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Background: Accumulating evidence suggests that anti-estrogens have been effective
against multiple gynecological diseases, especially advanced uterine corpus endometrial
carcinoma (UCEC), highlighting the contribution of the estrogen response pathway in
UCEC progression. This study aims to identify a reliable prognostic signature for potentially
aiding in the comprehensive management of UCEC.

Methods: Firstly, univariate Cox and LASSO regression were performed to identify a
satisfying UCEC prognostic model quantifying patients’ risk, constructed from estrogen-
response-related genes and verified to be effective by Kaplan-Meier curves, ROC curves,
univariate and multivariate Cox regression. Additionally, a nomogram was constructed
integrating the prognostic model and other clinicopathological parameters. Next, UCEC
patients from the TCGA dataset were divided into low- and high-risk groups according to
the median risk score. To elucidate differences in biological characteristics between the
two risk groups, pathway enrichment, immune landscape, genomic alterations, and
therapeutic responses were evaluated to satisfy this objective. As for treatment,
effective responses to anti-PD-1 therapy in the low-risk patients and sensitivity to six
chemotherapy drugs in the high-risk patients were demonstrated.

Results: The low-risk groupwith a relatively favorable prognosis wasmarked by increased
immune cell infiltration, higher expression levels of HLA members and immune checkpoint
biomarkers, higher tumormutation burden, and lower copy number alterations. This UCEC
prognostic signature, composed of 13 estrogen-response-related genes, has been
identified and verified as effective.

Conclusion: Our study provides molecular signatures for further functional and
therapeutic investigations of estrogen-response-related genes in UCEC and represents
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a potential systemic approach to characterize key factors in UCEC pathogenesis and
therapeutic responses.

Keywords: UCEC, TCGA, estrogens, immune infiltration, prognosis

INTRODUCTION

Uterine corpus cancer is the sixth most commonly diagnosed
cancer in women globally, with an estimated 417,000 new cases
and 97,000 deaths in 2020 worldwide (Sung et al., 2021). Among
them, uterine corpus endometrial carcinoma (UCEC), which
originates from the uterine epithelium, is the most common
uterine cancer type (Urick and Bell, 2019). In 1983,
considering the role of endocrine and metabolic disturbances
in the pathogenesis of endometrial carcinoma, Bokhman JV
(Bokhman, 1983) postulated two different types: estrogen-
dependent Type I and estrogen-independent Type II. The
prognosis for Type I is favorable, with a greater than 85% 5-
years disease-free survival rate. In contrast, Type II is associated
with a poor response to hormonal therapy and a relatively poor
outcome (Brinton et al., 2013). However, this classification
method has severe limitations in routine clinical practice due
to high subjectivity and low reproducibility, and it fails to evaluate
prognosis and guide individualized treatment well (Huvila et al.,
2021). With the aim of more precise classification, based on
multi-omics characterization, The Cancer GenomeAtlas (TCGA)
took tumor mutation burden into account. It classified
endometrial carcinomas into four molecular subtypes with
prognostic significance, including POLE ultra-mutated,
microsatellite instability hypermutated (MSI-H), copy-number
low (CN-low), and copy-number high (CN-high) (Cancer
Genome Atlas Research et al., 2013). Theoretically, TCGA
classification can assist in clinical determination. Whereas
poor maneuverability of the method leads to limited clinical
application. Therefore, it is necessary to explore tumor
molecular profiling to overcome difficulties associated with
incorporating molecular subtyping into the clinic and improve
our capacity to predict patients’ prognoses.

Estrogens are a group of steroid compounds that function in a
myriad of physiologic and pathologic processes (Markov et al.,
2017). Estrogens exert both genomic and non-genomic biological
effects, mediated traditionally by two cognate estrogen receptors
(ERs): estrogen receptor α (ERα) or estrogen receptor β (ERβ),
which belong to the nuclear receptor superfamily (Mosselman
et al., 1996; Chen et al., 2008). Estrogen and its receptors
orchestrate the development of malignant tumors such as
breast and gynecologic cancers, endocrine gland cancers,
digestive cancers, and lung carcinoma (Chen et al., 2008;
Liang and Shang, 2013; Rothenberger et al., 2018). It is worth
noting that the continued annual increase in incidence and
disease-related mortality of endometrial carcinomas (Lortet-
Tieulent et al., 2018). The 5-years survival rate of stage IV
endometrial carcinoma can only reach 20% (Braun et al.,
2016). Meanwhile, the treatment options for endometrial
carcinoma have been limited and relatively unchanged in the
past several years (Ito et al., 2007; Rodriguez et al., 2019). Despite

a high proportion of endometrioid ECs being ER and/or PR
positive, endocrine therapy is only effective in a minority of
women with EC, and ultimately patients progress with resistance
to treatment. A greater understanding of ER and PR biology may
help identify patient populations who will derive benefits and
strategies for new therapeutic options. Obtaining a more accurate
understanding of how estrogen functions in EC might provide
significant insights into the development of therapies that block
estrogen pathways.

Immunotherapy has become a potential therapeutic strategy
for treating advanced cancer in recent years (Rodriguez et al.,
2019). Currently, immune checkpoint inhibitors (ICIs) targeting
Cytotoxic T-lymphocyte antigen 4 (CTLA-4) and Programmed
cell death 1 receptor (PD1, PDCD1) are undergoing clinical
evaluation (Blackburn et al., 2009; Rothenberger et al., 2018;
Forschner et al., 2019). In a subset of patients with heavily
pretreated advanced PD-L1-positive EC, pembrolizumab, a
humanized monoclonal antibody that targets PD-1,
demonstrated a favorable safety profile and durable antitumor
activity (Ott et al., 2017). Unarguably, ICIs significantly improve
the treatment of advanced cancers and benefit EC patients’
survival rates compared to conventional chemotherapy.
Nevertheless, only around 20–35% of typical response rates to
these therapies cannot be overlooked (Patel and Kurzrock, 2015;
Reck et al., 2016; Wolchok et al., 2017; Rothenberger et al., 2018).
Estrogen receptors are widespread in many kinds of cells involved
in innate and adaptive immune responses and the formation of
the tumor microenvironment. Recent research implicates
estrogen as a potential mediator of immunosuppression by
modulating protumor responses independent of direct activity
on tumor cells (Rothenberger et al., 2018). Susanne Svensson et al.
showed that estradiol enhanced macrophage influx and
angiogenesis by releasing CCL2, CCL5, and vascular
endothelial growth factor (Svensson et al., 2015). Also, several
animal and human studies revealed that elevated estrogen
enhanced Th2 responses and thus exhibited cancer-promoting
activity (Khan and Ansar Ahmed, 2015). Furthermore, estrogen
enhances immunosuppression by inhibiting NK and CTL-
mediated tumor cell elimination (Jiang et al., 2006; Jiang et al.,
2007). In spite of this, it remains unclear whether estrogen
response-related genes influence the EC microenvironment
and clinical outcomes.

This study captured the expression profiles of 200 genes
related to estrogen-response from the TCGA-UCEC dataset.
The single sample Gene Set Enrichment Analysis (ssGSEA)
algorithm was performed to obtain the enrichment scores of
the estrogen response pathway of each UCEC patient.
Subsequently, correlation analysis among estrogen response
ssGSEA score, prognosis, and clinical features of patients was
performed. Next, an estrogen-response-related risk model was
established, and the UCEC patients were classified into low-
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and high-risk groups in light of their risk scores. Additionally,
we established a nomogram that integrated the prognosis
model with clinicopathological factors to predict the overall
survival of patients with UCEC. Finally, integrated analyses of
pathway enrichment, immune landscape, somatic mutation
and copy number variation (CNV), and immuno-/
chemotherapeutic response prediction were conducted in
the two risk groups.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The transcriptome data (FPKM values) of the TCGA-UCEC
was downloaded from the UCSC Xena browser (https://xena.
ucsc.edu/public-hubs). The mRNAs with a normalized count
equal to or above 1 in at least 10% of the samples were left for
further analysis (Lu et al., 2019). The corresponding UCEC
clinical parameters were downloaded from the UCSC Xena
browser and cBioPortal (http://www.cbioportal.org/datasets).
570 samples, including 535 tumor samples and 35 normal
samples, were obtained with integrated clinical information.
These tumor samples (the Entire set) were randomly classified
into the Training set (n = 268) and the Validation set (n = 267).
The Training set was used for constructing the prognostic
model, while both the Entire set and the Validation set were
used for validation. The data of somatic mutations and CNV
was obtained through the “TCGAbiolinks” package. The
mutation data was processed and visualized using the
“maftools” package. The CNV data was processed and
visualized using GISTIC 2.0.

Identification of Hallmarks With Prognostic
Significance
Gene sets of cancer-related hallmarks were downloaded from the
Molecular Signatures Database (MSigDB) (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp). To obtain the enrichment
scores of gene sets with these hallmarks, we used the ssGSEA
algorithm according to our previous studies (Tian et al., 2021).
Further, univariate regression analysis was performed to explore
the correlation between hallmarks and patients’ overall survival
(OS) or disease-free survival (DFS).

Construction of Prognostic Signature With
LASSO Regression Model
A Univariate Cox regression analysis was performed to evaluate
the correlation between OS and differentially expressed genes in
the estrogen response pathway. According to the criteria of p -
value < 0.05, 34 genes significantly associated with OS were
selected out for the least absolute shrinkage and selection
operator (LASSO) Cox regression by using the “glmnet”
package with the penalty parameter estimated by 10-fold
cross-validation. So far, the UCEC prognostic signature
consisting of 13 genes has been established. The risk score
calculation formula is:

Risk score � ∑
n

i�1
Coefipxi

(Coefi means the coefficients, xi is the FPKM value of each
prognostic-related gene).

According to the median risk score, UCEC patients from the
Training, Validation, and Entire set were divided into low- and
high-risk groups. A time-dependent ROC and Kaplan–Meier
curve analysis were performed to test the validity of the
prognostic signature. Further Univariate and multivariate Cox
regression analyses were performed to validate the independent
role of the prognostic signature.

Functional and Pathway Enrichment
Analyses
We compared the differences in biological characteristics
between the low- and high-risk groups in the TCGA-UCEC
dataset with p -value < 0.05 and t -value > 2 as thresholds
(PMID: (Hanzelmann et al., 2013). Gene ontology (GO) and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were performed using the “clusterProfiler”
package (Yu et al., 2012).

Comparison of Immune Status in the Low-
and High-Risk Groups
These ssGSEA scores of 24 immune cell types were obtained
using the “Gene Set Variation Analysis (GSVA)” package with
default parameters. Differences in these scores were analyzed in
the low- and high-risk groups. Specifically, the ESTIMATE
algorithm was used to evaluate Tumor Purity, ESTIMATE
Score, Immune Score, and Stromal Score. The differential
expression levels of human leukocyte antigen (HLA) family
members and immune checkpoint biomarkers between the
high- and the low-risk group were further analyzed.

Prediction of Patients’ Responses to
Immunotherapy and Chemotherapy
SubMap was used to compare the similarity of expression
profiles, and this feature can be reflected as a treatment
response. To predict the sensitivity of each subgroup to
immunotherapy, we used a subclass mapping algorithm to
compare the similarity of the gene expression profiles of the
subgroups to those of melanoma patients receiving checkpoint
blockade against programmed cell death protein-1 (PD1) or
cytotoxic T lymphocyte antigen-4 (CTLA4) (Roh et al., 2017;
Tang et al., 2020). Based on the Genomics of Drug Sensitivity in
Cancer (GDSC) (https://www.cancerrxgene.org/), UCEC
patients’ sensitivity to six chemotherapeutic agents was
estimated, including docetaxel, lenalidomide, doxorubicin,
cisplatin, vinorelbine, and gefitinib, by using the
“pRRophetic” package (Lu et al., 2019), which is a popular
enrichment algorithm extensively utilized in medical studies
(Liu et al., 2021; Liu et al., 2022a; Liu et al., 2022b; Liu et al.,
2022c).
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Statistical Analysis
Statistical analyses were implemented using R software (version
3.6.3). Survival analysis was performed by the Kaplan-Meier
method using the “survminer” package, with the log-rank test
used for comparisons. The prognostic nomogram was built based
on the result of the multivariate Cox proportional hazards
regression analysis, which was used to predict the 1-, 3- and
5-years OS by representing the sum of points for each factor.
Next, the calibration curves were used to assess the relationship
between the predicted probabilities and actual outcomes, and the
calibration was evaluated by bootstrapping 1,000 times. Further,
the time-dependent area under the ROC curve (AUC) were
calculated to evaluate the accuracy values of prognostic
models. Also, decision curve analysis (DCA) was used to
evaluate the clinical benefit of the nomogram model by
quantifying the net benefit of nomogram-assisted decisions.
The “limma” package was used to identify differentially
expressed genes with | log2(Fold change (FC)) | > 0.5 and adj
p -value < 0.05 as the cut-off. The Chi-square test, or Fisher’s
exact test, was used for categorical data. Unpaired Student’s t-test,
Wilcoxon rank-sum test, or Kruskal–Wallis tests was used for
continuous data. All p -values of statistical data were based on
two-sided statistical tests, and data with p < 0.05 was considered
to be statistically significant.

RESULTS

Estrogen Response Pathway ssGSEAScore
Was Correlated With Clinical Features of
Patients With UCEC
The overview workflow of our research is shown in Figure 1.
The gene sets of cancer-related hallmarks were downloaded
from MSigDB, and the activation levels of these hallmarks in
each sample from TCGA-UCEC were quantified using the
ssGSEA method based on transcriptome profiling data. An
unrooted clustering dendrogram was generated through
hierarchical clustering analysis to show the distance between
these hallmarks (Figure 2A). We performed a univariate Cox
regression analysis to determine which hallmarks might affect
UCEC progression, demonstrating that the “Estrogen response
late” ssGSEA score was the most significant protective factor for
OS and DFS in UCEC (Figure 2B). Further, we divided UCEC
patients into two groups (the low and the high ssGSEA score
groups) by the median ssGSEA score of “Estrogen response
late”. Contingency tables demonstrated the correlation between
the “Estrogen response late” ssGSEA score and pathological
parameters (stage, grade, and TCGA molecular subtype) in
TCGA-UCEC (Figure 2C). Kaplan–Meier survival analysis

FIGURE 1 | Schematic workflow for establishing the estrogen-response-related risk model and a multidimensional evaluation of patients in different risk groups.
First, the transcriptome data and the corresponding clinical characteristics data of UCEC were downloaded from the UCSC Xena browser and cBioPortal. These tumor
samples (the Entire set) were then randomly classified into the Training set (n = 268) and the Validation set (n = 267). The ssGSEA scores of various hallmarks were
calculated based on the transcriptome profiling of the Entire set and gene sets of MSigDB using ssGSEA. We identified that the “Estrogen response late” ssGSEA
score was the most significant protective factor for OS and DFS in UCEC. Subsequently, the LASSOCox analysis model was used to identify and construct a prognostic
gene signature in the Training set, further verified in the Validation set and Entire set. Next, UCEC patients from the TCGA dataset were divided into low- and high-risk
groups according to themedian risk score. The Kaplan–Meier curves, ROC curves, univariate andmultivariate Cox regression, and nomogramwere performed to identify
the independent predictors of OS. To elucidate differences in biological characteristics between the two risk groups, pathway enrichment, immune landscape, genomic
alterations, and therapeutic responses were evaluated to satisfy this objective.
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revealed that patients in the high ssGSEA score group had
notably more favorable OS and DFS than those in the low
ssGSEA score group (Figure 2D). Furthermore, we evaluated
this classification based on the estrogen response pathway at
different UCEC stages regarding patient outcomes. The results
did reveal significant differences in OS as well as DFS between
the two groups at stage III ~ IV, whereas the difference in the
prognosis of patients at stage I ~ II was significant but not
obvious (Figures 2E,F). It meant that this classification might be
more discriminative in assessing the outcomes of patients at
stage III ~ IV. The above data indicated that the estrogen
response pathway ssGSEA score could be a significant
predictive factor for OS and DFS of UCEC patients,
specifically in their senior stages.

Analyses of the Differentially Expressed
Genes and Genomic Alterations in the
Estrogen Response Pathway
Since the protective role of estrogen response pathway
ssGSEA score has been identified, it deserves further

exploration of the role of key genes in the estrogen
response pathway in UCEC development as well as
prognosis and their alterations within the genomes. We
analyzed a total of 200 estrogen-response-related genes
(ERGs) to investigate whether estrogen response has a
bearing on the prognosis of UCEC patients. According to
the criteria of |log2FC| > 0.5 and adj p -value < 0.05, the
expression of these 200 genes was analyzed between UCEC
and normal samples. We found 132 differentially expressed
ERGs (DEERGs), of which 57 and 75 were up-regulated and
down-regulated, respectively (Figure 3A). Based on the
expression of these DEERGs, we could completely
distinguish UCEC samples from normal samples
(Figure 3B). Next, we analyzed the occurrence of CNV and
somatic mutations of these genes in UCEC samples. The top
20 frequent CNV and the top 30 most frequently mutated
genes were illustrated (Figures 3C,D). Most DEERGs were
discovered with altofrequent CNV amplifications, while only
TJP3 had a widespread CNV deletion (Figure 3C).
Meanwhile, ANXA9 exhibited the highest mutation
frequency, followed by LLGL2 (Figure 3D). These data

FIGURE 2 | Estrogen response pathway ssGSEA score was correlated with clinical features of patients with UCEC. (A) An unrooted clustering dendrogram
depicting the distance between different hallmarks of cancer. (B) Univariate Cox regression analysis indicating cancer-related hallmarks that might affect UCEC
progression. (C) Contingency tables demonstrating the correlation between the “Estrogen response late” ssGSEA score and pathological parameters, including tumor
grade (upper), clinical stage (middle), and TCGA molecular subtypes (bottom). (D–F) Kaplan–Meier survival analyses of the low and high ssGSEA score groups
patients at all stages (D), stage I ~ II (E), and stage III ~ IV (F).
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indicated that abnormal expression and mutation of these
DEERGs contribute to the oncogenesis and progression
of UCEC.

Establishment of the UCEC Prognostic
Signature Consisting of 13 Genes in the
Estrogen Response Pathway
Given that only the UCEC-TCGA public dataset covers detailed
clinical parameters and prognostic information, we entirely
randomly grouped patients from UCEC-TCGA (n = 535)
into two sets: the Training set (n = 268) and the Validation
set (n = 267). To screen out DEERGs with potential prognostic
value and develop one robust model to predict the prognosis of
patients with UCEC, we performed a univariate Cox regression
analysis in the entire set and identified 34 genes significantly
associated with OS according to the criteria of p -value < 0.05
(Table 1). Next, we adopted the least absolute shrinkage and
selection operator (LASSO) regression algorithm in the
Training set for narrowing down and identifying critical

candidates for further study (Figures 4A,B). At this point,
we had established the UCEC prognostic signature consisting
of 13 DEERGs, and the risk score was calculated as the following
formula:

Risk score � − − 0.196pExp PKP3 + 0.014pExp NMU − 0.040pExp TJP3 − 0.135pExp
PTPN6 − 0.379pExp BATF + 0.168pExp GAL + 0.255pExp HPRT1 − 0.170pExp
NRIP1 + 0.120pExp ASS1 − 0.209pExp LARGE1 + 0.077pExp ANXA9 + 0.162pExp
DNAJC12 − 0.032pExp PGR

In this formula, the gene with a positive coefficient was a risk
factor for UCEC patients, whereas the gene with a negative
coefficient was a protective factor (Figure 4C).

Evaluation of the 13 ERGs Signature as an
Independent Prognostic Factor for Patients
With UCEC
Next, the median risk score was used for grouping UCEC patients
into low- and high-risk groups in all three groups. The
Scatterplots and Heatmap were drawn to show the distribution

FIGURE 3 | Analyses of the differentially expressed genes and genomic alterations in the estrogen response pathway. (A) Volcano plot representing the DEERGs in
estrogen response pathway between normal and UCEC samples. (B) Principal component analysis (PCA) indicating the expression profiles of 132 DEERGs s being able
to distinguish UCEC tumors from normal samples. (C) The CNV frequency of the top 20 DEERGs in the estrogen response pathway in TCGA-UCEC. (D) The mutation
frequency of the top 30 DEERGs in the estrogen response pathway in TCGA-UCEC.
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of risk scores and the correlation between risk scores and OS,
prognostic risk gene expression in the entire group. High-risk
individuals were more likely to die. Some of their risk genes were
overexpressed, whereas the protective genes were under-
expressed (Figure 4D). The survival analysis indicated that
high-risk score was significantly negatively associated with OS
and DFS, whether in the Training, Validation, or Entire set
(Figure 4E; Supplementary Figures S1A,B). Furthermore,
whether at stage I ~ II or stage III ~ IV, low-risk patients all
had notably favorable OS and DFS compared to high-risk ones
(Supplementary Figures S1C,D). Besides, the AUCs for 1-, 3-
and 5-years ROC curves in the training set were 0.73 (OS, 1 year),
0.84 (OS, 3 years), 0.82 (OS, 5 years), 0.64 (DFS, 1 year), 0.80
(DFS, 3 years), and 0.75 (DFS, 5 years), respectively (Figure 4F).
Similar results were obtained in the test or Entire set
(Supplementary Figures S1E,F).

Through analyzing the difference in risk scores of patient
groups with different UCEC grades, stages, and TCGA
subtypes, we discovered that patients with higher grades
and/or stages consistently had higher risk scores
(Figure 4G). Specifically, as for TCGA molecular subtypes,
patients belonging to the CN-high subtype group with a
relatively poor prognosis got the highest risk scores

compared to the other three subtypes (Figure 4G). The
Alluvial diagram showed that the high-risk group primarily
corresponded to the estrogen response low ssGSEA scores
group and CN-high molecular subtypes and was relevant to
the poor prognosis (Figure 4H).

The above results strongly suggested that high-risk scores were
significantly correlated with OS and DFS of patients with UCEC.
Combined with both univariate and multivariate Cox regression
analyses, the screening process identified a signature consisting of
13 DEERGs as a UCEC prognostic factor independent of
clinicopathological factors such as age, grade, stage, and histological
type. It proved that the risk score based on 13 DEERGs could be an
independent prognostic factor for patients with UCEC, whether in the
Training, Validation, or Entire set (Table 2).

Establishment of the Prognostic Nomogram
for the Survival of Patients With UCEC
To establish a clinically applicable model for predicting the
survival probability of UCEC patients, we created a prognostic
nomogram based on the risk score, age, group, and stage in the
Entire set (TCGA-UCEC) to estimate the probability of the 1-, 3-
and 5-years OS (Figure 5A). The calibration plots indicated the
performance of the nomogram, and the 45° line represented the
best predictive effect (Figure 5B). The results suggested that the
nomogram performed well. Importantly, to further evaluate the
predictive performance of the nomogram model in UCEC
patients, we compared the nomogram model with other
clinicopathological features, the Wang. model and the Yao.
model (Yang et al., 2021; Chen et al., 2022). The nomogram
with powerful and robust prediction performance has advantages
over other clinicopathological features and models (Figure 5C).
DCA graphically illustrated that the nomogram model brought
more net benefit in terms of survival than other parameters and
models at 5-years points (Figure 5D).

Comprehensive Analyses of Enriched
Pathways in Different Risk Groups
To explore the differences in biological characteristics in both low-
and high-risk groups, we performed GSVA enrichment analysis,
which indicated that carcinogenic pathways such as G2M
checkpoint, DNA repair, and TGF-beta signaling were mainly
activated in the high-risk group. Whereas immune-related
pathways, including the IL6-JAK-STAT3 signaling,
inflammatory response, IL2-STAT5 signaling, and interferon-
gamma response, were enriched in the low-risk group
(Figure 6A). Comparison of transcriptional expression profiles
of low- and high-risk groups identified 841 DEGs according to the
screening criteria of |log2FC| > 0.5 and adj p -value < 0.05
(Supplementary Figure S2A). Next, the GO and KEGG
pathway enrichment analyses of the 841 DEGs were performed.
As the GO terms analysis showed, the top five enriched terms in
biological processes were T cell activation, leukocyte cell-cell
adhesion, regulation of T cell activation, regulation of leukocyte
proliferation, and leukocyte proliferation. In terms of molecular
function, most genes were enriched in G protein-coupled receptor

TABLE 1 | 34 genes significantly associated with OS by univariate Cox
proportional hazards regression.

Gene HR HR.95L HR.95H p Value

PGR 0.728359367 0.639924061 0.829016129 1.59E-06
ASS1 1.341884582 1.180678725 1.525100938 6.69E-06
GAL 1.381112341 1.198604599 1.591409961 8.00E-06
BATF 0.658512959 0.536077867 0.808911064 6.88E-05
NMU 1.371324819 1.169665985 1.607751087 9.98E-05
SLC16A1 1.424014684 1.191193307 1.702341516 0.000104137
WFS1 0.659841616 0.524863927 0.829531114 0.000370107
TFF3 0.895418014 0.842214963 0.951981923 0.00040856
TJP3 0.749823227 0.631898692 0.889754764 0.000973903
SFN 0.837556293 0.745212068 0.941343511 0.002938227
IGFBP4 0.798661755 0.679370392 0.938899615 0.006453227
HOMER2 0.778558905 0.646218792 0.938001148 0.008456115
PRKAR2B 1.360278356 1.076374498 1.719064516 0.009989895
PTPN6 0.647754779 0.458207957 0.915711407 0.013952439
NRIP1 0.74669106 0.590095794 0.944842421 0.014997896
DNAJC12 1.266086018 1.045172905 1.533692461 0.015883717
LAMC2 0.827488455 0.708750663 0.966118522 0.016569453
ANXA9 1.295296475 1.043250781 1.608235515 0.019105761
FKBP4 1.451941302 1.061142305 1.986664311 0.019757466
PPIF 1.376786995 1.050930732 1.803679701 0.020315589
CPE 1.219884181 1.031330606 1.442910165 0.020336918
GPER1 0.719663609 0.544730782 0.950773717 0.020600628
CCNA1 0.878814252 0.78644627 0.982030838 0.022607982
LARGE1 0.657064368 0.457720243 0.943225892 0.022795675
CDC20 1.289542235 1.035531979 1.605859799 0.023091816
TOP2A 1.27083213 1.029661282 1.568490851 0.025601857
ABCA3 1.234993178 1.025412355 1.487409569 0.026118785
PKP3 0.81368982 0.678303062 0.97609927 0.026384919
FGFR3 1.152817399 1.013053416 1.311863654 0.031033548
HPRT1 1.41860044 1.026698896 1.960094841 0.034032313
NPY1R 1.296879775 1.008534934 1.667663752 0.042743761
KCNK5 1.280255657 1.006308266 1.62877977 0.04430917
TRIM29 1.17795623 1.002144811 1.38461115 0.047039623
ST6GALNAC2 0.820174737 0.673517877 0.998765767 0.048580978
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binding, immune receptor activity, peptidase regulator activity,
cytokine binding, and serine-type endopeptidase activity. As for the
cellular component, the significantly enriched terms were MHC
class II protein complex, specific granule, collagen-containing
extracellular matrix, motile cilium, and the external side of the
plasma membrane. (Figure 6B) Meanwhile, the KEGG pathway

analysis indicated that the significantly enriched pathways were
human T-cell leukemia virus 1 infection and cell adhesion
molecules (Supplementary Figure S2B). Based on the above
results, we suspected that relatively high immune activated
status might contribute to a favorable prognosis of UCEC
patients in the low-risk group.

FIGURE 4 | Establishment of the UCEC prognostic signature consisting of 13 genes in the estrogen response pathway. (A) LASSO regression identifying robust
prognostic genes. (B)Distribution of LASSO coefficients for 34 genes in the 10-fold cross-validation. (C) Forest plot of the prognostic ability of the 13 DEERGs included in
the prognostic signature. (D). The risk score plots, OS status plots, and heatmaps of these 13 genes in the TCGA-UCEC. (E) Kaplan–Meier survival analysis of the low-
and high-risk groups patients in the Training set. (F). ROC curves analysis according to the 1, 3, 5-years survival of the area under the AUC value in the Training set.
(G) Differences in risk scores of patient groups with different tumor grades (left), clinical stage (middle), and TCGA molecular subtypes (right). (H) Alluvial diagram
establishing associations among risk groups, estrogen response ssGSEA score groups, TCGA molecular subtypes, and survival outcomes.
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TABLE 2 | Univariate and multivariate investigation of clinic pathologic aspects for its comprehensive survival in UCEC patients.

Variables Univariate analysis Multivariate analysis

HR (95%CI) p value HR (95%CI) p value

Train set
Age (≥60 vs. < 60) 1.861 (1.102–3.142) 0.02 1.477 (0.848–2.572) 0.168
Histological.type (endometrial vs. mixed/serous) 2.04 (1.314–3.168) 0.001 0.867 (0.516–1.458) 0.591
Stage (III-IV vs. I-II) 1.985 (1.299–3.032) 0.002 1.854 (1.17–2.936) 0.009
Grade (G3-High_Grade vs. G1-G2) 2.173 (1.261–3.742) 0.005 1.341 (0.733–2.455) 0.341
Risk_score (High vs. Low) 3.399 (1.971–5.864) <0.001 2.987 (1.657–5.383) <0.001

Test set
Age (≥60 vs. < 60) 1.479 (0.883–2.476) 0.137 — —

Histological.type (endometrial vs. mixed/serous) 1.916 (1.263–2.907) 0.002 0.712 (0.443–1.147) 0.162
Stage (III-IV vs. I-II) 3.516 (2.292–5.392) <0.001 3.321 (2.09–5.279) <0.001
Grade (G3-High_Grade vs. G1-G2) 2.857 (1.616–5.053) <0.001 2.095 (1.134–3.869) 0.018
Risk_score (High vs. Low) 2.982 (1.781–4.995) <0.001 2.758 (1.602–4.747) <0.001

Entire set
Age (≥60 vs. < 60) 1.691 (1.172–2.439) 0.005 1.499 (1.021–2.201) 0.039
Histological.type (endometrial vs. mixed/serous) 2.007 (1.483–2.715) <0.001 0.757 (0.529–1.084) 0.129
Stage (III-IV vs. I-II) 2.66 (1.975–3.582) <0.001 2.469 (1.793–3.399) <0.001
Grade (G3-High_Grade vs. G1-G2) 2.482 (1.676–3.676) <0.001 1.618 (1.054–2.482) 0.028
Risk_score (High vs. Low) 3.141 (2.175–4.536) <0.001 2.795 (1.875–4.166) <0.001

FIGURE 5 | Establishment of the prognostic nomogram for the survival of patients with UCEC. (A) Nomogram for predicting the 1/3/5-years overall survival of
patients with UCEC. (B)Calibration curve for the prediction of 1/3/5-years overall survival. (C) A comparison of time-dependent AUC curveswith other clinicopathological
features showing the powerful capacity for survival prediction of the nomogram. (D) Decision curves for 5-years OS in the Entire set.
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The Description of Immune Cell Infiltrations
and the Prediction of Immunotherapeutic
Response in Different Risk Groups
Considering that the tumor microenvironment contributes to
tumorigenesis and patient prognosis, we then checked the
ssGSEA scores of 24 immune cell types and observed the high
degree of infiltration of beneficial immune cells such as cytotoxic
cells, pDC cells, T cells, and Treg cells in the low-risk group
(Figure 7A). Meanwhile, the ESTIMATE algorithm was
performed to calculate the Tumor Purity, ESTIMATE Score,
Immune Score, and Stromal Score in the low- and high-risk
groups. With relatively low Tumor Purity, the low-risk group gets
a higher ESTIMATE, Immune and Stromal score when compared
with the high-risk group (Figure 7B). Furthermore, we detected
the expression levels of HLA family members and 31 immune
checkpoint biomarkers in different risk groups. Relatively high
expression levels of the above genes in the low-risk group
suggested a potentially effective response to anti-immune
checkpoint therapy (Figures 7C,D). The correlation between
risk scores, HLA family members, and 31 immune checkpoint
biomarkers was further analyzed. It was found that risk scores
were significantly negatively correlated with the expression levels
of HLA family members and 31 immune checkpoint biomarkers
(Figures 7D,E). Therefore, we used a subclass mapping algorithm
to predict the response to anti-PD1 therapy and anti-CTLA4

therapy for patients with UCEC. The Bonferroni corrected and
normal p -values of the low-risk group were both less than 0.05,
suggesting that patients from the low-risk group tended to
respond effectively to anti–PD-1 therapy (Figure 7G).

A Global Vision of Genomic Alterations and
Chemotherapeutic Response Prediction in
Different Risk Groups
There is increasing evidence that the burden of tumor mutations
is related to immunotherapy in cancer patients (Samstein et al.,
2019), and therefore, we detected tumor mutation burden (TMB)
in different risk groups. TMB was significantly elevated in the
low-risk group (Supplementary Figure S3A). To discover
essential genes with somatic hypermutation that might master
the oncogenesis and development of UCEC, we further analyzed
the distribution of the top 30 genes in the two groups (Figure 8A).
We noticed an unexpectedly higher somatic mutation frequency
in the low-risk group (Figure 8B). TP53 mutations are
considered a surrogate biomarker of the serous-like CN-high
molecular subtype of UCEC (Singh et al., 2020). As shown in
Figures 8A,B, the mutation frequency of TP53 in the high-risk
group was also higher than that in the low-risk group (Figures
8A,B). In addition, the result that the CN-high subtype got the
highest risk score was previously described (Figure 4E).

FIGURE 6 | Comprehensive analyses of enriched pathways in different risk groups. (A) GSVA enrichment analyses in the low- and high-risk groups indicating the
activated biological pathways. (B) GO terms analyses of 504 risk-related DEGs. Biological process (upper), Molecular function (middle), Cellular component (bottom).
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Furthermore, we performed the GISTIC2.0 to analyze the
CNV, and high-frequency amplification was discovered in
the high-risk group (Figure 8C). In detail, representative
amplified genes were shown, and oncogenes like MYC and
CCNE1 were widely amplified in the high-risk group
(Figure 8D). Considering chemotherapy as a standard
treatment is currently used clinically for patients with
UCEC, we used the “pRRophetic” package to estimate the
patient’s sensitivity to six chemotherapeutic agents, including
docetaxel, lenalidomide, doxorubicin, cisplatin, vinorelbine,
and gefitinib in different risk groups. The relatively low
estimated IC50 of each chemotherapeutic agent in the high-
risk group indicated that although patients scored high on risk
they might be more sensitive to these chemotherapeutic agents
(Figure 8E).

DISCUSSION

Estrogens exhibit a wide range of physiological functions,
including but not limited to the regulation of the menstrual
cycle and reproduction to modulation of bone density, brain
function, and cholesterol mobilization (Liang and Shang,
2013). The results of previous clinical, biological, and
epidemiological studies have demonstrated that excessive
and/or prolonged exposure to unopposed estrogen increases
the risk of UCEC, especially in the endometrioid type (Zhou
et al., 2019). Estrogens can signal through ERs in a genomic or
nongenomic manner. Genomic signaling refers to ERs
carrying out their typical steroid hormone receptor action
by binding to the genome and regulating transcription. In
nongenomic signaling, ERs bound to the cell surface will bind

FIGURE 7 | The description of infiltration of immune cells and the prediction of immunotherapeutic response in different risk groups. (A) The ssGSEA scores of 24
immune cells in the low- and high-risk groups in TCGA-UCEC. (B) Comparison of ESTIMATE score, immune score, stromal score, and tumor purity between the low-
and high-risk groups in TCGA-UCEC. (C,D) The expression levels of immune checkpoint biomarkers(C) and HLA family genes (D) in the low- and high-risk groups in
TCGA-UCEC. E and (F). Correlation analysis for risk scores and the expression levels of immune checkpoint biomarkers(E) and HLA family genes (F). (G) Predicted
responses to anti-PD1 therapy and anti-CTLA4 therapy of patients with UCEC in the low- and high-risk groups.
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estrogens, activating other signaling pathways such as cAMP
and MAPK (Losel and Wehling, 2003; Rodriguez et al., 2019).
However, the mechanisms of these factors contribute to the
malignant state remain unclear, despite a growing
understanding of the pathophysiology and molecular
biology of ERs (Zhou et al., 2019). A better understanding
of ER and PR biology may make it possible to identify patient
populations that are likely to benefit from new therapeutic
options (Rodriguez et al., 2019).

Herein, we applied the ssGSEA algorithm to calculate the
enrichment scores of gene sets of cancer-related hallmarks and
found that high estrogen response ssGSEA scores indicated a

better prognosis in terms of OS and DFS in UCEC patients.
Furthermore, we used the LASSO Cox regression model to
identify critical candidates and established a prognostic
signature consisting of 13 DEERGs. Among these 13 genes,
PTPN6 (Giordano et al., 2018), PGR (Zhou et al., 2020), and
HPRT1 (Townsend et al., 2019) have been reported to predict the
outcomes of UCEC patients. Others, including PKP3(Furukawa
et al., 2005), TJP3 (Luo et al., 2020), NRIP1 (Chen X. et al., 2020),
DNAJC12 (Uno et al., 2019), ASS1(Silberman et al., 2019), BATF
(Feng et al., 2020), NMU (Liu et al., 2019), and IGFBP4 (Lee et al.,
2018), had been verified to participate in carcinogenesis and affect
patients’ prognoses in other cancers, although the relevant studies

FIGURE 8 | A global vision of genomic alterations and chemotherapeutic response prediction in different risk groups. (A) Oncoplots of the somatic mutation in
TCGA-UCEC. (B) The box plots of top 30 somatic mutations genes in the low- and high-risk groups. (C). Amplifications (Amp) and deletions (Del) of copy number in the
low- and high-risk groups. (D) The CNV frequency of the frequently amplified (Amp) or deleted (Del) genes in TCGA-UCEC. (E) The box plots of the estimated IC50 of
docetaxel, lenalidomide, doxorubicin, cisplatin, vinorelbine, and gefitinib.
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were rare in UCEC. The risk scores of UCEC patients were
calculated based on the expression levels of 13 genes. Further
analyses highlighted that the risk score was associated with
grades, stage, and copy-number high (CN-high) subtype.
Then, we divided the UCEC patients into low- and high-risk
groups based on the median risk score and compared their
clinicopathological parameters to clarify the correlation
between the risk scores and clinical features. In the Training
set, Validation set, and Entire set, the prognostic signature
consisting of 13 DEERGs showed strong predictive capability
and could act as a potentially independent indicator for the
prognosis of UCEC patients.

To explore the biological characteristics between low- and
high-risk groups, we performed GSVA enrichment analyses,
which indicated that carcinogenic pathways were mainly
activated in the high-risk group, whereas immune-related
pathways were enriched in the low-risk group. Comparing
transcriptional expression profiles of low- and high-risk
groups identified 841 DEGs. Functional enrichment analyses
of these DEGs could provide an understanding of their
biological roles. In the GO analysis, both immune cell
adhesion and activation and antigen presentation and binding
were associated with the risk-related DEGs. Mounting evidence
has shown that ERs are broadly expressed in many cell types
involved in innate and adaptive immune responses
(Rothenberger et al., 2018). Based on the above analyses, we
hypothesized that a prognostic signature consisting of 13
DEERGs might be associated with immune cell infiltration
and help guide therapeutic regimens.

In order to verify our hypothesis, the ssGSEA algorithm was
used to evaluate the immune cell fraction, and ESTIMATE was
used to evaluate Tumor Purity, ESTIMATE Score, Immune
Score, and Stromal Score in UCEC patients. Many elegant
studies have revealed that effectors, including CTLs, B cells,
and NK cells, destroy tumor cells while myeloid-derived
suppressor cells (MDSCs) and tumor-associated
macrophages (TAMs) can contribute to immune escape and
tumor growth (Taube et al., 2018). The low-risk group had
relatively lower Tumor Purity and higher ESTIMATE,
Immune, and Stromal Scores. Moreover, this group of
patients was remarkably rich in cytotoxic cells, pDC cells,
T cells, and Treg cells. Regulatory T cells (Tregs) are potent
immunosuppressive lymphocytes that are crucial for immune
tolerance and homeostasis (Adair et al., 2017). However, the
function of Tregs in endometrial cancer is still controversial
(Prieto, 2011). Bingnan Chen et al. found that the infiltrated
level of Tregs was positively correlated with the survival rate of
endometrioid endometrial adenocarcinoma and negatively
correlated with clinical grading (Chen B. et al., 2020). Our
study also found that the infiltrated Tregs level was elevated in
the low-risk group with a better prognosis. The reason is still
unclear and may be associated with the level of estrogen (Chen
B. et al., 2020). T cells can recognize neoantigens via HLA
molecules on the tumor cell surface, which provides an
opportunity to initiate specific and effective anti-cancer
immune responses (Liu et al., 2020). The results showed
that HLA genes were significantly higher in the low-risk

group. In addition, we observed that the low-risk group was
significantly associated with elevated immune checkpoint
levels, implying the potential predictive value of
immunotherapy benefits. Based on the background
mentioned before, we used a subclass mapping algorithm to
predict the response of UCEC patients to immunotherapy. We
found that patients in the low-risk group were more likely to
respond effectively to anti-PD-1 immunotherapy. Previous
studies demonstrated that the activation of the estrogen
pathway could enhance macrophage influx, Th2 responses,
and immunosuppression by NK and CTL-mediated tumor cell
elimination (Jiang et al., 2006; Jiang et al., 2007; Khan and
Ansar Ahmed, 2015; Svensson et al., 2015). Therefore, anti-
estrogen therapy combined with immunotherapy should be
considered an effective therapeutic regimen for patients
with UCEC.

An assessment of the mutated genes underlying human
tumors is essential to cancer diagnosis, therapy, and rational
treatment selection (Chong et al., 2021). Tumors containing
p53 mutations exhibit a high degree of genomic instability
associated with tumor progression and invasion by
upregulation of p53-mutant target genes, and the TP53
mutation is well known for its prognostic impact in
endometrial carcinoma (Stelloo et al., 2016). Previous
studies demonstrated that the CN-high molecular subtype
of endometrial carcinoma was characterized by the TP53
mutation and frequently accompanied by many gene copy-
number alterations, including the amplifying of essential
oncogenes such as CCNE1 and c-MYC (Leskela et al.,
2019). In our present study, the high-risk group primarily
corresponded to the CN-high molecular subtype and was
significantly correlated with more aggressive molecular
changes such as frequent TP53 mutations and extensive
copy number alterations. High TMB indicates that cancer
cells have a high level of mutations, suggesting that cancer
cells are more different from normal cells, which can be easily
discovered by the human immune system (Zhao et al., 2021).
In our study, the low-risk groups displayed more mutation
frequency and a higher degree of infiltration of immune cells.

Despite some exciting discoveries, some problems remain.
First, this study is a retrospective study only covering the
TCGA dataset and thus should be validated by an external
dataset and further confirmed by preliminary experiments.
Second, the predictive capacity of the prognostic signature
composed of 13 genes and its potential relationship with
immune status, requires further verification testing in other
clinical samples.

CONCLUSION

In this study, we developed an estrogen-response-related
signature that could act as an independent prognostic factor
for patients with UCEC. According to the prognostic model based
on 13 DEERGs, we comprehensively evaluated the biological
behaviors, immune status, genomic alterations, and therapeutic
responses in different risk groups. In summary, our study
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provides a novel insight into potential strategies for diagnosing,
monitoring, and treatment of UCEC.
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