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Adenosine triphosphate (ATP) is an important fuel of life for humans and Mycobacterium
species. Its potential role in modulating cellular functions and implications in systemic,
pulmonary, and ocular diseases is well studied. Plasma ATP has been used as a diagnostic
and prognostic biomarker owing to its close association with disease’s progression.
Several stresses induce altered ATP generation, causing disorders and illnesses. Small
heat shock proteins (sHSPs) are dynamic oligomers that are dominantly β-sheet in nature.
Some important functions that they exhibit include preventing protein aggregation,
enabling protein refolding, conferring thermotolerance to cells, and exhibiting anti-
apoptotic functions. Expression and functions of sHSPs in humans are closely
associated with several diseases like cataracts, cardiovascular diseases, renal
diseases, cancer, etc. Additionally, there are some mycobacterial sHSPs like
Mycobacterium leprae HSP18 and Mycobacterium tuberculosis HSP16.3, whose
molecular chaperone functions are implicated in the growth and survival of pathogens
in host species. As both ATP and sHSPs, remain closely associated with several human
diseases and survival of bacterial pathogens in the host, therefore substantial research has
been conducted to elucidate ATP-sHSP interaction. In this mini review, the impact of ATP
on the structure and function of human and mycobacterial sHSPs is discussed.
Additionally, how such interactions can influence the onset of several human diseases
is also discussed.
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INTRODUCTION

ATP is termed as energy currency of cells owing to its high energy phosphate bonds. It is used by several
enzymes and structural proteins to mediate cellular processes. Besides energy production, ATP plays a
pivotal role in synthesis of several macromolecules which are essential for cell survival. It acts as a
switch to regulate chemical reactions and send messages. Mitochondria plays a key role in ATP
synthesis by regulating oxidative phosphorylation (Bulthuis et al., 2019). Nitric oxide also regulates
ATP synthesis by inhibiting cytochrome oxidase (Zhao et al., 2009). Low ATP synthesis is reported to
correlate with faster tumor growth and its high invasive behavior (Granchi and Minutolo 2012).
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Although energy related dysfunction is not usually correlated with
common diseases, but evidence suggests existence of such links in
some disorders. Muscle, brain, liver, heart, and kidney that are
primary energy consuming organs in human are often affected by
mitochondrial dysfunction, which is a common cause for lower
ATP levels (Kishikawa et al., 2018). Recent studies have
demonstrated strategies to elevate levels of ATP by xanthine
oxidoreductase inhibitors (Hosoyamada et al., 2016; Johnson
et al., 2019; Kamatani et al., 2019) to treat disorders with ATP
deficiency, associated with brain, heart, skeletal muscle, etc.
(Ansari-Ramandi et al., 2017; Singh et al., 2017; Bredemeier
et al., 2018; El-Bassossy et al., 2018; Ferrando et al., 2018; Singh
and Cleveland 2018). Altogether, ATP is an important molecule
that regulates metabolic processes and is closely associated with
human diseases.

Small heat shock proteins (sHSPs) are the most strongly
induced molecular chaperones under stress (Liu et al., 2015).
It constitutes a divergent group within the class of HSPs
characterized by a conserved “α-crystallin domain” (ACD)
(Basha et al., 2012). The molecular mass of sHSPs ranges
between 12–43 kDa and it can assemble into large, dynamic
oligomers upto 1 MDa (Sharma and Santhoshkumar 2009).
sHSPs are molecular chaperones that prevent stress induced
aggregation of partially denatured proteins (Horwitz 1992;
Raju et al., 2011). Some of the best explored sHSPs are archeal
sHSPs such as HSP16.5 from Methanococcus jannaschii, HSP26
from Saccharomyces cerevisiae, α-crystallin and HSP27
(mammalian sHSPs), plant sHSP (HSP16.9 from wheat) and
mycobacterial sHSP (HSP16.3 fromMycobacterium tuberculosis)
(Horwitz 1992; Kim et al., 1998; Haslbeck et al., 1999; van
Montfort et al., 2001; Fu et al., 2005; Lelj-Garolla and Mauk
2006). Besides the aggregation prevention ability, they also exhibit
refolding ability like large heat shock proteins but are ATP
hydrolysis independent (Jakob et al., 1993; Biswas and Das
2004). sHSPs confer thermotolerance to cells in vivo (Lavoie
et al., 1995; Muchowski and Clark 1998; Valdez et al., 2002).
Besides, sHSPs are over-expressed, which protect organisms and
substrate proteins from other stress conditions such as oxidative
and nitrosative stress (Wang and Spector 1995; Garbe et al.,
1999). sHSPs exhibits anti-apoptotic function. They are also used
to develop DNA vaccines which help in prevention and cure of
infectious disease such as tuberculosis (Shi et al., 2010).
Therefore, it is quite rational that these sHSPs can be used
therapeutically in prevention of protein aggregation, apoptosis,
and diseases.

In rat models, intravenously injected α-crystallin protects the
retinal ganglion cells from apoptosis and promoted axonal
regeneration after optic nerve crush (Ying et al., 2008; Wang
et al., 2012; Wu et al., 2014). The retinal degeneration in the early
phase of the autoimmune disease uveoretinitis can be prevented
by systematic administration of αA (Saraswathy et al., 2010; Rao
et al., 2012). In diabetic retinopathy, delivery of αA into the eyes
of the mice decreased the vascular leakage and pericyte apoptosis,
which is useful to stop the early lesions in the eyes (Kim et al.,
2012). Delivery of cell penetration peptide tagged to α-crystallin
into the cells exhibits improved protection against oxidative stress
in lens epithelial cells (Mueller et al., 2013; Christopher et al.,

2014). Apart from this, peptides derived from the sHSP
(α-crystallin), act as mini chaperone and inhibit epithelial cell
apoptosis and prevent cataract in experimental rat models, which
can be of immense therapeutic use (Nahomi et al., 2013).
Therefore, from the above discussion, it is reasonable to
propose that sHSPs like α-crystallin and its peptides can be
utilized as therapeutic agents.

On the contrary, several reports are available in the literature
which demonstrates the detrimental effect of the over-expression
of sHSPs in many diseases. For example, the over-expression of
αB-crystallin in breast tumors leads to a shorter lifetime of the
patients (Moyano et al., 2006). Subsequently, a recent study has
identified a small molecule inhibitor for αB-crystallin, which
binds to the ACD domain of the protein and inhibits the
tumor growth in human breast cancer xenografts in mice
(Chen et al., 2014). Similarly, the over-expression of HSP27 in
breast cancer cells confers resistance to anti-cancer agents like
doxorubicin (Oesterreich et al., 1993). Subsequently, attempts
have also been made to inhibit the over-expression of HSP27 by
using anti-sense or nucleotide-based therapies (Arrigo et al.,
2007; Jego et al., 2013).

Vaccination is often used as a preventive therapeutic against
pathogenic diseases. For example, Mycobacterium bovis Bacillus
Calmette–Guérin (BCG), a live attenuated strain ofMycobacterium
bovis is widely used as a vaccine against tuberculosis (Fine 1995).
There are several reports which show that the use ofM. tuberculosis
HSP16.3, increases the efficacy of the BCG vaccination (Shi et al.,
2010; Marongiu et al., 2013). Another report in the literature has
showed that HSP16.3 and its T-cell epitope synthetic peptide could
induce specific antibodies remarkably better than classical
tuberculosis vaccine i.e., BCG (Shi et al., 2009). Single or multi-
subunit DNA vaccines, over-expressing antigenic proteins fromM.
tuberculosis including HSP16.3 are used to improve the efficacy of
BCG in tuberculosis (Shi et al., 2010). Small heat shock protein is
also used as carrier protein to develop effective second-generation
vaccine (Costa et al., 1998). This approach has been widely used for
vaccine development against leprosy, where HSP18 has been used
as a carrier protein for the development of second-generation
vaccine (Costa et al., 1998). Vaccination is often considered as a
safe and effective method to prevent the occurrence of diseases.
Altogether, from all the above discussions, it is quite evident that
sHSPs have tremendous therapeutic potential (as an agent or a
target). This further reinforces the fact that sHSPs are intrinsically
involved with the onset of or prevention of several human diseases.
Keeping in view the role of ATP and sHSP in the cellular processes
of the human body, the role of ATP-sHSP interaction in human
diseases is discussed below.

ROLE OF ATP-sHSP INTERACTION WITH
PROLIFERATION OR PREVENTION OF
HUMAN DISEASES
Cardiovascular Disease
Role of HSP27 and HSP20 in cardiovascular disease: sHSPs
protect cells against ischemia or reperfusion injuries, as
evidenced from gene deletion experiments (Sun and MacRae
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2005). Over-expressed wild type and non-phosphorylated HSP27
are effective in safeguarding contractile activity and cell integrity,
as determined by retention of creatine kinase activity in
transgenic mice hearts during ischemia/reperfusion (Hollander
et al., 2004). During atrial fibrillation (AF) human body can show
response by over-expression of HSP27 to handle the rapid atrial
pacing. Mechanism behind this may be the inhibitory effect of
angiotensin on atrial remodeling (Wang et al., 2018). HSP27 can
also help in prediction of reoccurrence of AF (Marion et al.,
2020). A study by Traxler et al. demonstrated that HSP27 can be
an independent biomarker for prognosis in chronic heart failure
(HF) (Traxler et al., 2017). Wang and others studied the effect of
HSP27 onmyocardial infarction (MI). They found that deficiency
of HSP27 which is specific to cardiomyocytes, can alter the
cardiac function negatively like increment in cardiac
dysfunction, mortality, and cardiac rupture.

In another example, hearts of double knockout mice that
lacked abundant sHSPs like HSP20, showed normal
contractility (Morrison et al., 2004). In contrast, hearts of
these animals exhibited reduced contractility accompanied by
enhanced necrosis and apoptosis when being exposed to ischemia
and reperfusion. Thus, HSP20 is essential for optimal recovery
from heart attack. Phosphorylation of HSP20 inhibits caspase-3
activation, which arrest apoptosis induced by β-agonist
(Morrison et al., 2003). Overall, HSP20 and HSP27 are found
to be involved in increased cardiomyocytes contractility,
vasorelaxation, smooth muscle relaxation, apoptosis,
myocardial contraction, glucose transport, platelet aggregation
and ischemia/reperfusion injury (Yu et al., 2019; Zhang et al.,
2019; Shan et al., 2021).

Effect of ATP on HSP27 and HSP20:
Implications on Cardiovascular Disease
The impact of ATP on structure and function of HSP20 and
HSP27 are sparsely studied. ATP depletion in endothelial cells
resulted in dephosphorylation of HSP27 which caused its
translocation into insoluble cellular fraction with altered
functional activity towards actin (Loktionova et al., 1996). In
contrast, in tubular epithelial cells, ATP depletion caused
increased phosphorylation of HSP27 that triggered its
migration from cytoskeleton to cytoplasm and promoted actin
polymerization (Du et al., 2010). In vitro assay using γ-32P-ATP
revealed that HSP20 is phosphorylated at Ser16 (Sin and Baillie
2015). Ser16 phosphorylation of HSP20 has an impact on cardiac
injury. Blocking Ser16 phosphorylation, resulted in increased cell
death and reduced autophagy, thereby promoting cardiac injury.
A schematic representation of this study is given in Figure 1
(Qian et al., 2009).

Burniston studied the effect of tolerance exercise on the hearts
of rats. He claimed that this exercise can help in improving
cardiac function and cardiac protection. In this experiment, he
also stated that this exercise leads to an increment in
phosphorylation of HSP20 at Ser16 (Burniston 2009).
Furthermore, the substitution of proline 20 with leucine in
HSP20 can diminish the cardio protective activity of its Ser16
(Nicolaou et al., 2008). Guo-Chang Fan and co-workers

demonstrated that β-agonist stimulation can lead to
phosphorylation of HSP20 which then binds with actin. This
binding results in cytoskeleton stabilization and inhibition of
apoptosis. Altogether, it can be inferred that ATP possibly
controls the phosphorylation of these two sHSPs which
influences cardiovascular disease (Figure 1). However, binding
affinity of ATP to these two important sHSPs and its effect needs
to be assessed carefully.

Cataract
Role of αA and αB in cataract: Mutation and post-translational
modifications in sHSP contribute to the cataract formation in
mammalian lens (Panda et al., 2015; Hafizi et al., 2021;
Khoshaman et al., 2021; Sprague-Piercy et al., 2021). α-
crystallin, a major vertebrate eye lens protein is believed to
have a chaperone function which plays a major role in
maintaining lens transparency, thereby preventing the
formation of cataract. Scientists revealed that several post
translational modification processes including truncation
(Takeuchi et al., 2004), deamidation (Gupta and Srivastava
2004), glycation (Seidler et al., 2004) and phosphorylation
(Kamei et al., 2004) decreased the chaperone function of α-
crystallin which may be the basis for cataract formation in
human lens. The mutations are responsible for autosomal
dominant congenital cataract, a common cause of infant
blindness, is localized to the arginine 116 (R116) in the αA
gene (CRYAA) (Litt et al., 1998). The R116C mutation in αA
destroyed its chaperone function (Cobb and Petrash 2000).When
a series of transgenic mouse models were created to express
R116C mutated αA, it induced lens opacity and structural defects
(Hsu et al., 2006). Several other point mutations in αA with
autosomal dominant congenital cataracts are: R12C, R21L,
R21W, R49C, R54C, G98R and R116H which are well known
to impair the structure and function of the protein, thereby
inducing cataract formation in human eye lens (Singh et al.,
2006; Raju and Abraham 2011). An autosomal recessive
congenital cataract causing mutation in αA, W9X, has been
also reported in the literature (Pras et al., 2000). Mutations in
αB gene have been also reported. Three arginine mutations
(R11H, R69C and R120G) were found in the αB gene, which
are associated with autosomal dominant congenital cataract in
human (Panda et al., 2015). Apart from these arginine mutations,
there are other point mutations and truncations in the lens α-
crystallin which leads to the formation of the cataract.

Effect of ATP on α-crystallin’s Chaperone
Function
A human lens generally contains 3 mM ATP. Thus, the
interaction between α-crystallin and ATP inside lens is highly
probable. In fact, ATP binds to β4-β8 groove ACD of αB (Ghosh
et al., 2006). The β4-β8 domains are known to interact with
C-terminal extension of αB and these domains also interact with
stress prone substrate proteins. Thus, ATP binding to αB has
altered the chaperone function of the protein. However, ATP
hydrolysis is not required for the same (Biswas and Das 2004).
ATP enhances the association between chaperone and client
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proteins, thereby improving the chaperone activity of αA and αB
(Muchowski and Clark 1998). ATP binding also improves αB
mediated refolding of denatured client proteins like lactate
dehydrogenase (Biswas and Das 2004). α-crystallin binds
molten globule state of protein like xylanase II that can be
refolded in presence of ATP (Nath et al., 2002). The structural
stability of α-crystallin is increased in the presence of ATP. In
another independent study, it is demonstrated that chaperone-
client complexes of α-crystallin remains stable in presence of ATP
for 2 weeks under in vitro conditions, supporting the notion that
ATP promotes association of chaperone-client protein complexes
of α-crystallin (Nandi et al., 2020b). In contrast to all these findings,
Wang et al. demonstrated that ATP induces conformational
changes in α-crystallin that triggers dissociation of chaperone-
client protein complexes of α-crystallin (Wang and Spector 2001).
This causes release of denatured client protein from α-crystallin,
which is then taken up by large heat shock protein to refold.
Altogether, it can be inferred that ATP can efficiently regulate
chaperone function of α-crystallin and such regulation may be
helpful for delaying cataract formation in human. However, the
underlying mechanism needs to be further investigated to
understand the impact of “α-crystallin-ATP interaction” on the
onset of cataract formation.

Leprosy
Role of Mycobacterium leprae HSP18 in leprosy: Among the
various antigens over-expressed inside Mycobacterium leprae,
the etiological pathogen of leprosy, the 18 kDa antigenic
protein is an important one. The 18 kDa protein of M. leprae
is specifically expressed during intracellular growth and may be
involved in the survival of M. leprae pathogen within
macrophages (Dellagostin et al., 1995). Study indicates that the
18 kDa gene may be useful in providing expression signals for
foreign gene expression in recombinant BCG vaccines
(Dellagostin et al., 1995). Identification of such a gene which
is selectively expressed during intracellular growth in
macrophages and helps in growth and survival of the
pathogen, hinted towards providing a new target for
chemotherapy or immunotherapy in the context of the
effective treatment of leprosy. Owing to the presence of the
“α-crystallin domain” and its sequence identity, this 18 kDa
protein is classified as a member of the small heat shock
protein family, hence also known as HSP18. Several reports
indicate that similar to other well-known sHSPs, HSP18 also
exhibits chaperone function by preventing enzymes from thermal
inactivation, protecting several thermally and chemically stressed
client proteins from aggregation and preventing thermal killing of
E. coli cells (Lini et al., 2008; Nandi et al., 2013; Nandi et al. 2015a;
Nandi et al. 2015b; Nandi et al. 2016; Chakraborty et al., 2018;
Nandi et al., 2018; Nandi et al., 2020a; Chakraborty and Biswas
2020; Chakraborty et al., 2021). It has also been found that the
over-expression of M. leprae HSP18 might facilitate the survival
of M. leprae under various stressed conditions (Maheshwari and
Dharmalingam 2013). In order to find out the molecular basis
behind the chaperone function of HSP18, a number of studies
have been carried out which includes studies under various
thermal and stressed conditions as well as studies in the
presence of metal ions and small molecules (Nandi et al.,
2015a; Nandi et al., 2015b; Nandi et al., 2016; Chakraborty
et al., 2018; Nandi et al., 2018; Nandi et al., 2020a;
Chakraborty and Biswas 2020). All these reports indicated that
HSP18 is an important leprotic drug target and its chaperoning
property is one of the important factors behind controlling the
survivability of M. leprae pathogen inside the infected hosts.

Effect of ATP on the Chaperone Function of
HSP18
The nutritional requirements and energy metabolism revealed
that unlike other obligatory parasitic microorganisms, M. leprae
does not uptake exogenous ATP from the host species, rather
generates its own ATP for energy and other biochemical activities
(Lee and Colston 1985; Lee and Colston 1986; Rosa et al., 2021).
Aside from energy requirements, ATP is also found to interact
with an important antigenic protein HSP18 from M. leprae
(Nandi et al., 2015a). ATP mostly binds to the β4-β8 strand of
HSP18 having binding affinity in sub-micromolar range. In fact,
this is the first report which showed that ATP interacts with an
antigenic protein ofM. leprae pathogen. The reversible binding of
ATP toM. lepraeHSP18 enhances its chaperone function without
any significant alteration in its conformations. Moreover, ATP is

FIGURE 1 | Effect of phosphorylated HSP20 on cardiac injury vs non-
phosphorylated one.
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also reported to be involved in the autophosphorylation of HSP18
(Maheshwari and Dharmalingam 2013). Thus, increased
chaperone function as a result of HSP18-ATP association
along with the autophosphorylation activity in turn may be of
significant importance in order to help in the growth and survival
of the pathogen M. leprae under various physiologically stressed
conditions. These findings also indicate that M. leprae possesses
an ATP binding protein, which evokes the possibility of using
ATP competitive antibiotics/inhibitors in the context of effective
treatment of leprosy.

Tuberculosis
Role of Mycobacterium tuberculosis HSP16.3 in tuberculosis:
Over the years, tuberculosis (TB) remains as one of the major
infectious afflictions worldwide, with rising cases of human
mortality and morbidity (Preneta et al., 2004; Soong et al.,
2018). Mycobacterium tuberculosis is the etiological agent of
this disease. The characteristic feature of this involved
pathogen is that it can remain as a stable dormant bacilli
inside the host for years before emerging into active TB
(Muchowski et al., 2002). It is possible for the pathogen to
remain stable in the hostile environment of host only because
of secretion of different immuno-dominant antigens. HSP16.3 is
a pivotal one amongst them. This protein was previously known
as a 14 kDa antigen, later denoted as HSP16.3 (Panda et al., 2017).
It possesses a complex oligomeric assembly of dodecamer
(Preneta et al., 2004). HSP16.3 is believed to be overproduced
during the latency of M. tuberculosis infection and serves as an
important diagnostic marker for pleural tuberculosis (Limongi
et al., 2011; Zhang et al., 2018; Huang et al., 2021). Garcia et al.

and Yang et al. have observed that, mycobacteria engulfed by the
macrophages, remain in the form of granulomas and produce
various mycobacterial products, especially peptides derived from
HSP16.3 which act as a vital biomarker for latent tuberculosis and
active tuberculosis (Kruh-Garcia et al., 2014; Yang et al., 2018).

HSP16.3 is considered as an important immuno-dominant
antigen, which belongs to the family of small heat shock protein
and exhibits chaperone activity (Verbon et al., 1992; Chang
et al., 1996; Zhang et al., 2018). This protein is highly expressed
in the stationary phase of M. tuberculosis (Lee et al., 1992). In
other words, the molecular chaperone function plays an
important role in the growth and survival of M. tuberculosis
during the latent phase of infection (Yuan et al., 1996). Several
attempts have been executed to understand how this immuno-
dominant antigen favors the growth and survivability of this
pathogen. The studies from Yuan et al. have revealed a slower
decline in the cell viability in M. tuberculosis which are over-
expressed with HSP16.3 (Yuan, Crane and Barry third 1996). It
also leads to long-term viability during latency and plays an
important role in the replication during the initial phase of
infection (Yuan et al., 1998). Garbe et al. have explored that
HSP16.3 plays a prominent role in the survival of this pathogen
under nitric oxide stress condition (Garbe et al., 1999). In two
independent studies, Timm et al. and Hu et al. have
demonstrated that this antigen is dispensable for the bacterial
growth as the multidrug resistant Acr1/HSP16.3 deficient
clinical isolate of M. tuberculosis do not show impaired
replication in macrophages and also exhibit an enhanced rate
of growth of the bacilli in vivo (Hu et al., 2006; Timm et al.,
2006). Also, some studies have emphasized the important role of
HSP16.3 in maintaining the dormancy ofM. tuberculosis during
prolonged periods of infection (Hu and Coates 1999, Yuan,
Crane and Barry third 1996).

Extensive research is also being conducted to evaluate the
potential of this mycobacterial peptide as a successful candidate
for developing vaccines. It has been found that the recombinant
BCG harboring multistage antigens including HSP16.3
provides long-term protection and increased immune
response against the infection caused by M. tuberculosis as
compared to wild-type BCG vaccine (Shi et al., 2010; Liang
et al., 2015). Moreover, Tyagi et al. demonstrated that superior
booster vaccine can be developed by using these latent antigens
such as HSP16.3 which is capable of reducing the risk of
developing active tuberculosis by reactivating the latent
infection mode (Dey et al., 2011). It has also been observed
that the chaperoning ability of HSP16.3 towards the
mycobacterial molecules increases the immune response as
well as BCG boosting efficacy, which makes it a promising
candidate for developing better vaccines for tuberculosis
(Taylor et al., 2012). It exhibits this chaperoning activity in
an ATP independent manner (Preneta et al., 2004).

Effect of ATP on the Chaperone Function of
HSP16.3
A strong interaction between ATP and HSP16.3 is well
established from UV cross-linking experiments and

FIGURE 2 | Influence of ATP in human diseases mediated by small heat
shock proteins.
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proteolytic studies of HSP16.3 (Muchowski et al., 2002).
HSP16.3 has autophosphorylation property in vitro, but
whether ATP triggers the phosphorylation in HSP16.3 is
still unclear. A comparative study revealed the effect of
ATP on the recombinant HSP16.3 and human αB to be
similar and in both the cases the chaperone activity is
significantly increased (Muchowski et al., 2002). In
addition to this, from studies of Valdez et al., it is evident
that the presence of ATP also prevented the mycobacterial
protein from the proteolytic digestion of chymotrypsin
(Muchowski et al., 2002). In fact, Dobos and coworkers
have identified 122 ATP binding proteins in M. tuberculosis
and HSP16.3 is one of them (Wolfe et al., 2013). In recent
times, ATP competitive inhibitors are being used for the
treatment of tuberculosis (Gordon et al., 2015), these
inhibitors may affect the “HSP16.3-ATP interaction” which
may possibly affect the growth and survival of M. tuberculosis
in the infected hosts.

CONCLUSION

This short review clearly depicted that both ATP and
different sHSPs play important role in various human
diseases (Figure 2). In most cases, the chaperone function
of sHSPs is enhanced by the interaction with ATP. The
improved chaperone function of many sHSPs in presence
of ATP eventually helps in controlling various important
diseases. But the improved chaperone function of different
mycobacterial sHSPs (HSP18 and HSP16.3) may assist the
pathogens (M. leprae and M. tuberculosis) to survive more in
infected hosts. Therefore, these two sHSPs may be a potent

target for the development of ATP competitive inhibitors.
Interestingly, ATP levels are increased in both leprosy and
tuberculosis. Also, the levels of HSP18 and HSP16.3 is
elevated in leprosy and tuberculosis, respectively. These
sHSPs along with ATP are often used as biomarkers for
these two diseases. But, whether the over-expression of these
two sHSPs is due to increased levels of ATP is far from clear.
Such aspect needs to be explored for the better understanding of
host-pathogen interaction.
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