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Both metabotropic (CBRs) and ionotropic cannabinoid receptors (ICRs) have implications
in a range of neurological disorders. The metabotropic canonical CBRs CB1 and CB2 are
highly implicated in these pathological events. However, selective targeting at CB2 versus
CB1 offers optimized pharmacology due to the absence of psychoactive outcomes. The
ICR transient receptor potential vanilloid type 1 (TRPV1) has also been reported to play a
role in CNS disorders. Thus, activation of both targets, CB2 and TRPV1, offers a promising
polypharmacological strategy for the treatment of neurological events including analgesia
and neuroprotection. This brief research report aims to identify chemotypes with a
potential dual CB2/TRPV1 profile. For this purpose, we have rationalized key structural
features for activation and performed virtual screening at both targets using curated
chemical libraries.
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1 INTRODUCTION

Well documented pharmacological evidence supports functional crosstalk between the
endocannabinoid system (ECS) and the endovanilloid system (EVS) (Di Marzo et al., 2002;
Lastres-Becker et al., 2003; Morgese et al., 2007; Avraham et al., 2010; Chávez et al., 2010;
Adamczyk et al., 2012; Arnold et al., 2012; Lowin and Straub, 2015; Rossi et al., 2015; Malek
and Starowicz, 2016; Assimakopoulou et al., 2017; Bellini et al., 2017; Zhang et al., 2017; Punzo et al.,
2018; Bhatta et al., 2019;Wi et al., 2020). Thus, these latest advances provide opportunities to develop
innovative strategies for fighting disorders where biological targets of both systems are involved.
Here, we emphasize the cannabinoid receptor type 2 (CB2) and the transient receptor potential
vanilloid type 1 (TRPV1) channel, both implicated in neurodegenerative diseases and pain.

CB2R is a G-protein-coupled receptor (GPCR) mainly present in the immune cells where they are
expressed in lymphocytes, natural killer cells, macrophages, and neutrophils (Cécyre et al., 2020).
Thus, they are an attractive target for the treatment of inflammatory processes. The expression of
CB2 is also detected in the central nervous system (CNS) under stressful conditions such as cytotoxic
and neuroinflammatory injuries within the brainstem, microglia, and astrocytes, suggesting CB2 an
interesting target for neuroprotection (Navarro et al., 2016). CB2 is also expressed in the blood brain
barrier (BBB), and therefore could be beneficial in the brain and peripheral tissues at different stages
of neurodegenerative processes (Aso and Ferrer, 2016; Javed et al., 2016; Cassano et al., 2017; Behl
et al., 2020; Berry et al., 2020; Uddin et al., 2020). CB2 selective agonists also represent an attractive
approach for pain management among other therapeutic applications (Fowler, 2020). In animal
models of chronic inflammation, CB2 agonists lead to beneficial outcomes for diverse pain
managements such as neuropathic, osteoarthritic, postoperative, and human immunodeficiency
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virus (HIV) associated pain relief (Guindon and Hohmann, 2008;
Anthony et al., 2020; Aly andMasocha, 2021; Bryk and Starowicz,
2021; Mlost et al., 2021; Ramírez-López et al., 2021).

TRPV1 is a nonselective cation channel mainly expressed in
the sensory neurons of the peripheral nervous system (Caterina
et al., 1997), acting as a detector of painful stimuli such as heat
and pungent chemicals like capsaicin. TRPV1 modulators have
attracted much attention as analgesics due to its implication in
pathological pain such as inflammatory, visceral, neuropathic,
and cancer-related pain (Peppin and Pappagallo, 2014;Malek and
Starowicz, 2016; Shuba, 2021). TRPV1 has also been described in
the CNS (Gibson et al., 2008; Ho et al., 2012; Shuba, 2021) with
expression in neurons, microglia, and astrocytes (Sawamura et al.,
2017), and its level of expression can be up- or down-regulated
according to age and pathophysiological conditions (Martins
et al., 2014). TRPV1 participates to the regulation of neuronal
function and synaptic plasticity (Marinelli et al., 2003; Maione
et al., 2009; Chávez et al., 2010), the control of motor behavior
(Morgese et al., 2007; González-Aparicio and Moratalla, 2014;
Martins et al., 2014), and the regulation of neuroinflammation
(Kong et al., 2017). Therefore, TRPV1 has been suggested to be
implicated in diseases associated with motor dysfunctions, such
as Huntington’s, Parkinson’s, and multiple sclerosis, or with
cognitive functions like Alzheimer’s disease (González-
Aparicio and Moratalla, 2014; Nam et al., 2015; Li et al., 2019;
Du et al., 2020).

Co-expression and crosstalk between TRPV1 and CB1
(Cristino et al., 2006; Assimakopoulou et al., 2017) has been
established primarily in the modulation of arthritic pain and
inflammation (Lowin and Straub, 2015). In addition to CB1, CB2
is also co-expressed with TRPV1 in certain cells including
osteoblasts (Rossi et al., 2015), osteoclasts (Bellini et al., 2017),
and sensory neurons (Wi et al., 2020). Moreover, CB2 and
TRPV1 crosstalk has shown to be engaged diverse
pathophysiological processes including pain (Wi et al., 2020;
Wilkerson et al., 2022), bone disorders (Rossi et al., 2015;
Bellini et al., 2017), inflammatory processes (Lowin et al.,
2016; Arnold et al., 2021), cocaine-seeking behavior
(Adamczyk et al., 2012), proliferation and apoptosis of
T-lymphoblastic leukemia cells (Punzo et al., 2018), and
multidrug resistance (Arnold et al., 2012). Benefits of the
CBR/TRPV1 axis for neurodegenerative diseases has been
suggested by some studies due to CBRs and TRPV1 inhibition
of glial activation and expression of proinflammatory cytokines in
a mouse model of Parkinson’s disease (Wi et al., 2020).
Pharmacologically, strategies targeting CB1/TRPV1 have
shown promising therapeutic results in models of pain,
spasticity, arthritis, and dyskinesia (Di Marzo et al., 2001,
2002; Brooks et al., 2002; Morgese et al., 2007; Lowin and
Straub, 2015) For instance, arvanil, a CB1 agonist, TRPV1
activator, and potent inhibitor of anandamide (AEA)
accumulation, alleviates hyperkinesia typical of Huntington’s
disease (De Lago et al., 2005). However, few reports have
identified dual CB2/TRPV1 modulators thus far.

Current treatments for complex disorders based on selective-
target drugs fail in their efficacy. As a consequence, a number of
research studies have highlighted the importance of multiple-

target strategies for the treatment of multifactorial disorders such
as pain and neurodegenerative diseases (Cheong et al., 2019;
Gontijo et al., 2019; Maramai et al., 2020). Combinatorial
therapies are generally associated with side effects derived
from drug-drug interactions. Therefore, single dual-acting
drugs should reduce side effects with unique pharmacokinetic
or pharmacodynamic profiles. Cannabinoids have been reported
to directly modulate TRPV1 (Muller et al., 2019), and among
them, few have shown selective CB2 vs CB1 activity. In this brief
research report, we will primarily focus on the in silico
identification of potential CB2/TRPV1 chemotypes, as well as
rationalize reported dual modulators.

2 METHODS AND MATERIALS

2.1 Receptor Structures
Structures of hCB2 and hTRPV1 were selected based on the
reliability and stability of the structures. In a recent publication,
an activated structure of hCB2 was resolved via cryo-EM at a
resolution of 2.90 Å (PDB: 6KPF) (Hua et al., 2020). This
structure was used for our docking screening upon treatment
using the protein structure preparation wizard integrated in the
Schrödinger software. A model of hTRPV1 was constructed using
the cryo-EM structure PDB: 5IRZ congruent to the methods
described inMuller et al. and was used for this work (Muller et al.,
2020).

2.2 Grid Generation
Prior to using the Glide module high-throughput virtual
screening (HTVS) and extra precise (XP) docking within the
Schrödinger package (Schrödinger, LLC, New York, NY, 2019),
docking grids were generated using the receptor grid generation
tool within Glide to ensure ligand screening was performed in the
appropriate sites within each receptor. Dimensions for the CB2
receptor grid were set at 20 Å in length along the x, y, and z axes
and was centered on the ligand co-crystallized with the CB2
structure (the THC synthetic derivative AM12033).

Similarly, all three TRPV1 grids were generated to adhere to
the same dimensions of 20 Å in length in the x, y, and z directions
and were centered on residues that are believed and/or reported
to be involved with ligand binding at each location. This resulted
in three distinctly different grids for TRPV1 that will herein be
referred to as “VBP” for the location that capsaicin binds,
“tunnel” for the location where anandamide has been reported
to interact with TRPV1 via MD simulations, and “CBD-site” for
the putative CBD interaction site reported in the TRPV2/CBD
cryo-EM structure. Visual representations and further
explanation of these TRPV1 sites can be found in
Supplementary Figure S1. These grid specifications allow any
ligand that is less than or equal to 20 Å in length to be docked
within the specified region.

2.3 Curation of Chemical Libraries
2.3.1 CB2
From the CB2 indexed molecules, ligands showing EC50, Emax,
and activity data were selected (total of 6356) and retrieved from
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the ChEMBL webserver as a .csv file. The “activity” category
includes compounds with not only agonist activity, but
antagonist, inverse agonists, and allosteric modulators as well.
DataWarrior, an open-source data visualization software, was
used to further analyze the ligand output which included
discarding ligands without an agonist profile (−568 ligands),
removing duplicates (−2159 ligands), and eliminating ligands
with low activity (−773 ligands). This resulted in a final CB2
library of 2856 unique molecules that included a variety of
chemotypes.

2.3.2 TRPV1
Ligands that have been indexed for TRPV1 activity within the
ChEMBL database were selected and filtered in search of agonists
in accordance with the reported EC50 and Emax values and
activity. The resulting 7,436 compounds were exported from
the ChEMBL webserver as a .csv file and uploaded to
DataWarrior. The selection of ligands with TRPV1 activity
from the ChEMBL database included antagonists, inverse
agonists, possible allosteric modulators, ligands with low
activity, and duplicates which were all removed using
DataWarrior. The final curated TRPV1 library contained 3,830
unique molecules with a variety of chemotypes.

2.3.3 Internal Standard Ligands
The CB2 agonist resolved with the active hCB2 structure
(AM12033) was used as an internal standard for CB2 docking.
Three internal standards were used for hTRPV1: capsaicin in the
VBP, AEA in the tunnel as observed from MD simulations, and
CBD at the putative CBD site.

2.3.4 JWH133 Similarity Library
JWH133, which acts as an agonist at both CB2 and TRPV1, was
used as a molecular basis for this additional screen to explore
more unique scaffold options that may not be present in the CB2
or TRPV1 curated libraries. A JWH133 similarity library was
curated using PubChem Biosays, 2021 which included
compounds that shared >0.85 Tanimoto similarity index with
JWH133, while also following Lipinsky’s rules of drug likeness
(apart from xLogP values, which were set to −1 to 6 due to the
lipophilicity of cannabinoid ligands). The JWH133 similarity
library consisted of 5081 that were screened at all sites (CB2
and the three TRPV1 sites), and the output was analyzed to
identify dual potential chemotypes.

2.4 High-Throughput Virtual Screening
Workflow
A general overview of the screening workflows is provided in
Supplementary Figure S2.

2.4.1 Ligand Preparation
Each of the curated libraries were exported as .sdf files and their
conformations were optimized using the LigPrep module of the
Maestro suite (Schrödinger, LLC, New York, NY, 2019). The Epik
software was employed to predict pKa values in the pH range of
7.0 ± 0.5 and to return all chemically sensible structures in

accordance with the Hammett and Taft methodology. All
compounds were minimized using the OPLS3e force field as
implemented in Maestro.

2.4.2 HTVS
Molecular docking was performed using the HTVS Glide-dock
module integrated in the Schrödinger package. The HTVS was
conducted under the default setting, ensuring that high-energy
ionization and tautomer states were removed, and the planarity of
conjugated pi systems were enhanced. Ligands were docked
flexibly, allowing for exploration of an arbitrary number of
torsional degrees of freedom, in addition to the six spatial
degrees of freedom spanned by the translational and rotational
parameters. Up to 10 poses per compound state were generated
and ligand poses that were generated in this way were run
through a series of hierarchical filters to evaluate ligand
interactions with the receptor. Docking score, glide gscore,
glide emodel, ionization penalty, and topological polar surface
area (TPSA) were used to select the docking poses in the output.
The output from the HTVS contained the top 10% of the best
scoring compound states and were analyzed for use in the extra
precise (XP) screen via their docking scores.

2.4.3 XP Screening
Top scoring compounds from the HTVS were then studied
through high-precision docking calculations which was
performed using the XP Glide module. As with the HTVS
protocol, 10 poses of the short-listed ligands were docked
flexibly in their respective receptor site within the generated
grids. A post-docking minimization was performed and the
top 20% of the best scoring ligands were retained. XP Glide
uses two key features that impact the XP Glide scoring: the
recognition of structural motifs that provide large contributions
to binding affinity and the application of large desolvation
penalties to ligand and protein polar and charged groups
wherever appropriate. To accomplish this, the sampling
algorithm and scoring functions have been simultaneously
optimized in XP. Ligands making it through the XP screen
were organized by their docking scores and analyzed for
ligand/receptor interactions. Selected ligands for each receptor
were investigated through manual docking based on the
automatic docking score, binding mode, as well as reported
activity.

2.4.4 Additional Criteria
Manual Docking Identification of Potential PAINS Off-Targets
Evaluation. Selected compounds were subjected to manual
docking at CB2 and TRPV1 for further investigation of key
interactions. Docking at CB2 was performed following the
protocols previously reported by us for cannabinoid and
related GPCRs (Morales et al., 2017a). In the case of TRPV1,
select ligands were positioned within the respective binding site
with steric clashes being removed via ligand and/or receptor
adjustment using a graphical interface. Minimization of the
ligand and surrounding 6 Å of residues (due to complex size)
was performed using Prime version 19.3 (Schrödinger Inc.) with
the OPLS3e forcefield in an implicit membrane.
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In silico calculation of ADME properties. A set of 34 physico-
chemical descriptors was computed using QikProp version 3.5
integrated in Maestro (Schrödinger, LLC, New York,
United States). The QikProp descriptors are shown in
Supplementary Tables S2, S3. The 3D conformations used in
the calculation of QikProp descriptors were generated using
LigPrep as previously detailed.

Identification of Potential PAINS. In the search of potential
candidates, it is crucial to avoid the presence of potential
promiscuous moieties or PAINS (pan-assay interference
compounds) (Baell and Holloway, 2010; Capuzzi et al., 2017).
Therefore, the selected molecules were subjected to a PAINS
identification study using the swissADME webserver (Daina
et al., 2017).

Off-Targets evaluation. XP Glide docks at potential off-target
receptors including cannabinoid-related GPCRs such as CB1
(Shao et al., 2016; Hua et al., 2020), GPR55 (Kotsikorou et al.,
2013; Lingerfelt et al., 2017), GPR18 (Sotudeh et al., 2019) and
TRP channels such as TRPV2 (Pumroy et al., 2019), TRPV3
(Singh et al., 2018; Zubcevic et al., 2018), TRPA1 (Suo et al., 2020;
Zhao et al., 2020), and TRPM8 (Diver et al., 2019; Yin et al., 2019).
For this purpose, the cited available structures, whether crystal,
cryoEMs, or models previously developed in our group, have
been used. Results of these additional dockings can be found in
Supplementary Tables S4, S5.

3 RESULTS AND DISCUSSION

Polypharmacological approaches targeting the ECS have already
shown successful results in diverse disease models (Fernández-
Fernández et al., 2014; Malek and Starowicz, 2016; Barutta et al.,
2017; Lago-Fernandez et al., 2021). However, drug discovery
strategies primarily targeting CB2 and TRPV1 have not yet
been explored. As previously detailed, activation of these
targets participates in diverse therapeutic effects including
analgesia and neuroprotection, which both offer interesting
polypharmacological prospects.

3.1 Structural Understanding of
Compounds With Reported Activity at Both
Targets
To computationally identify promising chemotypes with a CB2/
TRPV1 dual agonist profile we have first analyzed reported
compounds exhibiting activity at both receptors. As detailed in
Supplementary Table S1, endocannabinoids,
phytocannabinoids, and their respective synthetic derivatives
have so far shown the best promise in this field.

The well-known endogenous ligands 2-arachidonoylglycerol
(2-AG) and anandamide (AEA) exhibit agonist effects at both
targets with low micromolar potency. As observed in diverse
in vitro and in vivo models, these endocannabinoids also display
activity at other cannabinoid-related GPCRs including CB1,
GPR55, and GPR18 (Morales and Jagerovic, 2016; Morales
and Reggio, 2017; Morales et al., 2020) as well as other TRP
channels including TRPA1 and TRPM8 (Muller et al., 2019).

Synthetic endocannabinoid-like derivatives have also shown
dual activity (Supplementary Table S1). For instance,
Appendino and coworkers reported a series of
conformationally constrained fatty-acid ethanolamides with
CB1, CB2, and TRPV1 activity (Appendino et al., 2009). An
example from this series is ACPA-OH (Supplementary Table
S1), which introduces a hydroxycyclopropyl in the amide head
group forcing a specified stereochemistry and rigidity. This
compound is a potent TRPV1 agonist that exerts low
micromolar CB2 affinity and nanomolar binding at CB1
(Appendino et al., 2009). Further synthetic efforts from Di
Marzo’s research group led to the identification of hybrid
cannabinoid-vanilloid ligands with a highly CB1 selective
profile (Melck et al., 1999; Szallasi and Di Marzo, 2000; Di
Marzo et al., 2001, Di Marzo et al., 2002). Among these fatty-
acid derivatives, one of the few compounds that binds to CB2 is
O-1811 (Supplementary Table S1), which presents a substituted
dimethyl-hydroxyhexanyl tail (Di Marzo et al., 2001). Despite
targeting CB2, O-1811 displays over 6-fold CB1 selectivity.

Interestingly, molecules combining the polyunsaturated fatty-
acid chain with the vanillyl-amide head group of capsaicin behave
as CB1/TRPV1 agonists that potently inhibit anandamide
accumulation (Melck et al., 1999; Szallasi and Di Marzo, 2000;
Di Marzo et al., 2001, 2002). One such molecule, arvanil
(Supplementary Table S1), has shown therapeutic potential in
the treatment of dyskinesia associated to Huntington’s disease
(De Lago et al., 2005) and inhibition of spasticity and persistent
pain (Brooks et al., 2002).

Structural modifications in the long chain of
endocannabinoid-like molecules led to the identification of the
first series of CB2 selective/TRPV1 dual ligands (Appendino et al.,
2006). Combination of non-polyunsaturated fatty acid-derived
chains with 12-acylgroups yielded compounds such as 12-
phenylacetylricinoleyl cyclopropylamide (PhAR derivative 12,
Supplementary Table S1) which behaves as a potent TRPV1
agonist and CB2 inverse agonist.

Diverse phytocannabinoids have also shown activity at CB2
and TRPV1 (De Petrocellis et al., 2011; Zagzoog et al., 2020). For
instance, the main non-psychotropic component of Cannabis
sativa, cannabidiol (CBD), is a CB2 partial agonist/TRPV1
agonist (De Petrocellis et al., 2011; Tham et al., 2018). It is
worth mentioning that at CB2, CBD has been reported to act
as negative allosteric modulator in the presence of orthosteric full
agonists (Martínez-Pinilla et al., 2017; Navarro et al., 2021). The
acidic CBD derivative, cannabidiolic acid (CBDA), and its propyl
counterpart, cannabivarin (CBDV), also exhibited TRPV1
agonism while being CB2 partial agonists (De Petrocellis et al.,
2011; Zagzoog et al., 2020). The phytogenic compound
cannnabigerol (CBG) presents the same functional profile at
both targets (De Petrocellis et al., 2011; Zagzoog et al., 2020).
On the other hand, the well-known psychoactive compound
tetrahydrocannabinol (THC) is not active at TRPV1 (De
Petrocellis et al., 2011), whereas its propyl derivative
tetrahydrocannabivarin (THCV) behaves as a TRPV1/CB2
agonist (Supplementary Table S1). It is important to note
that all these phytocannabinoids also display activity at CB1
receptors.
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Synthetic phytocannabinoid-like derivatives have also shown
interesting dual activity. The CB2 selective agonists HU308 and
JWH133 could be considered dual ligands due to their activity at
TRPV1 being HU308 a weaker agonist at this channel (Soethoudt
et al., 2017). The widely used aminoalkylindole WIN55212-2,
which is a potent CB1/CB2 synthetic agonist, has also been
reported to activate and desensitize TRPV1 (Soethoudt et al.,
2017).

In the search of novel structures with CB2/TRPV1 activity, we
aim to minimize off-target effects at CB1 or related receptors.
Therefore, considering the aforementioned reported activity, we
selected JWH133 as a molecular basis for the identification of
potential dual CB2/TRPV1 agonists. The therapeutic potential of
this ligand has been recently reviewed elsewhere (Agonist et al.,
2021). As a first step we rationalized its interactions at both
receptors using molecular docking. At CB2 JWH133 sits in the
orthosteric pocket with the same orientation as the CB2 agonist
resolved in the cryoEM structure AM12033 (Supplementary
Figure S3A). The tricycle stablishes π-π stacking with residues
F2.61, F2.57 and F183 (extracellular loop 2) while residues I3.29,
F2.64 and V3.32 stabilize the molecule through van der Waals
interactions. The orientation of the distal aliphatic tail of JWH133
differs from that of AM12033 due to the lack of a functional
group at the end. As in the case of AM12033 the so-called twin
toggle switch residues F3.36 and W6.48 (Hua et al., 2020) are
stabilized in their active conformation as shown in
Supplementary Figure S3A. In TRPV1, JWH133 cleared both
HTVS and XP screening in what is thought to be the CBD
binding site. CBD has yet to be co-resolved with TRPV1, though
it has with TRPV2 and an analysis of the putative CBD binding
site was performed across all ICRs (Muller et al., 2020). The CBD
structure in TRPV2 displays a different orientation than the CBD
screen at TRPV1, though the differences cited above could be
responsible. CBD and JWH133 show similar π-π stacking with
Y584, though CBD is also stabilized by F639, likely due to the
central constraint of JWH133 which angles the ligand slightly
outward (Supplementary Figure S3B).

3.2 Towards the Identification of Potential
Dual Ligands
In order to identify potential chemotypes with a yet unexplored
TRPV1/CB2 dual profile two different in silico approaches have
been followed. These strategies are described in the following
subsections and the workflows are depicted in Supplementary
Figure S2.

3.2.1 Virtual Screening of JWH133 Structurally Related
Chemical Databases
A chemical library of compounds with >0.85 Tanimoto similarity
index with JWH133 was curated and screened at CB2 and TRPV1
using the methods described above (workflow depicted in
Supplementary Figure S2A). Analysis of docking interactions
of top-ranked XP results from the CB2 site and the TRPV1 sites
revealed seventeen common ligands between the CB2 site and the
VBP and CBD sites (Table 1). No common ligands were
identified between the CB2 site and the TRPV1 tunnel. The

selection of novel potential CB2/TRPV1 chemotypes includes key
structural features and ligand-receptor site interactions at both
targets, as well as the absence of previously reported activity at
these receptors. This strategy allows for prioritization of
molecularly diverse and novel compounds. To ensure the VBP
and CBD sites were explored equally, two ligands were selected
that targeted CB2 and the VBP (57756957 and 151332252), two
ligands were selected that targeted CB2 and the CBD site
(59824268 and 123533625), and one ligand was selected that
targeted CB2, the VBP, and the CBD site (153641693), resulting
in the selection of five ligands for further investigation via manual
docking and pharmacokinetic profiling (Supplementary Table
S2). The selected chemotypes have not been yet explored at CB2/
TRPV1 and their reported activity is not significant, providing
novel opportunities for the investigation of the endocannabinoid
system.

Among the five selected candidates, 3-(4-methylbenzyl)-
chromane 59824268 presented a better druggability profile
(Supplementary Table S2) being therefore prioritized for
future in vitro testing as CB2/TRPV1 dual modulator. As
shown in Supplementary Table S2, candidates 57756957,
123533625, 153641693, and 151332252 exhibit HERG values
that fall outside the range of approved drugs. Docking studies
of 59824268 at CB2 and TRPV1 are shown in Figure 1. At CB2
this chromane sits a bit higher than JWH133 in the binding
crevice being stabilized by hydrophobic and aromatic interactions
with residues F2.64, F2.61, F2.57, F183 and F7.35. Regarding
TRPV1, 59824268 orients itself in a way similar to JWH133 in the
pocket maintaining overlap with the aromatic ring. While
JWH133 appears to have primary interactions with Y584,
59824268 has interactions with Y584 in addition to Y632 and
F639, further stabilizing the chromane in this pocket.

3.2.2 Cross-Agonist Virtual Screening
The second strategy for the identification of dual compounds is
based on a HTVS of reported CB2 and TRPV1 agonists. CB2
agonists indexed in the ChEMBL database have been retrieved
and studied in the three known TRPV1 binding sites as detailed in
section 2.4. Likewise, TRPV1 ligands indexed in the ChEMBL
database have been retrieved and studied in the CB2 binding site.
Following the workflow depicted in Supplementary Figure S2B,
five candidates were selected for further analysis at each receptor
(Table 2). Reported activity at the known target, docking score
(Table 2) and druggability profile (Supplementary Table S3) led
us to select compounds 1288208, 1288239 (TRPV1 virtual
screening) 1508577 and 1508215 (CB2 virtual screening).

1288208 passed the screening as a potential modulator of
TRPV1 at two sites: the VBP and tunnel. While there is argument
for the elimination of this ligand due to lack of site specificity, it
was selected for exactly this reason. With the abundance of
ligands reported to modulate TRPV1, and the variability in
reported and putative binding locations, a ligand that shows
the potential for interaction at multiple locations, both putative
and confirmed, within the channel is worthy of further study to
better understand why this is. In the VBP, the headgroup of
1288208 forms H-bonds with R557 and S512 via the backbone
and hydroxy group, both reachable from within the tunnel. The
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TABLE 1 | Potential dual CB2/TRPV1 candidates obtained upon screening of a JWH133 structurally related chemical database. Selected hits have been classified according
to common structural moieties.

PubChem ID Structure CB2 docking
score

TRPV1 docking score Reported biological activity References

VBP site CBD site

JWH133 −10.24 −7.05 −6.54 CB2/TRPV1 reference agonist (Huffman et al., 1999; Soethoudt
et al., 2017)

4-Aryl chromanes
1238803 −10.35 −8.21 - Synthetic methodology, no activity reporteda Liu et al. (2016)

6577075 −10.49 −8.04 - Synthetic methodology, no activity reporteda Liu et al. (2016)

7066525 −10.13 - −8.25 No activity reporteda Commercially available

20560217 −10.03 −8.79 - Anorexigenic activity in ratsa Sime and Ainsworth, (1981)

57756957b −10.23 −8.73 - Bactericide and antiviral activitya Habi et al. (2001)

3- or 7-Methylene chromanes
59824268b −9.78 - −8.22 Ink compositiona Kazuhiro, (2008)

148365500 −10.44 - −8.81 Electrolyte composite for a fuel cell containing a
fluorine ion-exchange resina

Kim et al. (2011)

91587558 −10.24 −8.18 - Modulator of dopamine 3 receptora Wang et al. (2010)

141098199 −10.28 −8.72 - Anti-inflammatory propertiesa Carter et al. (2004)

Phytocannabinoid-like molecules
68117155 −10.88 −8.99 - Phytocannabinoid-like molecule claimed as

tranquilizing and antidepressant agent
Razdan and Dalzell, (1976)

142557024 −10.30 −8.52 - Phytocannabinoid-like molecule included in a
cannabinoid preparation that contains α-
tocopherol

Karsten et al. (2019)

(Continued on following page)
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TABLE 1 | (Continued) Potential dual CB2/TRPV1 candidates obtained upon screening of a JWH133 structurally related chemical database. Selected hits have been
classified according to common structural moieties.

PubChem ID Structure CB2 docking
score

TRPV1 docking score Reported biological activity References

VBP site CBD site

148053384 −10.29 −8.29 - Topical compositions comprising hydroxy
acids and cannabinoids for skincare

Ghalili and Mcgovern (2016), Viet
Thang Vu et al. (2019), Yong-Gang
et al. (2019)

Other tricyclic structures
89342940 −10.69 - −8.53 Organic luminescent materiala Funahashi et al. (2007)

123533625b −10.81 - −9.50 Intermediate in the modular synthesis of
graphene nanoribbonsa

Byers and Alabugin, (2012),
Alabugin and Byers (2015)

153641693b −10.12 −8.49 −8.74 Synthesis of heterocyclic esters of
benzopyrans, no activity reporteda

Winn (1974)

Miscellaneous chemotypes
140022260 −10.16 −8.75 - Synthesis of new 4,4”-substituted oxy-p-

terphenyl compounds, no activity reporteda
Koji and Hiroyasu, (2005)

151332252b −10.35 −9.79 - Synthesis of 2-substituted 3-
arylmethylbenzofuran, no activity reported

Ying-Ji and Bo-Yuan, (2013)

aCB2 and TRPV1 activity has not been reported for these compounds. Docking scores are provided in Kcal/mol.
bMolecules selected for further investigations through manual docking and ADMET profiling.

FIGURE 1 | Selected compound 59824268 docked in CB2 (A) and TRPV1 (B). EC2: Extracellular loop 2; TMH, transmembrane helix.
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TABLE 2 | Potential dual CB2/TRPV1 candidates obtained through the crossed-agonist strategy.

ChEMBL
ID

Structure CB2 TRPV1 reported
activity

Other reported targets References

Docking score

AM12033 −12.61 NR None reported Hua et al. (2020)

1508577 −11.81 EC50 = 648.4 nM Inhibitor of the malarial parasite plastid (PubChem Bioassays)a

1508215 −11.67 EC50 = 23.0 nM Aldehyde Dehydrogenase 1 (PubChem Bioassays)a

1574712 −11.24 EC50 = 2581.2 nM None reported (PubChem Bioassays)a

1383349 −11.18 EC50 = 81623.2 nM None reported (PubChem Bioassays)a

1347563 −10.89 EC50 = 1451.5 nM Inhibitors of the malarial parasite plastid,
tyrosyl-DNA phosphodiesterase 1 and
TGF-β

(PubChem Bioassays)a

ChEMBL
ID

Structure CB2 TRPV1 Other reported targets References
Reported activity Docking score +

site

AEA EC50 = 0.43 μM −5.01 tunnel CB1, PPARs, FAAH McPartland et al., (2007),
Soethoudt et al. (2017)Ki = 0.44 μMb

1288208c Ki =1.03 μM −8.55 tunnel No activity at CB1 Osman et al. (2010)
No other target reported

1288239 Ki =2.25 μM −8.32 tunnel No activity at CB1 Osman et al. (2010)
No other target reported

CBD EC50 = 0.05 μM −10.79 CBD Several off targets Morales et al. (2017b), Zagzoog
et al. (2020), Navarro et al. (2021)Ki = 0.02–0.56 μMb

1644371 EC50 = 15.8 nM −9.45 CBD Weak CB1 activity Saari et al. (2011)

3114522 EC50 = 84 nM −9.56 CBD No activity at CB1 Nanda et al. (2014)
No other target reported

(Continued on following page)
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α,β-unsaturated ketone oxygen H-bonds with Y511, and the
addition of the naphthyl moiety at the tail end of the ligand

provides pi-stacking capabilities farther up in the VBP with F543
and F591 (Figure 2A).

FIGURE2 |Docks of selected potential dual candidates: TRPV1 in purple cartoon ribbons (A–C) and CB2 in cyan cartoon ribbons (D,E). Molecules are displayed in
pink tubes; all interactions are shown via dashed lines and each helix and residue is labeled. (A) shows 1288208 in the VBP. A portion of S3 is transparent to aid in
visibility; (B) shows 1288208 in the tunnel. Helix S2 is shown completely transparent to aid in the visibility of the tunnel; (C) shows 1288239 in the tunnel with a portion of
helix S2 transparent to aid in visibility. (D) shows a lipid view of the 1508577/CB2 complex; (E) shows a lipid view of the 1508215/CB2 complex; TMH6 and 7 are
displayed with transparency for a clearer view of the binding site.

TABLE 2 | (Continued) Potential dual CB2/TRPV1 candidates obtained through the crossed-agonist strategy.

ChEMBL
ID

Structure CB2 TRPV1 reported
activity

Other reported targets References

Docking score

RTX NR −11.66 VBP Analgesic Brown (2016), Gao et al. (2016)

3353818 EC50 = 3.5 μM −9.80 VBP None reported Gianella-Borradori et al. (2015)

1288208c Ki = 1.03 μM −9.97 VBP No activity at CB1 Osman et al. (2010)
No other target reported

aPubChem bioassays: qHTS assay for compounds that act as agonists of TRPV1: hit validation.
bSee Supplementary Table S1 for further pharmacological information.
cCompound selected for both tunnel and VBP docking.
NR: not reported
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AEA docking in the tunnel shows headgroup interactions with
several residues including Y554, Y555, Y487, D708, and N438
(Supplementary Figure S4). Like AEA, the hydroxyl portion of
the headgroup of 1288208 maintains interactions with Y554 and
D708, while additional H-bonding between R491 and the amide
oxygen is present. The inclusion of an α,β-unsaturated ketone
mid-tail allows for more H-bonding via Y487 and N438 near the
entrance of the tunnel. The naphthyl moiety at the end of the tail
displays pi-pi interactions with both Y487 and Y445 (Figure 2B).
The additional interactions of 1288208 could aid in the stability of
the ligand in the tunnel from an external standpoint, allowing the
headgroupmore time in the tunnel, potentially triggering channel
activation as previously hypothesized from MD simulations
(Muller et al., 2020, 2021).

The other selected TRPV1 ligand, 1288239 (Figure 2C), shows
headgroup interactions with R491 and Y554, like 1288208, with
an additional interaction with E513. The ketone found midway
down the tail of ligand H-bonds with N438 and Y487, again
similar to 1288208. One feature that differentiates 1288239 from
1288208 is a biphenyl moiety in place of a naphthyl moiety. The
lower ring of the biphenyl moiety has aromatic interactions with
Y487 and F488, and both rings interact with Y445.

Because of their high potency at TRPV1, their interaction
pattern at the CB2 orthosteric pocket and their optimal drug-like
properties, compounds 1508577 and 1508215 were selected as
potential candidates in the in silico search of dual ligands.
Compounds like ACPA-OH and JWH133 also ranked at the
top, however, since we are looking for unexplored dual
chemotypes, they were not selected in this in silico study.
Consistent with the hydrophobic nature of the CB2 orthosteric
pocket, compound 1508577 is mainly stabilized by aromatic and
van der Waals interactions. As displayed in Figure 2D, π-π
stackings are stablished between the methoxybenzene group
with W5.43 and F183 and the phenylacetamide group with
F183, F7.35, F2.64 and H2.65. Moreover, the acetamide
hydrogen engages with the backbone carbonyl oxygen of V182
in a H-bond while the central amide H-bonds with S7.39.
Compound 1508215 orients similarly in the binding crevice
stablishing aromatic π-π interactions between the central
indole core and F183, F2.61 and F2.64, and the fluorobenzyl
group with F2.57. In addition, the imidazolidinedione group
H-bonds with the backbone carbonyl oxygen of V182.

In summation, from this approach, compounds 1288208,
1288239, 1508577, and 1508215 have been selected for future
in vitro appraisal as dual CB2/TRPV1 agonists. Other compounds
such as 1644371 could also be remarkable candidates for testing at
TRPV1 due to its nanomolar agonist potency at CB2.

3.2.3 Off-Target Evaluation
The selected hits (59824268, 1288208, 1288239, 1508577 and
1508215) have also been docked in related receptors in order to
identify potential off-target effects. These molecules have been
screened at CB1 and the cannabinoid-related GPCRs GPR55 and
GPR18 in their active and inactive states. In addition,
cannabinoid-related channels including TRPV2, TRPV3,
TRPA1, and TRPM8 have also been assessed. As shown in
Supplementary Table S5, by comparing docking scores to

their reference orthosteric ligands we can conclude that at
cannabinoid GPCRs compounds 1288208 and 1288239 might
be more promiscuous showing high interaction energies at the
GPR55 active and GPR18 inactive models. Moreover, compounds
1508577 and 1508215 may moderately act at CB1 whereas
1288208 and 1288239 were reported to lack binding affinity
(Osman et al., 2010). 59824268 may be less selective with
higher energies for the apo TRPV3 structure as well as both
TRPA1 structures. 1288208 and 1288239 both show energies that
are either comparable to or better than the reference ligand for
each respective receptor, perhaps suggesting that the
ethanolamide head group may be too promiscuous of a moiety
to include when aiming to develop ligands for selective dual
targeting. 1508577 shows variable activity across the TRP
channels with comparable energies to the reference
compounds of TRPV3 and TRPA1 in both states, with
1508215 displaying the potential for promiscuity at TRPA1.In
light of these results, compounds 59824268, 1508577 and
1508215 could be prioritized as TRPV1/CB2 dual modulators.
However, compounds with moderate activity at other
cannabinoid targets could also be beneficial when targeting
specific pathologies in which the ECS is involved or avoided
when searching for more selective cannabinoid modulators.

Nonetheless, off-targets cannot be completely ruled out and
not only cannabinoid-related but also other receptor families
should be tested experimentally at further stages of this project.

4 CONCLUSION

Three-dimensional crystal and cryo-EM structures of GPCRs and
TRP channels are being resolved at a rapid pace in the last years.
The resolution of these structures are showing great impact in the
field of drug discovery facilitating the emergence of successful in
silico strategies for the identification of potential drugs targeting
complex physiopathological processes.

The ECS is composed by a variety of receptors including
GPCRs, TRP channels, nuclear receptors such as the PPARs
(Morales et al., 2017b). Polypharmacological approaches
targeting this system have already shown successful results
(Fernández-Fernández et al., 2014; Malek and Starowicz, 2016;
Barutta et al., 2017; Lago-Fernandez et al., 2021). For instance, a
PPARγ-CB2 molecule has entered clinical trials for the treatment
of systemic and multiple sclerosis (EHP-101, 2020; Palomares
et al., 2018).

In this context, synergistic effects between TRPV1 and CBRs
offer novel avenues for the management of pain or
neurodegenerative pathologies among others. While CB1/
TRPV1 dual modulators have been further studied, CB2/
TRPV1 agonists have not been yet exploited. Therefore, this
brief research article addresses the computational search of novel
potential dual candidates for further in vitro and in vivo
exploration.

Using two different virtual screening approaches we have
identified hits with potential dual agonistic activity taking into
account reported data and docking and druggability results. From
this study, compounds 59824268, 1288208, 1288239, 1508577
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and 1508215 (Supplementary Figure S5) are proposed as main
candidates for future experimental appraisal. Other selected
molecules reported in this article also present interesting
profiles and might be worth exploring. These results provide
insights into understudied scaffolds that potentially modulate
CB2 and TRPV1 providing novel tools for further studies.
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