from MD simulations were reported to enable
a more accurate assessment (Fuglebakk et al., 2013). Here we use the
data from both MD and experiments to evaluate the principal
components (PCs) of structural changes observed in experiments
and predicted by the hybrid methods. The idea, independently
introduced in two original studies (Yang et al., 2008; Bakan and
Bahar, 2009), is to consider the ensemble of structures resolved for a
given protein (e.g. multiple X-ray structures resolved in the presence
of different drugs for HIV-1 protease), and examine whether this
‘experimental space’ of conformations matches that predicted
computationally. This is a rigorous comparison, unbiased by the
selection of conformers used as reference.

We perform our comparative analysis for four well-studied
enzymes: triosephosphate isomerase (TIM), 3-phosphoglycerate
kinase (PGK), HIV-1 protease (PR), and HIV-1 reverse
transcriptase (RT) (Figure 1). Table 1 lists the properties of
these enzymes, including the reference structure, the size and
oligomeric state of the protein, and the number of experimentally
resolved structures used in our comparative analysis along with
the corresponding threshold for pairwise sequence identity.
Overall, the study serves two major purposes: it provides a
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rigorous comparison of the performance of the hybrid methods
revealing their limitations and advantages, and it helps determine
the optimal parameters used in these methods thus permitting us
to build fully automated algorithms that can be readily adopted
for future applications.

METHODS

We present below a brief description of the hybrid methods
examined here along with the methods used for comparative
analysis. Table 2 provides a summary of the parameters and

protocols used in each hybrid technique, along with the number
of conformers generated for each studied system. Overall, six
ensembles of structures or conformations are studied: those
resolved experimentally, those sampled by MD, and those
predicted by four hybrid methods, ClustENM, ClustENMD,
MDeNM, and coMD. All methods are applicable to proteins,
DNA, and RNA molecules and their complexes.

ClustENM and ClustENMD
ClustENM (Kurkcuoglu et al., 2016) is a fully automated
conformational sampling method composed of multiple
generations/cycles consisting each of the following steps: 1)

FIGURE 1 | Proteins investigated in the present study. The figure displays the experimentally resolved X-ray structures also used as initial structures for simulations.
(A) HIV-1 protease (PR) (PDB id: 1tw7) is a wide-open, apo structure. The residue K55 on each subunit of the homodimer isused to probe the opening/closure of the
flaps. (B) TIM (PDB id:1tcd) is a homodimeric enzyme, for which the catalytic loop is shown in red on both subunits of the apo state. The distance between the catalytic
loop tip residue G174 and Y211 defines loop opening/closure motion in each subunit. (C) HIV-1 RT (PDB id: 2b6a) is a heterodimer composed of p51 and p66
subunits. The current structure is in complex with THR-50. The distance between the fingers and thumb subdomains, both located on the p66 subunit, indicate a
transition between closed and open conformations of the region between these two subdomains. (D) PGK (PDB id: 2xe7) in the presence of the two substrates, 1,3-
bisphosphoglycerate (bPG) and ADP. The distance between P66 and M311, two residues located at the tips of the N- and C-domains near the ligands, probes the
opening/closing movement of the enzyme required for its catalytic activity.

TABLE 1 | Proteins used as case studies, and corresponding structural data from experiments.

Protein name (acronym) PDB structure used as
References/initial State

Total # of residuesa and functional
oligomerization state

Number of experimentally resolved structures (and
their sequence identity thresholdb)

HIV-1 protease (PR) 1tw7 Martin et al. (2005); Apo 198 (Homodimer; 99 residues/monomer) 768 (90%)

3-phosphoglycerate
kinase (PGK)

2xe7 Zerrad et al. (2011); Complexc 413 (Monomer; 416 residues) 35 (90%)

triosephosphate
isomerase (TIM)

1tcd Maldonado et al. (1998); Apo 497 (Homodimer; 251 residues per
monomer)

57 (50%)

HIV-1 reverse
transcriptase (RT)

2b6a Morningstar et al. (2007);
Complex with a NNRTId

978 (Heterodimer; 560 residues in p66
subunit, 440 in p51)

365 (90%)

aThe number of residues resolved in the reference structure. The actual number is written in parenthesis).
bThe percentage in parentheses is the sequence identity threshold after optimal multiple sequence alignment.
cThe ternary complex with 3 PG and ADP, in the open state of PGK, was used as reference structure.
dNNRTI: non-nucleoside RT inhibitor.
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conformer generation by deforming along global NMs calculated
using the anisotropic network model (ANM) (Atilgan et al.,
2001), 2) clustering of generated conformers, and 3) relaxation
of cluster representatives. The cluster representatives will be the
parent conformers that are passed onto the next generation of
sampling. The ANM modes are updated for each parent
conformer in each generation. A series of deformations along
the ± directions of a few global modes (3–5) are carried out by
targeting a specific root-mean-square deviation (RMSD) for
deformation (Step 1). Representative conformers selected for
computing the next generation of conformers are relaxed by
energy minimization (EM) in implicit solvent (Step 3).

In the extended version of ClustENM, called ClustENMD
(Kaynak et al., 2021), MD simulations using OpenMM
(Eastman et al., 2017) are performed for conformational
relaxation in Step 3. Relaxation can be performed either in
implicit solvent (Onufriev et al., 2004) with the Amber99SB
force field (Lindorff-Larsen et al., 2010) or explicit solvent.
The former is used in this study. In ClustENMD, ANM
sampling (Step 1) enables deformations along random
combinations of global modes with a specified average
RMSD from each parent conformer. Both ClustENM and
ClustENMD have been implemented in the application
programming interface (API) ProDy (Bakan et al., 2011;
Zhang et al., 2020).

The present analysis allows us to compare two types of
relaxation (Step 3) using 1) only EM (ClustENM) and 2) EM
followed by heating up the system to a desired temperature (here
303.15 K) by MD simulations of about 3 ps at neutral pH
(ClustENMD). The same parameters are used for all proteins,
namely average RMSD of 1 Å for deformation and five
generations of sampling composed each of random
combinations of the first three global modes (Table 2).

Collective Molecular Dynamics
Collective Molecular Dynamics (coMD) simulations were run
using scripts generated by an updated version of our previous
coMD plugin (Gur et al., 2013; Gur et al., 2015) for VMD
(Humphrey et al., 1996) available at https://github.com/prody/
coMD. Like the old version, the current coMD plugin uses VMD
to prepare the simulation system and interpret the output Tcl
script. CoMD uses ProDy (Bakan et al., 2011; Zhang et al., 2020)
to calculate NMs based on the ANM (Atilgan et al., 2001; Eyal
et al., 2015), and NAMD (Phillips et al., 2020) for energy
minimization and targeted MD (TMD) (Schlitter et al., 1994;
Swift andMcCammon, 2008). As previously described (Gur et al.,
2013; Gur et al., 2015), ANMmodes are selected in aMonte Carlo
scheme (ANM-MC) with their probabilities and amplitudes
based on their eigenvalues, such that the lowest frequency, or
the energetically most favorable, global modes dominate the
sampling. coMD can be used to either sample the transition
path between two endpoints (with the help of a MC/Metropolis
algorithm) or explore the conformational space in the vicinity of a
starting conformer (by setting the Metropolis acceptance
probability equal to 1). In the current implementation, we
adopted the second procedure, given that our goal was to
explore the conformational space in the absence of any bias.

Method parameters include the number of modes, maximum
deviation per mode, and the total RMSD with respect to the
starting conformer at each ANM-MC cycle. A combination of
three modes, 0.1 Å deviation, and 1 to 1.5 Å RMSD per cycle was
found to give the best compromise between sampling a
reasonably large conformational space and avoiding unrealistic
deformations such as unfolding. We used a TMD duration of 4 ps
to be comparable to other methods. The CHARMM36m (C36m)
force field (Huang et al., 2017) was used for all systems. In this
study, we used CHARMM-GUI (Jo et al., 2008) systems set up in

TABLE 2 | Parameters, protocols, and outputs of investigated hybrid techniques.

Hybrid
method

# Of
modes

RMSDa or T (K)b # Of runs Specification of the methods # Of conformers
generated by the hybrid

methods

PR PGKc TIM RT

CoMD 3 1 Å 9/9/9/10 for PR/PGK/
TIM/RT

C 50 cycles of targeted MD guided by ANM 459 450 459 510
C Monte Carlo-metropolis criteria for selecting new

conformerse

C Explicit (TIP3) water and ion

ClustENMd 3 1 Å 3 C 5 generations of ANM sampling 898 900 903 903
C Energy minimization (EM)
C Implicit solvent

ClustENMDd 3 1 Å 3 C 5 generations of ANM sampling 902 903 903 903
C MD (for heating up the system)
C Implicit solvent

MDeNM 3 2/2/3/3 K for PR/PGK/
TIM/RT

1 C Excited MD using atomic NMA 1,560 1,056 415 600
C 20/8/5/10 re-excitations for PR/PGK/TIM/RT
C Explicit (TIP3) water and ion

aDeformation size or RMSD (Å) is used in coMD, for setting target structures; whereas it is used to generate the conformers in each generation of ClustENM(D) followed by relaxation.
bMDeNM uses an excitation temperature for adding extra velocities to atoms alongmodes direction. Temperature values separated by slashes correspond to different systems ordered as
PR, PGK, TIM, and RT, respectively.
cPGK, ligands were not included in ClustENM, or ClustENMD, but were included for other methods.
dFor PR and PGK, a few conformers with high energies have been automatically excluded from the ensemble. The maximum number of conformers from each run is 301.
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the other methods (rather than the CoMD VMD plugin) and the
Tcl running script was adapted accordingly. This included the
liganded complex for PGK as in MDeNM. All other parameters
were kept at their default values including 20,000 kcal/mol/Å2 for
the TMD spring constant.

MD with Excited Normal Modes
The all-atom NMs required for MDeNM simulations (Costa
et al., 2015) were calculated with CHARMM (Brooks et al.,
2009) in conjunction with the additive C36m force field (Huang
et al. 2017), considering the conformation obtained after an
initial short equilibration MD run. The potential energy of the
examined structure was minimized till an energy RMS gradient
of 10−5 kcal/mol/Å was reached. Then, NMs were calculated
using the VIBRAN module of CHARMM. The equilibrated
solvated structures were considered as starting points for
MDeNM simulations. Each MDeNM replica consisted of the
conformational exploration along a single linear combination of
the selected modes. An RMSD-based filtering was performed
before the simulations. Briefly, random linear combinations of
the three lowest frequency NMs were followed by 1 Å geometric
displacements yielding a deformed structure that must present
an RMSD greater than a given threshold (referred to as RMSD
threshold) from others previously accepted. If the RMSD of a
given generated structure is lower than the threshold, the
combination is rejected, and another is generated. This
procedure maximizes the variability observed in the
excitation directions, therefore covering the defined NM
space. These directions are then used to excite the protein
kinetically. The excitations are applied periodically each after
a given relaxation time during MD simulation, by increasing the
atomic velocities along the given excitation direction. As the
excitation energy rapidly dissipates, multiple excitations are
needed (referred to as the number of excitations). Each
excitation increases the temperature of the system by a given
amount (called the excitation temperature). Each excitation
step is followed by a relaxation time. In line with other
studies, we found that excitation energies of 2–3 K coupled
with relaxation times ranging from 4 to 8 ps (Costa et al., 2015;
Floquet et al., 2015; Dudas et al., 2020, 2021a, 2021b) are
broadly applicable. The number of cycles varies by system
(Table 2). The intermediate conformers at the end of each
excitation-relaxation cycle are collected to define the MDeNM
ensembles. The other parameters are the same as those
described below for MD simulations.

MD simulations
We carried out MD simulations in NAMD for comparison of
the conformers sampled in MD trajectories with those
generated by the hybrid techniques. For each protein, we
carried out three independent runs of 200 ns each, explicit
solvent at 303.15 K. The systems were prepared using
CHARMM-GUI (Jo et al., 2008) and default parameters were
used for MD simulations. A set of 6,000 snapshots have been
collected at 100 ps intervals for each protein (2,000/run × 3 runs),
forming the MD ensembles.

Comparison Between Computationally
Predicted and Experimentally Resolved
Ensembles
To compare the simulation outputs with the available
experimental data, ensembles of experimentally resolved
structures were compiled and subjected to PCA for each of the
four proteins studied here (Table 1) using methods developed
within the ProDy API (Bakan et al., 2011; Bakan et al., 2014;
Zhang et al., 2019; Zhang et al., 2020; Zhang et al., 2021). The
structures were projected onto the reduced space spanned by the
first two PCs defined by the experimental dataset (ePC1 and
ePC2) for each studied protein, using ProDy and visualized by
Matplotlib (Hunter, 2007). The corresponding conformers
generated by computational methods were also projected onto
that subspace, thus allowing for comparison of their distribution
in the backdrop of experimentally observed conformational
space. Continuous population density plots of conformers
were generated for each ensemble using kernel density
estimate (KDE) plots from the Seaborn Python package
(Waskom, 2021). We used ProDy for calculating the RMSDs
and distance measures representing the departure from the
different functional states of the proteins. The variances of
computationally predicted conformers along ePC1–ePC10 were
determined by projecting them onto these ePCs and evaluating
their standard deviation from the mean.

We also determined the simulated PCs (sPCs) for each
ensemble of conformations generated by MD, ClustENM,
ClustENMD, MDeNM, and coMD, to determine the dominant
modes of conformational changes predicted by the simulations or
hybrid methods. Finally, to quantify the extent of similarity
between the major structural variations observed in
experiments and those predicted by simulations, we evaluated
the correlation cosines between experimentally sampled top four
PCs (ePC1-4) and those sampled in simulations (sPC1-4).
Likewise, similar correlation cosines were evaluated for pairs
of outputs from different computational methods. The results
are presented in heat maps (6 × 6 super-matrices), the super-
elements of which (4 × 4 blocks) describe the pairwise correlation
cosines, or the so-called overlaps between pairs of PCs from
different methods.

Furthermore, we used the root-weighted square inner product
(RWSIP) (Carnevale et al., 2007) as another metric to assess the
overall consistency between the spectrum of structural changes
observed in simulations and those from experiments, defined as

RWSIP �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∑N

i�1∑N
j�1λ

u
i λ

v
j(ui · vj)2

∑N
i�1λ

u
i λ

v
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/2

(1)

Here λui and λvj are the eigenvalues of the covariance matrices
corresponding to their respective PCs, ui and vj (sPCs and ePCs).
N is the number of the PCs (N = 4 in our analysis). RWSIP takes
into account the relative contribution (eigenvalue) of each PC,
thereby giving larger weights to the more collective modes.
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RESULTS AND DISCUSSION

HIV-1 Protease (PR)
HIV-1 protease (PR) is a homodimeric enzyme consisting of two
symmetrically positioned monomers of 99 amino acids each, with
the substrate-binding site at the interface of the monomers. The
access to this site is mediated by two opposing β hairpins known
as flaps (Figure 1A). Several studies have pointed to the
significance of the coupled movements of the two PR
monomers in relation to catalytic activity. Three regions
recognized to be functionally important in each monomer are:
1) the N- and C-terminal residues 1–4 and 95–99, essential to
dimer assembly; 2) the central region (residues 10–32 and 63–85)
of each monomer containing the catalytic site, and also involved
in dimerization; and 3) the highly flexible glycine–rich flaps
exposed to solvent (residues 33–62) (Scott and Schiffer, 2000;
Henzler-Wildman et al., 2007; Palese, 2017). The opening/closing
of the flaps and the twist motion of the two monomers with
respect to each other serve as collective motions that support the
enzymatic function, coupled to the catalytic dyad dynamics
(Batista et al., 2011; Badaya and Sasidhar, 2020).

Conformational Variability From Experiments and
Computations
PR is one of the most thoroughly studied enzymes as a target for
HIV-1 drug development, with over 750 structures resolved to

date in different forms, in the presence of different ligands/drugs.
Figure 2A provides information on the conformational
variability of the 768 PDB structures used here as the
experimental dataset. The blue histogram in panel A displays
the RMSDs (based on Cα atoms) of these structures from the
wide-open form [PDB id: 1tw7 (Martin et al., 2005)] used as
reference, showing that the crystallographic structures are rather
narrowly distributed (within 2.3 Å RMSD). The ensemble of
conformations sampled during MD simulations (red
histogram) exhibits a broader distribution (up to 4.2 Å),
comparable to those generated by ClustENMD and CoMD but
narrower than those generated by ClustENM and MDeNM
(Figures 2B,C).

As mentioned above, flap opening is required for the substrate
to access the active site, and its closure for proteolytic cleavage to
occur. The degree of opening of the flaps can be evaluated
through the distance between the Cα atom of residue K55 in
the two monomers (Figure 1A). Figures 2D–F shows
distributions of this distance obtained for each ensemble. The
white vertical dashed lines indicate the distances corresponding to
the open and closed states of the flap, represented by the reference
structure (open) and 1bve (Yamazaki et al., 1996) (closed). Most
of the experimentally resolved structures are closed conformers in
the presence of a bound ligand. The PR stability is increased in the
bound form such that it is better protected against self-cleavage
and its crystallization is facilitated. Again, ClustENM and

FIGURE 2 | Comparison of computational and experimental ensembles of HIV-1 PR. Histograms: (A–C) RMSDs with respect to the starting open structure (PDB
id: 1tw7). (D–F) Distances between α−carbons of K55 on different subunits that monitors the opening/closure of flaps. Dashed lines indicate the distances of the initial
open structure and a closed crystal structure (PDB id: 1bve). The distribution for each ensemble, namely experimental (blue), MD (red), ClustENM (cyan), ClustENMD
(magenta), coMD (green), and MDeNM (orange), is shown on the shared x-axis. (G) RMSFs as a function of residue index for each ensemble, (H) Pearson
correlation coefficients between all pairs of RMSF profiles. (I–M) Population distributions of ensembles of conformers generated by simulations, projected onto the
subspace spanned by experimental ePC1 and ePC2, shown for (I)MD simulations, (J) ClustENM, (K) ClustENMD, (L)MDeNM, and (M) coMD. Cyan circles represent
the experimental structures, and the orange diamond is the initial structure (PDB id: 1tw7). (N) Standard deviations of the conformers projected along the
experimental PCs.
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MDeNM sample significantly more open conformations
compared to MD, while ClustENMD and coMD yield inter-
flap distances comparable to those sampled in MD.

The conformers generated by the hybrid methods encompass
both the open and closed states of the enzyme. The distributions
of conformers are continuous and unimodal in MD, ClustENM
and ClustENMD, while coMD and MDeNM yield distinct peaks
separating the closed form (Figures 2E,F). Notably, the open state
is more populated than the closed in all simulations, in contrast to
experimental structures. This could be attributed to the fact that
simulations were carried out using a wide-open unliganded, drug-
resistant mutant (PDB id: 1tw7) as the initial conformation. Note
that ligand binding usually favors closed conformers; whereas the
unliganded PR preferentially adopts open conformers
predisposed to ligand-binding.

Residue Fluctuation Profiles
While the RMSDs and inter-flap distances point to broadly
distributed ensembles of conformers predicted by the hybrid
methods (especially ClustENM and MDeNM), it is of interest to
assess whether the residue fluctuation profiles exhibited by those
ensembles differ from those observed in experiments and in MD
simulations. Figure 2G displays the root-mean-square-fluctuations
(RMSFs) of Cα atoms from their average positions in each ensemble.
As expected, all computations yield higher RMSFs than those
observed in the X-ray crystallographic ensemble (reflecting the
restricted residue mobilities in the crystals), and ClustENM and
MDeNMensembles exhibit the highest RMSFs. However, the RMSF
shapes (profiles as a function of residue index) deduced from
experiments and simulations are very similar, as quantified by
the pairwise Pearson correlation coefficients (Figure 2H). All
four hybrid methods exhibit correlation coefficients higher than
or equal to 0.9 with experimental data (and among themselves),
showing that a robust pattern of residue fluctuations, albeit the
increased amplitudes, is captured by all ensembles.We note thatMD
simulations yield sharp peaks around G50-G51. This region
corresponds to the tips of the flaps, indicating that MD may
overestimate these local motions, relative to others that move
concertedly. However, the correlation between MD and
experiments is still strong (0.88), and those with ClustENMD
and coMD are remarkably high (≥0.95).

Conformational Landscape
The above analyses compared the conformational diversity and
residue flexibilities of the ensembles. Next, we proceed to a closer
inspection of the conformational space explored by each method.
To this aim, we first determined the subspace spanned by the
principal components ePC1 and ePC2 obtained from the PCA of
known structures. The known structures projected onto this
subspace are displayed in Figures 2I–M by the cyan dots, each
dot representing a PDB structure. The cluster of dots on the left
refers to closed structures, and the reference (open) structure is
displayed by the orange diamond. The origin of the plot represents
the “average” structure, which lies in the region occupied by the
closed structures due to the predominance of closed structures in
the experimental ensemble. Next, we evaluated the distribution of
conformers for each computationally generated ensemble,

projected onto the same subspace. These distributions are
displayed by contour plots (orange-to-red shades) in Figures
2I–M. The shading/levels get darker as the population density
increases. The color-coded contour plots exhibit features consistent
with the RMSDs in panels A-C.

The subspace spanned by the experimentally derived ePC1
and ePC2 provides only a partial view of the spread of conformers
generated by computations, as some of the conformers may be
broadly dispersed along other ePCs. As a measure of the variance
of computationally generated conformers along additional ePCs,
we evaluated the standard deviation of the distribution of each
computed ensemble of conformers projected along the first
10 ePCs. The results are presented in Figure 2N. Highest
variations are observed along ePC1 followed by either ePC3
(ClustENM, MDeNM and coMD) or ePC4 (ClustENMD and
MD) for all computed ensembles, while the variations along
higher modes drop sharply in all cases. These results suggest
that the first four ePCs are sufficient to describe to a good
approximation the diversity of experimentally resolved
structures as well as a divergence in the computed conformers
(e.g., by ClustENM) with respect to experiments.

Comparison of Global Modes/Principal Directions of
Motion
Given the important contribution of the top four PCs, we carried out
a detailed comparison of the overlap between ePC1-4 from
experiments, and sPC1-4 from each simulation (MD and four
hybrid methods). The heatmap in Supplementary Figure S1
provides information on the overlap between these six sets of
PCs, organized in a super-matrix of 6 × 6 blocks. Each block (4
× 4matrix) describes the correlation cosine between the top four PCs
corresponding to a pair of ensembles. This way, one can trace back
the similarities in the observed conformational heterogeneities to
similarities between top-ranking PCs. The bottom row shows that
ePC1 strongly correlates with sPC1 from MD and MDeNM (with
respective correlation cosines of 0.84 and 0.76), and with sPC2 from
coMD (0.73). As to the ePC2, we note its high correlations with
ClustENM sPC2 (0.71) and MDeNM sPC3 (0.73). Likewise, the
second block-row from bottom shows the moderate correlations
betweenMDand hybridmethods, and the top four block-rows show
strong correlations between the hybrid methods. Thus, even though
the order of the PCs may differ, the six ensembles of structures/
conformations exhibit equivalent pairs of PCs which predominantly
define the observed distributions of conformers. We have
furthermore evaluated the RWSIP values [Eq. (1)] as an
additional metric for comparison. All hybrid methods as well as
MD simulations yield satisfactory correlation (varying as 0.62 ≤
RWSIP≤0.83) with the experimental ensemble (Table 3) in line with
a previous study showing close correspondence between NMs and
ePCs for this system (Yang et al., 2008).

The structural variations described by the first four ePCs are
schematically described by the color-coded ribbon diagrams in
the upper panel of Figure 3. The lower panel displays the first
four sPCs generated by MDeNM. The sPCs are reordered to
highlight (by boxes) the sPCs equivalent to the ePCs. Notably,
ePC3 also shows a high correlation (0.75) with MDeNM sPC2
and exhibits a bending of the whole structure where the flaps
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move together. These functional movements along MDeNM
sPC1-3 can be viewed in Supplementary Movie S1. Earlier
studies have shown that the first two collective modes of PR
describe internal movements allowing for substrate binding and
catalysis (Scott and Schiffer, 2000; Batista et al., 2011; Palese,
2017). We see here that the first two modes, ePC1/sPC1 and
ePC2/sPC3 capture these flap opening/closure and twisting
events, as well as the coupled twisting and bending of the
monomers; and sPC3 accounts for inter-subunit counter-
rotation.

Triosephosphate Isomerase
TIM is a homodimeric enzyme, each subunit adopting a TIM
barrel fold (Figure 1B). It plays a key role in the glycolytic

pathway catalyzing the interconversion between two triose
phosphate sugars, dihydroxyacetone phosphate and
D-glyceraldehyde 3-phosphate. The active sites are located at
the C-terminal end of each β-barrel. A crucial feature of TIM
functional dynamics is the catalytic loop opening/closure on each
subunit. Catalysis takes place when the loop is closed protecting
the active site from solvent exposure. Loop closure is not ligand-
gated, i.e., it takes place in the apo state as well (Williams and
McDermott, 1995; Cansu and Doruker, 2008).

Conformational Variability From Experiments and
Computations
In contrast to the other examined proteins, homologous TIM
structures with ≥90% sequence identity to the Trypanosoma cruzi

TABLE 3 | Comparative assessment of the performance of hybrid methods.

Protein ClustENM ClustENMD MDeNM coMD MD Experimental

Closest distance of approach (Å) (Figure 2, Figure 4, Figure 6, and Figure 8; panels D–F)a

PR (K55-K55)_ 17.7 17.6 14.3 20.8 21.0 21.5
TIM (G174-Y211) 13.8 12.0 14.9 13.4 13.4 12.9
PGK (P66-M311) 17.4 20.4 21.5 18.1 24.9 23.6
RT (thumb-fingers) 28.8 29.9 26.8 33.4 39.2 26.9

Minimum RMSD (Å) from the closed structureb

Initial structurec Attained in simulations, starting from the open state Initial RMSD (exp)d

PR (1tw7) 2.2 1.7 1.8 2.3 <2 2.7 (1bve)
PGK (2xe7) 1.4 1.7 2.9 2.5 3.2 3.6 (2wzb)
RT (2b6a) 3.5 3.8 4.3 3.8 4.7 5.2 (3kli)

RWSIPe with respect to experimental PCs

PR 0.62 0.75 0.77 0.72 0.83 1.00
TIM 0.54 0.58 0.55 0.54 0.52 1.00
PGK 0.87 0.89 0.78 0.78 0.74 1.00
RT 0.72 0.70 0.56 0.56 0.43 1.00
Average 0.69 0.73 0.66 0.64 0.63 —

aThose entries with Δd < 1 Å [where Δd = d (comp)—d (exp)] are shown in boldface.
bMinimumRMSD, of each ensemblewith respect to the closed structure reflects the extent of approach from open-to-closed state (those values below 2.0 Å are highlighted in bold). TIM is
not included as experimental structures do not show a global transition between open and closed states but just loop motions (RMSD within ~ 1 Å RMSD).
cPDB id for open structure is in brackets.
dPDB id for closed structure is in brackets.
eThe highest (best) RWSIP value observed for each protein is highlighted in bold.

FIGURE 3 | First four principal modes for HIV-1 PR ensembles. The (A,B) are based on the PCAs of the experimental and MDeNM ensembles, respectively. Those
PCs that exhibit high (>0.70) correlations are enclosed in boxes. See the corresponding movies in Supplementary Movie S1.
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structure used here (PDB id: 1tcd) yielded a small set that closely
retained the same structure. To increase structural diversity, we
have relaxed the threshold sequence identity to 50%, which led to
an ensemble of 57 resolved structures for TIM homologs. The
blue histogram in Figure 4A displays their distributions (RMSDs)
with respect to the starting conformer [PDB id: 1tcd (Maldonado
et al., 1998); Table 1]. MD simulations also exhibited a narrowly
distributed RMSD histogram (panel A; red histogram) while the
hybrid methods (panels B–C; labeled) yielded substantially higher
RMSDs, pointing to the ability of these methods to sample a
broader conformational space, as already seen for HIV-1 PR. Yet,
given the high stability of the TIM fold, the relatively lower
RMSDs predicted by ClustENMD and coMD could be more
realistic.

The catalytic loop motion of TIM can be monitored by the
distance change between the Cα atoms of G174 (tip residue of
loop 6) and Y211 (a relatively immobile residue on the barrel used
as reference) (Figure 1B). Our previous MD simulations
(Kurkcuoglu and Doruker, 2013; Kurkcuoglu et al., 2015)
indicated multiple opening/closing events between this pair of
residues. Figures 4D–F shows the distributions of this distance
for both subunits. Experiments show a multimodal distribution
varying over a broad range (13–19 Å), with the lower values
corresponding to the closed loop. In the reference crystal
structure (PDB id: 1tcd), the distances are 14.0 and 15.6 Å for
A and B monomers, respectively, shown by white vertical dashed
lines in each panel. ClustENM and coMD exhibit bimodal
distributions with peaks localized around these values.

Relaxation by heating up in ClustENMD enhances loop
flexibility leading to a broader distribution (panel E; magenta).
MD and MDeNM, on the other hand favor the open state only,
missing the closed state of the loop observed in experiments and
other hybrid methods.

Residue Fluctuation Profiles
The RMSFs and their Pearson correlation coefficients are
presented in the respective panels G and H of Figure 4.
Consistent with RMSDs, the conformers generated by hybrid
methods, and especially MDeNM and ClustENM display higher
RMSFs compared to those observed in MD simulations and
experiments. The two orange arrows along the abscissa in
Figure 4G indicate the location of the catalytic loops. Thes
showed the highest conformational diversity in experiments
(blue curve). All hybrid methods display similar profiles, but
their correlations with experimental ensembles, which vary in the
range 0.53–0.60, are much lower than that (0.90–0.94) observed
for HIV-1 PR. Their correlations with MD vary from 0.71 to 0.75.
The hybrid methods consistently show very high correlations
among themselves (>0.95), suggesting that they robustly sample
similar motions, beyond those observed in X-ray crystals as will
be further elaborated below.

Conformational Landscape
Figures 4I–M display the loci of the 57 experimentally resolved
structures (cyan dots) in the reduced space spanned by ePC1 and
ePC2, and the distribution of computationally predicted

FIGURE 4 | Comparison of the ensembles of conformers experimentally observed and computationally generated for TIM. The panels are in the same format as
Figure 2. (A–C) RMSD histograms with respect to the starting apo structure (PDB id: 1tcd). (D–F) Distances between α-carbons of G174 and Y211 that monitors the
opening-closing of the catalytic loop. Dashed lines indicate the loop distances in the different subunits of starting dimeric structure. (G) RMSFs with respect to the initial
structure for each ensemble.Orange arrows indicate the catalytic loop position in each subunit. (H) Pearson correlation coefficients between pairs of RMSF profiles.
(I–M) Population distributions of computed ensembles (labeled in each panel) projected onto subspace spanned by ePC1 and ePC2. (N) Standard deviations of the
conformers projected along ePCs.
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ensembles are displayed by the color-coded KDE plots. The origin
of each plot corresponds to the mean experimental structure,
which lies in proximity to the reference structure (PDB id: 1tcd,
orange diamond). The experimental structures (cyan dots) and
MD simulations cover a limited portion of this subspace
compared to the hybrid methods with a clear shift of the MD
distribution relative to the experimental one in line with the
RMSDs and loop distances. Figure 4N describes the distributions
of the computationally generated conformers along the first
10 ePCs. Higher variations in conformations are observed
along the sPCs 3 and 4 for all hybrid methods. Therefore, the
first two experimental PCs, ePC1 and ePC2, are not sufficient to
account for the diversity of the conformations sampled by hybrid
methods.

Comparison of Global Modes/Principal Directions of
Motion
Supplementary Figure S2 shows the overlaps between the top
four PCs for each pair of ensembles. The sPCs of the hybrid
methods are in close agreement with each other, and also in
accord with the first three sPCs from MD. As discussed above,
the first two ePCs do not show significant correlation with the
sPCs (bottom two rows), whereas higher overlaps are evident
between ePCs 3–4 and sPCs 1–2. Not surprisingly, RWSIP
values are generally relatively low (0.53–0.58) for this enzyme.
Closer examination shows that, ePC1 primarily reflects the
catalytic loop opening/closure (Figure 5), also evident from the
large distance change in the loop shown in Figure 4D. As such,
it is a local motion, and it is not among the sPC1-4 that the
hybrid methods yield (top-ranking sPCs usually describe
cooperative motions that engage the entire protein). ePC2,
on the other hand, refers to loop motions coupled to
relatively more collective motions and shows slightly higher,
but still weak, correlations with sPCs. In contrast, ePC3 and
ePC4 do exhibit notable correlations with sPC1 or sPC2 from
all simulations. These motions correspond to the counter-
rotation and bending of the subunits with respect to each
other, coupled to the catalytic loop dynamics, as illustrated
in Figure 5 and Supplementary Movie S2. These motions have
been identified as the global modes that define the enzyme’s

putative functional motions (Kurkcuoglu et al., 2006; Cansu
and Doruker, 2008; Kurkcuoglu et al., 2015). Notably, sPC3 is
another highly cooperative motion where the two monomers
concertedly bend around an axis perpendicular to that of sPC1;
and sPC4 exhibits a counter-twisting and breathing of the two
barrels (Figure 5). Overall, hybrid methods point to a broad
range of cooperative rearrangements, which cannot be readily
discerned upon PCA of structures resolved for TIM
homologues which yields either local loop motions (ePC1-2)
or highly constrained (small amplitude) global motions
(ePC3-4).

3-Phosphoglycerate Kinase
PGK is another key glycolytic enzyme, catalyzing the phospho-
transfer between 1,3-bisphosphoglycerate (bPG) and ADP. It is a
monomeric protein composed of two domains of approximately
equal size. The bPG binding site is located on the N-domain,
while ADP binds to the C-domain (Figure 1D). During its
function, the enzyme undergoes a large hinge-bending
conformational change bringing the bound substrates into
proximity such that the reaction can happen (Palmai et al.,
2009; Palmai et al., 2014). The open crystal structure in
complex with 3-phosphoglyceric acid (3 PG) and ADP [PDB
id: 2xe7 (Zerrad et al., 2011)] is used here as the reference
structure for initiating the computations.

Conformational Variability From Experiments and
Computations
We considered 35 experimentally resolved structures for PGK,
with sequence identity above 90%. Figures 6A–C shows the
RMSDs of the different conformational ensembles, including
the ensemble of experimentally resolved structures and
conformers from MD simulations (panel A), and those
generated by hybrid methods (panels B–C) with respect to the
initial open structure. The conformers were superposed onto the
mean experimental structure using the Cα coordinates in both
domains. There are two separate groups of experimentally
resolved structures (Figure 6A), with the lower RMSD group
corresponding to the open structures, and that centered around
3.7 Å corresponding to closed structures. All hybrid methods

FIGURE 5 | First four principal modes for TIM ensembles. The (A,B) refer to experimental and ClustENMD ensembles, respectively. Those PCs that exhibit high
(>0.70) correlations are enclosed in boxes. See the corresponding movies in Supplementary Movie S2.
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yielded wide unimodal distributions for RMSDs in contrast to the
bimodal distributions exhibited by experimental structures and
MD conformers. Larger RMSD regions correspond to further
opening/relaxation of the protein, beyond that observed in the
crystals and/or accessed in MD simulations.

The opening-closing motion of PGK can be monitored
through the distance between the α-carbons of P66 and M311,
two residues located at the tips of the N- and C-domains in the
vicinity of the ligands. Figures 6D–F provides the distributions of
the interdomain distance probed by these two residues. For
reference, the distance in the initial open structure (34.5 Å)
and that assumed in a catalytically active fully closed crystal
structure (PDB id: 2wzb (Cliff et al., 2010), 24.2 Å) are indicated
by thewhite dashed lines. Figure 6D clearly distinguishes between
the closed and open experimental structures. The MD
conformers exhibit further opening as well as moderate
closing of PGK but do not cover the region of fully closed
experimental structures. On the other hand, all hybrid
methods successfully detect the fully closed region albeit to
different extents. In contrast to the other simulation methods,
MD, coMD, andMDeNM included ADP and 3 PG in the binding
pocket. This hindered the sampling of conformations beyond the
fully closed experimental structures (under 23 Å), while
ClustENM and ClustENMD suggested that the interdomain
distance could become lower than 20 Å. CoMD, which
included the ligands in the TMD and EM stages but not in

the Cα-based ANM for the NMA, still sampled these
conformations to a small extent.

Residue Fluctuation Profiles
The RMSF in α-carbons with respect to their mean positions are
presented in Figure 6G. Like HIV-1 PR and TIM, computations
yielded higher fluctuations compared to experiments. In contrast
to Figure 4G for TIM, the MD-generated ensemble for PGK
exhibited RMSFs falling within the same range as for the hybrid
methods. This could be due to the bimodal distribution of the
opening distances (Figure 6D) displayed by the three
independent MD runs. In contrast, the hybrid methods
showed broad unimodal distributions (Figures 6E,F). Yet, the
predicted RMSF profiles (Figure 6G) remained comparable to
that obtained by MD. We note that MDeNM (yellow curve)
yielded the largest fluctuations, consistent with the sampling of
widely open conformers (see the corresponding long tails in
panels C and F); however, as shown in Figure 6G, the overall
profile indicated by experiments and MD simulations were
robustly reproduced by all hybrid methods. The pairwise
Pearson correlation coefficients presented in Figure 6H show
that all hybrid methods exhibited a fairly strong correlation
among themselves (varying from 0.91 to 0.98), similar to the
results observed in HIV-1 PR and TIM. This time, we also observe
a relatively strong correlation between the hybrid methods and
experiments (0.75–0.81) and MD runs (0.80–0.92). MDeNM

FIGURE 6 | Comparison of computational and experimental ensembles of PGK. The panels are in the same format as Figure 2 (A–C) RMSDs with respect to the
starting open structure (PDB id: 2xe7). (D–F) Distances between the α-carbons of P66 and M311 that monitors the opening-closing motion of PGK. Dashed lines
indicate the distances of the initial open, and a catalytically fully closed crystal structure (PDB id: 2wzb). (G) RMSFs for each ensemble, (H) Pearson correlation
coefficients between all pairs of RMSF profiles. (I–M) Population distributions of ensembles of conformers generated by simulations, projected onto the subspace
spanned by ePC1 and ePC2, shown for (I) MD simulations, (J) ClustENM, (K) ClustENMD, (L) MDeNM, and (M) coMD. (N) Standard deviations of the conformers
projected along the experimental PCs.
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exhibits a remarkably high correlation (0.92) with MD revealing
that the relative flexibilities of the residues are accurately
accounted for, even though the absolute sizes of the motions
(uniformly and significantly) differ.

Conformational Landscape
Figures 6I–M display the projections of the computationally
generated conformers onto the reduced space spanned by ePC1
and ePC2. Two distinct sets of experimentally resolved structures
(cyan dots) are discerned: one corresponding to open structures
(including the reference structure denoted by the orange
diamond), the other to closed structures. MD simulations
starting from the open structure could not sample the region
of closed conformations, and only partially covered the space
sampled by the open experimental structures. All hybrid
methods, on the other hand, covered the space occupied by
both groups of structures. Considerable opening of PGK is
visible in ClustENM-generated conformers and an even
greater opening is predicted by MDeNM.

Comparison of Global Modes/Principal Directions of
Motion
Figure 6N describes the standard deviation (or square root of
variance) of the conformers along the first 15 ePCs. All
computationally generated ensembles show a wide dispersion
along ePC1 and ePC5, with ePC5 showing a clear peak.
Supplementary Figure S3 provides the overlap matrices (first
five modes) among each pair of ensembles. The bottom row
clearly shows that the sPC2 predicted by all four hybrid methods
strongly correlate with ePC1, with correlation cosines
ranging from 0.76 (coMD) to 0.89 (MDeNM), hence the
broad dispersion of the computationally predicted conformers
along ePC1 (driven by their sPC2). The high variance of predicted
conformers along ePC5, on the other hand, apparently originates
from the overlap with the first mode, sPC1, predicted by all hybrid
methods. The overlaps are moderate in this case, varying from
0.52 for MDeNM to 0.61 for ClustENM. Notably, the sPCs
predicted by MD show the weakest correlations with
experiments among all computational methods, but still
exhibit modest overlaps with ePC1 and ePC5. Likewise, MD

shows the lowest RWSIP in Table 3 while ClustENM and
ClustENMD show the highest.

Figure 7 illustrates, using color-coded ribbon diagrams and
arrows, the first five ePCs (upper panel) and sPCs fromClustENM
(lower panel). Both experiments and ClustENM describe the
opening-closing (hinge-bending) motion as well as some
breathing motions of the two domains. ePC1, counterpart of
sPC2 as discussed above, represents the hinge-bending motion
mediated by the interdomain helix. ePC3 corresponds to large
conformational changes at the loop (residues 130–140) located at
the tip of the N-domain, also expressed in large RMSF values in
Figure 6G. Notably ClustENM sPC4 approximates the same
movement (with a correlation cosine 0.64), also shown in
Figure 7. ClustENM sPC1 and its approximate counterpart
ePC5 induce out-of-plane motions, inward and outward, in
the two respective domains, even though the size of motions
along ePC5 is smaller. Supplementary Movie S3 illustrates the
ClustENM sPC1, sPC2 and sPC4, as the three functional
mechanisms of motions accessible to PGK.

HIV-1 Reverse Transcriptase
Like HIV-1 protease, RT has been, and continues to be, an
important target for HIV-1 drug discovery (Esposito et al.,
2012; Gu et al., 2020). RT is a heterodimer composed of
subunits p66 and p51 (Figure 1C). The p66 subunit contains
the DNA polymerase and RNase H domains, thus performing
dual enzymatic activity, while the p51 subunit serves as a scaffold.
The DNA polymerase domain itself consists of four subdomains:
fingers, thumb, palm, and connection. The former two are
distinguished by their high mobility required to bind the
nucleotide oligomer; the palm serves as a hinge center, and
the connection forms the base connecting to the p51 subunit.
Nucleoside/nucleotide RT inhibitors (NRTIs) were the first class
of antiretroviral drugs approved for therapeutic use, followed by
non-nucleoside/nucleotide RT inhibitors (NNRTIs). Most
NNRTIs (Namasivayam et al., 2019) bind a pocket at the palm
interface with the thumb or fingers, impairing the hinge
movements of these two subdomains essential to polymerase
activity. Moreover, inhibitors have been designed that control the
global movements of the RNAse H (Ilina et al., 2012), and even

FIGURE 7 | First five principal modes for PGK ensembles. The (A,B) are based on PCA of experimental and ClustENM ensembles, respectively. Those pairs of PCs
that exhibit relatively high (>0.60) correlations are enclosed in boxes. See the corresponding Supplementary Movie S3.
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those having dual actions on both enzymatic activity exist
(Corona et al., 2016).

Conformational Variability From Experiments and
Computations
We used as reference a complex with a NNRTI (THR-50) [PDB id:
2b6a (Morningstar et al., 2007)], Figure 1C, which represents an
open form of the fingers-thumbs subdomain of RT. Figures 8A–C
displays the RMSDs with respect to the closed reference structure
[PDB id: 3kli (Tu et al., 2010)] observed in experiments and
computations. The resolved structures (365 included here) show
a conformational variability (1 ≤ RMSD ≤ 6 Å) wider than those of
the other three proteins studied, and the hybrid methods show
even broader distributions. MD simulations show the narrowest
distributions (2 ≤RMSD ≤ 6 Å), unable to sample the closed forms.
MDeNM shows the highest RMSDs (up to 12 Å) but cannot
sample the closed forms with RMSD < 2 Å while ClustENM
and coMD satisfactorily sample both closed and open forms
(Figures 8A–C). The ability of ENM-based hybrid methods to
sample the broad range of subdomain and domain rearrangements
of RT originates from the ability of ENMs to describe the RT global
dynamics (Bahar et al., 1999; Sluis-Cremer et al., 2004).

Toward understanding the origin of these large RMSDs, we
examined the distance between themass centers of the thumb and
fingers subdomains (Figures 8D–F), which is a determinant of
conformational variability. The vertical dashed lines indicate the
distances corresponding to the closed and open states (d = 26.9
and 45.4 Å, respectively). As noted above, MD conformers only

sample open conformers (within 40 ≤ d ≤55 Å), whereas the
hybrid methods exhibit broader distributions encompassing a
wide distribution of thumb-finder distances.

Residue Fluctuation Profiles
Residue fluctuation profiles are presented in Figure 8G, along
with their Pearson correlation coefficients in panel H. Despite
their large RMSFs, RMSF profiles of all hybrid methods as well
as MD simulations and experiments show close similarities.
The correlations of the hybrid methods with experiments vary
from 0.69 (MDeNM) to 0.76 (ClustENM), while those with
MD are lower (0.55–0.69). This, and the lower correlation
between MD and experiments (0.67), indicates that the large
movements undergone by the experimental structures adhere
to the intrinsic dynamics of RT constrained by its overall fold
topology as predicted by hybrid methods, while MD
simulations of 200 ns fall short of an adequate sampling of
conformational space for this large (1,000 residues) protein.

Conformational Landscape
The results are shown in Figures 8I–N, in the same format as
before. Hybrid methods show sampling power superior to that of
MD: ClustENM (panel J), coMD (panel M) and MDeNM (panel
L) cover a space large enough to include a significant share of
experimental structures (cyan dots) in contrast to MD. Notably,
the space sampled by ClustENM encompasses almost all
experimental structures projected onto the subspace spanned
by ePC1 and 2.

FIGURE 8 |Comparison of computational and experimental ensembles of HIV-1 RT. (A–C)RMSDswith respect to the starting closed ligand-free structure (PDB id:
3kli). (D–F) Distances between the centers of mass of the fingers (residues 1–85 to 112–155) and thumb (residues 242–312) subdomains on the p66 subunit (chain A)
that describe open-to-closed fluctuations of the two subdomains.Dashed lines indicate the distances in the open and closed reference structures (PDB id: 2b6a and 3kli,
respectively). (G) RMSFs for each ensemble. The bars underneath indicate the p66 subunit (chain A; blue) and the p51 subunit (chain B; orange). (H) Pearson
correlation coefficients between pairs of RMSF profiles. (I–M) Population distributions for ensembles generated by (I) MD, (J) ClustENM, (K) ClustENMD, (L) MDeNM,
and (M) coMD. (N) Standard deviations of the conformers projected along the experimental PCs.
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Comparison of Global Modes/Principal Directions of Motion
Figure 8N describes the standard deviation (or square root of
variance) of the conformers along the first 10 ePCs. The
computationally generated ensembles excluding MD show a wide
dispersion along ePC1 to ePC4, supporting the wide diversity of the
generated structures. ClustENM and MDeNM standout as the two
hybrid methods that yield the largest dispersion of conformers along
ePC1-2. ClustENM also had the highest RWSIP value (0.72;
Table 3), while MD yields the lowest (0.43).

Supplementary Figure S4 provides the overlap matrix
between the top four PCs for all pairs of conformational
ensembles. The bottom row shows that ePC1 correlates with
the sPC2 of all four hybrid methods, with correlation cosines
varying from 0.59 (MDeNM) to 0.66 (coMD and ClustENM), in
addition to sPC1 of ClustENMD (0.58) and ClustENM (0.56) and
sPC3 from MDeNM (0.57). Figure 9 and Supplementary Movie
S4 show that this PC describes the opening-closing of the thumb
and finger subdomains with respect to each other, accompanied
by concerted reorientation of RNase H domain. Likewise, ePC2
shows a good correlation with sPC3 (e.g. 0.67 for coMD). In this
case, the finger and thumb subdomains of the DNA polymerase
domain undergo anticorrelated movements with respect to
RNAse H (Figure 9). Notably, the computationally predicted
first mode of motion (sPC1), which is in remarkably strong
agreement between all four hybrid methods (correlation
cosines >0.90), is not accounted for by ePC1-4. This essential
motion (relative movements of the fingers and RNase H
accompanied by out-of-plane movements of the thumb), also
supported by MD, is also illustrated in Supplementary Movie S4.

CONCLUSION

Recent years have seen an increase in the number and complexity
of hybrid methods developed for investigating the

conformational space accessible to proteins (Krieger et al.,
2020), and especially to complexes or multimeric proteins.
This has been accompanying the advances in experimental
technologies that allow for the elucidation of multiple
conformers, and the increasing need to map the accessible
conformational space toward elucidating the mechanisms of
function. While such hybrid methods appear to provide tools
for exploring large-scale conformational motions at atomic
resolution, it is of interest to assess their limitations as well as
their advantages in a comparative analysis. Here we focused on
four suchmethods and used as benchmarks sets of experimentally
resolved structures and MD-sampled conformers for four well-
studied proteins. Our analysis simultaneously revealed that these
two latter sets suffer from limitations themselves, as discussed
below. Overall, six ensembles of conformers were compared in
each case, including those observed experimentally, simulated by
MD, and predicted by hybrid methods. The analysis used four
criteria/metrics, and the performance of the methods vis-à-vis
each metric is discussed below.

The overall breadth of conformational space predicted by hybrid
methods is significantly larger than that observed in X-ray structures
or sampled by MD simulations. In all cases, the RMSDs of the
conformers generated by the hybrid methods exhibited a much
broader distribution than those experimentally observed, as
illustrated in panels A-C of Figure 2, Figure 4, Figure 6, and
Figure 8. This is most striking in the TIM analysis. Despite the
inclusion of TIM sequence homologs with >50% sequence identity,
the maximum RMSD between these 57 structures remained 1.1 Å
(Figure 4A). Thus, the crystal structures resolved for this dimeric
enzyme exhibit minimal global conformational variability, which is
presumably partly due to constraints in the crystal environment and
partly to the particular highly stable α/β-barrel fold. Local functional
changes evidenced by large fluctuations in inter-residue distances
(G174-Y211) are observed in this case with minimal domain/
monomer movements. The RMSD of conformers predicted by

FIGURE 9 | First three principal modes for HIV-1 RT ensembles. The (A,B) are based on PCA of experimental and coMD ensembles, respectively. Pairs that exhibit
relatively high (>0.65) correlations are enclosed in boxes. See the corresponding Supplementary Movie S4.
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ClustENMD and coMD remained generally lower than 4 Å with
respect to the initial structure, which is plausible for a dimeric
enzyme of ~500 residues. MDeNM and ClustENM, on the other
hand, led to up to 8 Å RMSDs, and it remains to be seen if such large
conformational changes are accessible to TIM family members. In
contrast, the X-ray structures for RT showed a much broader
variation (up to 6 Å RMSD), and all hybrid methods
satisfactorily reproduced the breadth of conformational variation
(Figures 8A–C).

Hybrid methods predict conformers that comply with
functional changes in conformations. For each studied system,
we selected specific distances that probe functional movements
(e.g. flap opening/closure in PR, thumb-finger distance in RT,
catalytic loop motion in TIM, interdomain distance in PGK) and
investigated whether hybrid methods could produce conformers
consistent with experimentally detected changes (Figure 2,
Figure 4, Figure 6 and Figure 8; panels D–F). The challenge
in most simulations is to capture closed conformations, or the
closest distances, which are not entropically favored. Table 3 lists
these closest distances of approach for residue pairs selected to
reflect functional movements (first column), observed in
computations and experiments. Except for RT, the hybrid
methods yielded conformers that satisfied the closest distances
of approach, even exceeding in some cases the closest distances
observed in experiments. In the case of RT, the closest thumb-
fingers distance observed in experiments is captured by MDeNM,
and approached by ClustENM and ClustENMD but not by coMD
and MD. We note that MD also failed to sample the closest
interdomain distances in PGK; and MDeNM could sample only
the extended forms of TIM catalytic loop.

As another metric we examined whether the closed form could
be attained when initiating the simulations from the open form.
RMSDs between the reference open and closed forms of PR, PGK
and RT were 2.7, 3.6 and 5.2A, respectively. Hybrid methods
demonstrated a substantially higher ability to attain the closed
state compared to MD simulations (Table 3).

Residue fluctuations (RMSFs) exhibit robust profiles, despite
significant (uniformly distributed) changes in the overall sizes of
motions. A striking observation repeatedly observed in all four
proteins and quantified by Pearson correlations (of >0.86) was
the robustness of RMSF profiles predicted by all four hybrid
methods, despite their differences in the absolute RMSFs
(Figure 2, Figure 4, Figure 6 and Figure 8, panels G-H).
Even more interesting was their strong correlation with the
RMSF profiles extracted from aligned experimental structures,
despite the significant suppression of fluctuations in crystal
structures. For HIV-1 PR, the correlations between
experimental RMSFs and those predicted by hybrid methods
fell in the range 0.92 ± 0.02; for PGK and RT, they vary as 0.78 ±
0.03 and 0.73 ± 0.03. In contrast, TIM exhibited significantly
lower correlations (0.56 ± 0.04). As pointed out above, the
ensembles of structures resolved for TIM are very narrowly
distributed, and so are the residue RMSFs. The RMSFs
extracted from these highly similar crystal structures may not
reflect the full conformational spectrum.

The correlations between RMSF profiles predicted by hybrid
methods and MD simulations, varied in the ranges 0.88 ± 0.09,

0.74 ± 0.02, 0.86 ± 0.06 for PR, TIM and PGK, respectively, while that
of RT was much lower (0.59 ± 0.09). Given that hybrid results gave a
significantly higher correlation with experiments, this low correlation
indicates the sampling inaccuracy of MD (of 100 s of nanoseconds)
for this protein of 1,000 residues. Finally, the comparison of the
Pearson correlations between experimental and simulated RMSFs
showed that ClustENMDandMDeNMsimulations achieved slightly
higher performances (0.77 and 0.75 respectively, averaged over the
four case studies), followed by coMD, MD and ClustENM which
showed comparable performance (~0.74).

Closer look at principal changes in conformation points to the
conservation of dominant modes of motion, supported by both
experiments and computations. Dissection of the spectrum of
collective motions upon PCA of the generated conformers in each
ensemble revealed close similarities, as shown in the overlap matrices
presented in Supplementary Figures S1–S4 for top-ranking 4 PCs
(or 5 for PGK). Given that PCs usually define cooperative
mechanisms relevant to function, it is important to assess to what
extent the sPCs derived from hybrid methods agree with
experimental PCs (ePCs). Using RWSIP (Carnevale et al., 2007)
as a metric (Table 3), we found that ClustENMD performed the best
among the examined five computational methods, followed by
ClustENM and MDeNM. These two analyses also allowed us to
identify commonalities and divergences between methods to reveal
themost salient features for each system, revealing the benefit of using
multiple methods together.

We also observed significant variations of generated
conformers along experimental PCs other than ePC1 and
ePC2 (panel N in Figure 2, Figure 4, Figure 6 and Figure 8).
For example, TIM shows higher variations along the third and
fourth ePCs compared to those along the first two ePCs in all
simulations including MD. Likewise, an essential mechanism of
motion of RT, robustly predicted as sPC1 by all computational
methods and known to be essential to function (Jernigan et al.,
2000; Sluis-Cremer et al., 2004) eludes the top-ranking ePCs. These
observations show some global modes/deformations are
suppressed in the X-ray structures presumably due to tight
packing or symmetry requirements imposed by crystallization.

Other considerations: Optimization of parameter sets and
computing efficiency. The parameters used in ClustENM,
ClustENMD, and coMD were the same across all the systems,
where those of MDeNM were adjusted for different proteins
(Table 2). These parameters for the former three methods seem
to perform satisfactorily for the studied proteins, except for RT in
terms of reaching the closed structure (e.g., PDB id: 3kli) starting from
an open form. If the extent of conformational flexibility (e.g. RMSD
between endpoints) were to be known in advance, the parameters
could be adjusted for more precise sampling of conformers.
Obviously, generation of additional cycles enables the sampling of
a broader conformational space, which may be more appropriate for
larger proteins. A systematic study of the size of experimentally
observed conformational space as a function of the size and packing
density of protein, or different structural classes may provide
guidance for selecting parameters based on the system properties.
Given that the hybrid methods tested here are relatively recent, there
is plenty of room for subsequent studies aiming to define optimal
parameters for different systems.
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To provide initial insights into the influence of these sampling
parameters, we analyzed the progression of RWSIP values as a
function of the number of generations/cycles/excitations
depending upon the hybrid method for PGK as an illustrative
case. Supplementary Figure S5 shows the progression of RWSIP
values as a function of the number of generations for ClustENM
and ClustENMD, where the conformers of the current generation
are added to the ensemble of previous ones in each successive
generation. The RWSIP values of the three independent runs, the
average values, as well as the values of the combined ensemble
comprising all three runs, are observed to start converging after
the second generation and saturate in both cases. This indicates
that the intrinsic dynamics encoded by the experimental
structures is achieved in early generations. However, the
conformers obtained in the later generations allow for
approaching the closed conformer of PGK.

Supplementary Figure S6 shows the equivalent progression of
RWSIP values for MDeNM. The number of excitations does not
influence the RWSIP values in this case, as the same directions of
motion are excited each time for any given replica, but the
number of excitations is again important for the degree of
conformational space sampled including the approach towards
closed conformers. The number of replicas is a key parameter that
determines the directional coverage and the RWSIP value rises
with the number of replicas. Some transition points are observed
at about 2, 5 and 10 replicas along with a slow convergence after
30 to 40 replicas.

Supplementary Figure S7 shows the equivalent progression of
RWSIP values for coMD. In this case, the direction changes every
cycle, and the number of cycles thus makes a much bigger
difference. Interestingly, we observe two convergence regimes.
Firstly, about 15 cycles is required to converge upon an optimal
RWSIP value. However, after about 25–30 cycles, this value
decreases as additional directions are explored and the RWSP
converges on a new, lower value. The RWSIP is therefore a useful
criterion for assessing how many cycles are beneficial for coMD,
just like the number of replicas for MDeNM. Looking at how the
RWSIP changes as a function of the number of runs, it is clear that
there can be substantial variation between runs with some having
much higher RWSIP values than others. It is therefore necessary
to include a large enough number of runs (e.g., 5 or more) to
obtain a sufficient coverage of motion directions.

Finally, an important advantage of hybrid methods is their
computational efficiency, and this is without compromising their
accuracy as the current comparison with experimental and MD
data demonstrates. In particular, the efficiency of ClustENM and
ClustENMD are reflected by run times on the order of minutes
(Supplementary Table S1), while coMD is of the order of hours.
The computational efficiency of ClustENM and ClustENMD
stems from the usage of implicit solvent during the EM or
MD steps, in addition to the adoption of ENMs for predicting
the NMs. Given that ENM-based methods provide accuracy
levels comparable to those based on full atomic models
(MDeNM and MD) with significant savings in computing
time, further development of MDeNM methodology using
ENM-based NMA, as opposed to full atomic NMA, is
currently in progress.
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