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Graves’ disease (GD) is an autoimmune thyroid disease (AITD), which is one of the most
common organ-specific autoimmune disorders with an increasing prevalence worldwide.
But the etiology of GD is still unclear. A growing number of studies show correlations
between gut microbiota and GD. The dysbiosis of gut microbiota may be the reason for the
development of GD by modulating the immune system. Metabolites act as mediators or
modulators between gut microbiota and thyroid. The purpose of this review is to
summarize the correlations between gut microbiota, microbial metabolites and GD.
Challenges in the future study are also discussed. The combination of microbiome and
metabolome may provide new insight for the study and put forward the diagnosis,
treatment, prevention of GD in the future.
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INTRODUCTION

Autoimmune thyroid disease (AITD) are common organ-specific autoimmune disorders with an
increasing prevalence worldwide, which involves Hashimoto thyroiditis (HT) and GD
(Moshkelgosha et al.,, 2021). GD is caused by the autoantibodies of the thyrotropin receptor
(TSHR), which leads to thyroid hyperplasia and hyperthyroidism (Bahn, 2003; Ishaq et al., 2018;
Shi et al., 2019a; Moshkelgosha et al., 2021). Hyperthyroidism, fatigue, weight loss, tachycardia, and
heat intolerance are common symptoms of GD. Approximately 50% of patients may develop Graves’
ophthalmopathy (GO), leading to eyelid retractions and exophthalmos (Byeon et al., 2018; Yan et al.,
2020). GD is the most common cause of 60-80% of hyperthyroidism and influence about 0.5% of the
general population (Cooper and Stroehla, 2003; Smith and Hegediis, 2016; Ejtahed et al., 2020). It
frequently occurs in the population between 30 and 50 years old. Resemble in other autoimmune
diseases, the incidence of GD is higher in women than men, the ratio of about 5/1 (Cooper and
Stroehla, 2003; Ji et al., 20188; Nystrom et al., 2013; Menconi et al., 2014). The risk factors of GD
include genetic predisposition, environmental factors, immune factors (Covelli and Ludgate, 2017).

Hyperthyroidism is a common disease that is difficult to cure completely. Although modern
medicine has brought great changes to the prevention, diagnosis, and treatment of autoimmune
diseases, the etiology and pathogenesis of these diseases have not been fully illuminated. Abnormal
thyroid-related indices often occur repeatedly during clinical treatment (Yang et al, 2019).
Furthermore, although current treatment methods for GD can achieve a good effect, clinicians
still have some concerns about the choice of treatment for safety reasons (Heyma et al., 1986; Yang
et al,, 2019). At present, a large number of studies have proved the relationship between intestinal
microorganisms and autoimmune diseases, including Type 1 diabetes (Gianchecchi and Fierabracci,
2017; Mullaney et al., 2018), inflammatory bowel disease (Ni et al., 2017; Cao, 2018), systemic lupus
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erythematosus (Corréa et al., 2017), rheumatoid arthritis (Sato
et al, 2017; Teng et al., 2017; Jubair et al, 2018; Picchianti-
Diamanti et al., 2018) and autoimmune thyroid disease (Zhou
et al, 2014). Metabolites are also considered as important
mediators or modulators between gut microbiota and the
thyroid. Therefore, metabolomics investigations may provide a
new inside view of GD’s study.

In this review, we explore the inside relationships between gut
microbiota, microbiota-related metabolites and GD, and propose
new ideas for prevention, diagnosis, and treatment of GD.

Brife Knowledge of Gut Microbiota

The human body is a superorganism due to the residence of
trillions of prokaryotes symbiosis. Approximately 66% of the total
bacteria are mainly live in the gut. Gut microbiota includes more
than one thousand known species of bacteria with at least three
million genes (Hehemann et al., 2010; Relman, 2012; Docimo
et al., 2020). Apart from absorbing nutrients from the human
body that they depend on for survival, intestinal flora also
provides beneficial or harmful metabolites to the human body
through their metabolic process (Turnbaugh and Gordon, 2009;
Relman, 2012). These microflorae participate in the body’s energy
metabolism through various mechanisms, affecting the
conversion of food to energy in the host, and play an essential
role in the healthy state of the host (Lozupone et al, 2012;
Sommer et al, 2017). When the human body is healthy,
microorganisms and various organs and tissues depend on
each other and act on either to form a microecological balance
and jointly maintain the body’s health. If the microecological
balance is disturbed, it may lead to disease (Sekirov et al., 2010).
Therefore, the intestinal flora is considered an “organ” with
multiple regulatory functions, which greatly impacts people’s
health. Understanding the symbiotic relationship between
microorganisms and the human body is of great significance
for people to understand their health and the occurrence and
development of disease (Turnbaugh and Gordon, 2009; Relman,
2012; Schmidt et al., 2018).

The technological breakthroughs in the microbiome boost the
research of gut microbiota. The method of bacterial culture is a
restriction of traditional bacterial research. The intestinal flora is
cultured with various mediums, and the number of bacterial
colonies is measured by dilution and colony count (Lagier et al.,
2018). This method is sensitive but is constrained. More than 85%
of the bacteria in the human intestine are anaerobic bacteria,
which is difficult to cultivate in the culture medium (Lagier et al.,
2015). Recently, the newly established strategy of culturomics
enables the culture of microbiota that cannot be cultured before.
These new methods initiate the rebirth of culture in microbiology
(Kaeberlein et al., 2002; Nichols et al., 2010; Lagier et al., 2018).
The development of new techniques has made it possible to study
unknown gut flora.16Sr RNA high-throughput sequencing and
metagenomics are commonly used methods for detecting gut
microbiota. 16Sr RNA sequencing mainly studies the species
composition, the evolutionary relationships among species and
the diversity of communities (Laudadio et al., 2018). On the basis
of 16Sr RNA sequencing analysis, metagenomic sequencing can
also carry out in-depth research on gene and function, and its
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detection depth can reach the level of species (Wang et al., 2015;
Laudadio et al., 2018; Shakya et al.,, 2019).

With the increasing understanding of the metabolic function
of intestinal flora, the narrow sense that host metabolism is
regulated by its genes is gradually expanded to co-metabolic
regulation of host-symbiotic intestinal bacteria. These
metabolites are often from tryptophan metabolic pathways,
tyrosine and phenylalanine metabolic pathways, glucose and
fatty acid metabolic pathways, classified into indoles, phenols,
amino acids, peptides, etc. (Zheng et al., 2011; Van Treuren and
Dodd, 2020; Fan and Pedersen, 2021). Microbiome dysbiosis is
associated with various diseases, asthma, allergies, inflammatory
bowel disease (Arrieta et al., 2015; Bunyavanich et al., 2016;
Nishino et al., 2018), autism spectrum disorder (ASD) (Needham
et al, 2021), diabetes (Giongo et al., 2011), irritable bowel
syndrome (IBS) (Mars et al., 2020), obesity (Schwiertz et al,
2010a), cardiovascular disease (Jie et al., 2017), chronic kidney
disease (Sircana et al., 2019). Under different disease states, the
species abundance of intestinal flora and its related metabolites
have various characteristics. Some studies have found that in
patients with IBS, the key findings include an increase in
Firmicutes to Bacteroidetes ratio (Krogius-Kurikka et al., 2009;
Rajili¢-Stojanovi¢ et al., 2011; Jeffery et al., 2012l; Mars et al,
2020), a decrease in Bifidobacteria and Lactobacilli (Malinen
et al., 2005; Kerckhoffs et al., 2009), and an increase in
Ruminococcus and Streptococci species (Kassinen et al., 2007;
Rajili¢-Stojanovi¢ et al., 2011; Saulnier et al., 2011; Hong and
Rhee, 2014). A more coincident finding has been decreased alpha
diversity. ASD showed lower levels of phylum Firmicutes and a
higher abundance of Bacteroidetes (Mangiola et al, 2016;
Fattorusso et al., 2019; Sharon et al., 2019). Kang and others
observed significant ASD-related behavioral changes in mice with
fecal microbiota transplantation (FMT) from ASD (Sharon et al.,
2019) and they have developed microbiome transfer therapy
(MTT) and observed a reduction in ASD-related symptoms
(Kang et al,, 2017).

The intestines are also the largest immune organ, gathering
more than 70% of the immune cells as a vital digestive organ. Gut
microbiota is also related to the host’s immune system (Vatanen
et al., 2016). Gut microbiota and metabolites can induce the
production of helper T cells (Th) and regulator T cells (Tregs),
which contribute to the maturation of host adaptive and innate
immunity (Rooks and Garrett, 2016; Shi et al.,, 2017; Kayama
et al,, 2020). It can be inferred that autoimmune diseases are
closely related to intestinal flora (Levy et al., 2017). There are
several studies on the gut microbiota and metabolome among GD
patients, and many results strongly support a role for the gut
microbiota in GD and GO (Moshkelgosha et al., 2021).

GD and Gut Microbiota

Some previous studies demonstrated the connections between the
gut microbiome and AITD (Kohling et al., 2017). Many studies
showed that GD is related to yersinia enterocolitica, e.g., mice fed
only with yersinia enterocolitica did not develop GD (Weiss et al.,
1983; Wang et al., 2010). There were also significant differences in
the microbiota profile between HT patients and healthy controls
(Zhao et al., 2018). Zhou et al. characterized the gut microbiota in
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hyperthyroid patients (Zhou et al., 2014). There is limited
research on the relationships between Graves’ disease and the
gut microbiome. However, thyroid hormone levels correlate with
the gut microbiome and the diversity of gut bacteria in patients
with GD (Ejtahed et al., 2020). Bacteroidetes and Firmicutes are
dominant species in the human gut. The ratio of Firmicutes to
Bacteroidetes is commonly considered a representative of health
status (Chen et al., 2016; Indiani et al., 2018). In the disease state,
these two phyla tend to show significant changes. For example,
Jiang et al. showed that GD patients had reduced alpha diversity
compared with healthy individuals. At the phylum level, GD
patients had a significant higher proportion of Bacteroidetes and
a significantly lower proportion of Firmicutes than the controls
(Jiang et al., 2021). Ishaq et al. also demonstrated this
phenomenon in their study (Ishaq et al, 2018). They found
that the diversity of gut bacteria in GD patients was less
diverse in terms of richness than in healthy people. The
proportion of Firmicutes in GD was lower than that in the
control group, while the proportion of Bacteroidetes was
higher than in the control group (Ishaq et al, 2018).
Interestingly, this finding is consistent with what was observed
in obese patients. Previous studies have found that obese people
tend to have more Firmicutes, while lean people tend to have
more Bacteroidetes (Schwiertz et al., 2010b; Riva et al., 2017).
Further research work is required about the effects of thyroid
hormones on gut microbiota. Besides Firmicutes and
Bacteroidetes, there were also significant changes in the ratios
and abundances of other phyla. Yan et al. showed that the number
of Lactobacillales, Bacilli, Megamonas, Prevotalla and Veillonella
strains were increased among GD patients (Yan et al., 2020).
However, the number of Rikenellaceae, Ruminococuus and
Alistipes strains was decreased among GD patients. In
addition, the diversity of gut flora was decreased in patients
with GD (Yan et al,, 2020). There were also significant changes in
gut microbiota in GO patients. Shi et al. found that the bacterial
diversity (Simpson and Shannon) was reduced in patients with
GO compared to the controls. At the phylum levels, the
proportion of Bacteroidetes increased and Firmicutes
decreased significantly in GO than that in controls. There
were obvious differences in bacterial profiles between the two
groups (Shi et al.,, 2019a). Then, Shi et al. further explored the
differences in the compositing of gut microbes between GO and
GD patients (Shi et al., 2021). At the phylum levels, the
proportion of Chloroflexi was decreased significantly in GO
patients. At the genus levels, Bilophila and Subdoligranulum
were increased (Shi et al., 2021). It is reported that there are
three gut bacteria genera (Bacteroides, Prevotella, Alistipes) that
could separate GD patients from healthy individuals with 85%
accuracy (Su et al.,, 2020).

Thyrotropin receptor antibody (TRAb) is a characteristic
indicator of GD, with sensitivity and specificity greater than
95% for GD diagnosis (Massart et al., 2001; Cooper, 2003). Shi
et al. believed that TRAb was significantly correlated with
different levels of gut microbiota. At the family level, the
proportion of Succinivibrionaceae was positively correlated to
TRAD. At the genus level, Subdoligranulum was positively related
to TRAD. At the species level, Parabacteroides distasonis showed
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an opposite correlation with TRAb. Their studies also suggested
that GD patients with positive TRAb showed an increased risk of
developing GO (Shi et al., 2019a). Prevotella and Bacteroides are
positively correlated with TRAb in GO patients (Shi et al., 2019b).

Metabolomics in the Study of GD

The dynamic balance of Th17 and Treg is closely related to the
occurrence and development of various autoimmune diseases
(Fasching et al., 2017). Treg cells are a subset of regulatory T cells
that regulate the body’s autoimmune response. Tregs are
characterized by the transcription factor Foxp3 (major
regulators of Treg) and mainly exert immune suppressive
effects. Maintaining immune homeostasis by secreting
inhibitory factors (TGF-B, IL-10, IL-35) mediate immune
suppressive effects by regulating TCR signaling promotes
secretion and differentiation of anti-inflammatory cytokines
(Goschl et al.,, 2019). The decrease of Treg cells increases the
incidence and severity of AITD. And the number of Treg cells is
significantly reduced in patients with GD (Saitoh and Nagayama,
2006; Nakano et al., 2007). The Th17 cells are also a subset of T
helper cells by secreting interleukin 17 (IL-17, IL-22) induces
inflammation and spread. IL-17 is involved in many
inflammatory and autoimmune diseases, including systemic
and organ-specific autoimmune diseases (Takeuchi et al., 2020;
Yasuda et al., 2019). Th17 and IL-17 were increased in GD and
participated in the development of GD. In patients with AITD,
the proportion of Th17 cells in peripheral blood mononuclear
cells (PBMCs) increased and higher mRNA level of their specific
transcription factor RORyt in PBMCs (Li et al., 2016; Li et al,,
2019). However, the level of Tregs and expression of Foxp3
mRNA were greatly decreased in AITD (Li et al, 2016; Li
et al, 2019). Figueroa Vega et al. found that IL-17 was
elevated in the thyroid tissues of GD RORyt mRNA patients,
and both IL-17 and IL-22 levels were higher than healthy controls
(Figueroa-Vega et al, 2010). Di. Peng observed that the
concentration of IL-17 and IL-22 in plasma of GD patients
was significantly higher than that of healthy controls, which
was consistent with the increase of Th17 cells and positively
correlated with TSAb (Peng et al., 2013). However, some studies
have shown the opposite results (Yuan et al, 2017). The
metabolites of the gut microbiome have been associated with
the generation of proinflammatory cytokines and the production
of Th17 cells. Commensal bacteria and their metabolites can also
promote Treg generation and suppress the immune system
(Haase et al., 2018). SCFAs are produced by the fermentation
of non-digestible carbohydrates such as dietary fiber by gut
bacteria, including butyrate (C (Shi et al., 2019a)), propionate
(C (Ishag et al., 2018)) and acetate (C (Bahn, 2003)), are essential
metabolites in maintaining homeostasis (Luu and Visekruna,
2019). SCFAs have been proved to alter chemotaxis and
phagocytosis, changes in cell function and proliferation,
induction of reactive oxygen species (ROS), anti-tumor and
anti-inflammatory (Tan et al., 2014). SCFAs contribute to the
maintenance of intestinal barrier integrity and its regeneration
effect on the intestinal epithelium (Memba et al., 2017). SCFAs
are valuable sources of nutrients for enterocytes, together with
thyroid hormones (chiefly triiodothyronine), stimulating
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enterocyte differentiation (Cayres et al., 2021; Meng et al., 1999).
It also increases intercellular integrity and reduces the risk of a
“leaky gut” by improving the adhesion of intestinal cells and
reducing the PH in the intestinal tract, thus avoiding the invasion
of pathological organisms (Memba et al., 2017; Bargiel et al,
2021). It is suggested that GD’s development is often linked to a
compromised intestinal barrier (Knezevic et al., 2020). Recent
studies emphasized the immunomodulatory potential of SCFAs
in various autoimmune diseases and inflammatory disorders such
as multiple sclerosis (MS), colitis, rheumatoid arthritis and AITD.
The relation between SCFAs and thyroid function seems to be
confirmed by several studies in the scientific literature describing
changes in the gut microbiota, including concentrations of SCFAs
in impaired thyroid status (Virili et al., 2018; Liu et al., 2020).
Currently, two essential functions for SCFAs have been identified,
inhibition of histone deacetylases (HDACs) and activation of
G-protein coupled receptors (GPCRs), particularly GPR43,
GPR41 and GPR109 A (Tan et al, 2014) (Sivaprakasam et al.,
2016). Butyrate has been shown to have a positive effect on
rheumatoid arthritis (Hui et al., 2019), inflammatory bowel
disease (IBD) (Zhou et al, 2018) and autoimmune hepatitis
(AIH) (Hu et al, 2018) by rebalancing between Treg and
Th17 and increasing the number of Treg cells and decreasing
Th17 cells in the system (Figure 1). Propionate is found to affect
multiple sclerosis (MS) (Duscha et al., 2020) and GD (Su et al.,
2020). However, little is known about the role of the SCFAs in
Graves’ disease.

Struja et al. predicted the relapse of hyperthyroidism based on
the assessment of metabonomics differences. Pyruvate and
triglycerides are considered as predictors with AUCs of 0.73
and 0.67 (Struja et al.,, 2018). Al-Majdoub and others reported
changes in the carnitine metabolism of GD patients prior to
treatment compared to posttreatment (Al-Majdoub et al., 2017).
The level of short-chain acylcarnitine decreased, medium-chain
acylcarnitine increased, and long-chain acylcarnitine remained
unchanged. The authors speculated that these phenomena reflect
a starvation process that induced by hyperthyroidism (Al-
Majdoub et al, 2017). Lipid profile from plasma and urine
samples of GD patients was significantly different compared to
controls. Some of Glycerophosphoethanolamine (PE),
Glycerophosphoinositol ~ (PI), Triacylglycerol (TG) and

Glycerophosphoglycerol (PG) have changed significantly
(Byeon et al., 2018). Polyamine metabolic profiles are also
altered in AITD. GD and HT patients showed the same
change relative to the control group for most of the polyamine
metabolites. L-arginine (L-ARG), r-omithine (L-ORN), lysine
(LYS) agmatine (AGM) are significantly and
N-acetylputrescine (NPUT),  spermine (SPM), 1,3-
diaminopropane (DAP) are lower than the control group.
However, GD and HT have different characteristics of change.
GD patients had significantly lower cadverine (CAD) and higher
N-acetylspermidine ~ (NSPD),  spermidine  (SPD) and
r-Aminobutyric (GABA) acid than the control group. But
N-acetylspermine (NSPM) was decreased in HT. The anti-
inflammatory effect of SPM was better than that of SDP.
SPM/SPD can be more effective for estimating the anti-
inflammatory effect. A decrease in SPM/SPD in patients with
AITD indicated reduce in protective polyamines. SPM/SPD was
negatively correlated with inflammatory chemokine IP-10 and
TPOAD (Rider et al., 2007; Song et al., 2019). Ji et al. performed a
non-targeted metabolomics analysis on the blood and orbital
tissues of GD, GO and healthy controls. They identified ten
differential metabolites in the disease group (gluconic acid,
glucose, pelargonic acid, threose, fumaric acid, glycerol,
mannose, pentade canoic acid, pyruvate, and 2- (4-
hydroxyphenyl)ethanol) (Ji et al., 20188). The metabolite panel
achieved an accuracy of 0.931 and the sensitivity and specificity
are 0.787 and 0.875, respectively (Ji et al., 20188). Among the
metabolite panel, almost all metabolites showed a positive
correlation with the levels of TRAb (Ji et al, 20188).
Propionate was significantly reduced in GD patients, which
was negatively correlated with FT3, FT4, TRADb level, and
positively correlated with TSH level (Su et al, 2020). At
present, there are not many studies on GD metabolomics, and
the specific association and mechanism still need to be further
studied.

Gut dysbiosis can lead to changes in metabolites such as
SCFAs. As a consequence, the balance of Thl7 and Tregs
would be damaged, leading to an autoimmune response and
causing autoimmune thyroid diseases. AITD: autoimmune
thyroid diseases; IL: interleukin; Th: T helper cell; Tregs:
regulatory T cells.
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Microbiome and Metabolome in GD Study
In the last 20years, it has been established that the gut

microbiome plays an essential role in maintaining host health
and the occurrence and progression of the disease. Metabolites
are the primary way that gut microbes interact with hosts. The
small molecules generated or modified from microorganisms can
be detected in urine, serum, feces, cerebrospinal fluid, and other
tissues (Holmes et al., 2011; Del Rio et al., 2017). The homeostasis
of a healthy intestinal environment is regulated by the balance of
microbiota, metabolites, and immune systems. In the state of
disease, the intestinal balance is usually destroyed. Studies showed
that gut dysbiosis leads to Treg/Th17 imbalance through the
propionic acid regulation pathway, which, together with other
pathogenic factors, promotes GD occurrence (Su et al., 2020). Gut
dysbiosis was mainly manifested by a significant decrease in
SCFAs-producing bacteria and SCFAs. Bacteroides fragilis
YCH46 strain in GD patients was obviously reduced
compared to healthy controls. It can produce propionic acid,
increase the number of Treg cells and reduce the number of Th17
cells. Therefore, B. fragilis YCH46 was a natural activator of Treg
cells and inhibitor of Th17 cells (Rios-Covian et al., 2015). YCH46
strain of B. fragilis provides a new direction for the treatment of
GD. It can improve immune dysfunction in GD patients and be
used as an immunomodulator or as an auxiliary treatment for GD
patients to reduce recurrence rate (Su et al., 2020). A recent study
found significant differences in metabolic pathways between GD
groups and healthy controls. Formaldehyde assimilation and
allantoin degradation, mevalonate and isoprene biosynthesis
significantly increased in the GD patients. In contrast, the
microbial metabolic abilities of fatty acid biosynthesis,
pyruvate fermentation to hexanol, anaerobic energy
metabolism, creatinine degradation and gluconeogenesis
decreased significantly in relative abundance in the patients.
The change of gut microbiota is Butyricimonas faecalis,
Faecalibacterium prausnitzii, Akkermansia muciniphila and
Bifidobacterium adolescentis decreased in the GD, whereas
Veillonella  parvula, Eggerthella lenta,  Fusobacterium
mortiferum, Streptococcus parasanguinis, and Streptococcus
salivarius were enriched. And use propionic acid, acetic acid,
cholate and chenodeoxycholate as potential biomarkers (Zhu
et al,, 2021). Jiang et al. found that Blautia, Eubacterium and
Anaerostipes decreased in GD. Eubacterium and
Anaerostipes produce butyric acid and maintain the integrity
of the intestinal epithelium as well as induce the generate of Treg

were
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