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Technologies for discovering peptides as potential therapeutics have rapidly advanced in
recent years with significant interest from both academic and pharmaceutical labs. These
advancements in turn drive the need for new computational tools to design peptides for
purposes of advancing lead molecules into the clinic. Here we report the development and
application of a new automated tool, AutoRotLib, for parameterizing a diverse set of non-
canonical amino acids (NCAAs), N-methyl, or peptoid residues for use with the
computational design program Rosetta. In addition, we developed a protocol for
designing thioether-cyclized macrocycles within Rosetta, due to their common
application in mRNA display using the RaPID platform. To evaluate the utility of these
new computational tools, we screened a library of canonical and NCAAs on both a linear
peptide and a thioether macrocycle, allowing us to quickly identify mutations that affect
peptide binding and subsequently measure our results against previously published data.
We anticipate in silico screening of peptides against a diverse chemical space will be a
fundamental component for peptide design and optimization, as more amino acids can be
explored in a single in silico screen than an in vitro screen. As such, these tools will enable
maturation of peptide affinity for protein targets of interest and optimization of peptide
pharmacokinetics for therapeutic applications.
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INTRODUCTION

Peptides are an emerging therapeutic modality composed of 4–100 amino acids (Muttenthaler et al.,
2021) that are currently utilized as antifungal, antibacterial, anticancer, and hormone therapies
(Fosgerau and Hoffmann, 2015). Many of these peptide-based drugs have been derived from natural
products, hormones, or fragments of larger proteins (McGregor, 2008); however, in recent years the
scaffolds for discovery have broadened to include stapled helices, macrocycles, and peptide
conjugates (Muttenthaler et al., 2021). The discovery of new peptide therapeutics is challenging
and often requires screening a large peptide library using traditional approaches like phage or yeast
display, both of which are limited by the sequence diversity that can be encoded within the library.
With the recent advent of mRNA display combined with random non-standard peptide integrated
discovery (RaPID) technology to encode peptides that contain NCAAs (Heinis and Winter, 2015;
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Maini et al., 2016; Zhu et al., 2017), library diversity has
dramatically expanded and enabled discovery on a variety of
different peptide scaffolds that contain multiple non-canonical
amino acids (NCAAs). Compared to their fully canonical
counterparts, NCAA-containing peptides have been shown to
increase peptide binding affinity (Zhang et al., 2014), protease
resistance (Baumann et al., 2017), and membrane permeability
(Walport et al., 2017). Moreover, advances in solid-phase peptide
synthesis have expanded the chemical diversity of peptides that
can be synthesized. Therefore, our ability to discover and evaluate
chemically diverse peptides has radically improved in the past
decade. Nonetheless, optimization of each peptide is a time
consuming and laborious process that requires multiple cycles
of discovery and peptide synthesis. In order to accelerate design
and optimization of peptides with NCAAs new computational
tools are required to guide library design, affinity maturation, and
pharmacokinetic optimization of lead peptide candidates as the
chemical space of NCAAs is substantially greater than the
chemical space sampled by canonical amino acids (Viarengo-
Baker et al., 2021).

Computational design (Schymkowitz et al., 2005; Maguire
et al., 2020; Chemical Computing Group, 2022) and
simulation (Khoury et al., 2014) software packages have
become a valuable tool for protein and peptide engineers to
evaluate macromolecular ternary structures. For the software
package Rosetta, peptide design has been well benchmarked
(Sood and Baker, 2006; Smith and Kortemme, 2010;
Hosseinzadeh et al., 2017; Sitthiyotha and Chunsrivirot, 2020;
Mulligan et al., 2021), including the use of NCAAs (Renfrew et al.,
2012; Drew et al., 2013). In silico screening of NCAAs in a linear
or cyclic peptide offers multiple advantages: 1) the non-covalent
interactions between the peptide and its binding partner can be
tuned to improve binding affinity and 2) peptide properties can
be predicted and modulated to improve cell permeability and in
vivo stability of the peptide. Considering that a peptide can be
further modified to include D-amino acids, N-methyl amino
acids, peptoids, beta amino acids and gamma amino acids
(Drew et al., 2013; Adaligil et al., 2021a, 2021b), the chemical
space that a peptide with NCAAs can sample is enormous (Otvos
and Wade, 2014; Viarengo-Baker et al., 2021). Therefore, robust
strategies are needed for parameterizing NCAAs within design
algorithms that incorporate these expanded amino acid libraries.

Here we report the development and application of new
automated tools for parameterizing exotic amino acids,
N-methyl amino acids, and peptoids with ≤4 heavy atom
torsion angles for use in the computational design program
Rosetta. The development of these tools may also prove useful
for computational studies of post-translational modifications and
protein engineering strategies with NCAAs. For our purposes, we
evaluated the geometries of the generated rotamer libraries using
quantum mechanical conformational analysis and tested a set of
parameterized NCAAs with a Rosetta design protocol. In order to
complete in silico studies on peptide scaffolds containing a
thioether linkage we also developed additional computational
tools for thioether cyclized peptides to be designed within
Rosetta. Importantly, these new computational tools enable
peptides discovered from large combinatorial libraries, like the

RaPID platform, to be screened against a computationally defined
NCAA library. To evaluate NCAAs within Rosetta we utilized the
NMR structure of the linear peptide PUMA bound to MCL-1
(PDB 2ROC) and the crystal structure of macrocycle CP2 bound
to KDM4 (PDB 5LY1) as starting points for in silico site
saturation mutagenesis studies. Site saturation mutagenesis on
the aforementioned peptides required that every NCAA defined
within our library was evaluated at each peptide residue position.
The results of these computational studies were then compared to
previously published experimental site saturation mutagenesis
studies on both PUMA and CP2 peptides (Rogers et al., 2018).
Moreover, we demonstrate that these computational tools can
also be used to evaluate protein-peptide interactions to screen
chemical space beyond what is feasible experimentally. We
anticipate these tools will be useful for designing optimized
structure-based libraries for empirical discovery efforts to
improve target engagement and pharmacokinetics of peptides.

MATERIALS AND METHODS

Parameterization of NCAAs
We developed an automated workflow to generate Rosetta
parameters for NCAAs with minimal user input. The protocol
requires only a SMILES string for the NCAA of interest along
with the total charge of the side chain. The NCAA needs to be
capped at the N and C termini with an acetyl and N-methyl
group, respectively, in order to unambiguously differentiate the
backbone from side chain atoms. From there, a three-
dimensional structure of the NCAA is built with the OMEGA
module of OpenEye (OMEGA 4.1.1.1, 2021) and partial charges
are assigned to all atoms according to the AM1BCCELF10
method applied by the QUACPAC module of OpenEye
(QUACPAC 2.1.2.1, 2021). Additional corrections are made to
maintain backbone charge consistency with the REF2015 score
function in Rosetta (Park et al., 2016). Five different sets of
backbone charges are used, depending on the general class of
NCAA detected by the automated tools: peptoid, N-methyl alpha
amino acid, N-cyclized (e.g., piperidinecarboxylic acid), Cα-
cyclized (e.g., 1-aminocyclopropane-1-carboxylic acid), Cα-
branched (e.g., 2-aminoisobutyric acid), and the standard
canonical alpha amino acid backbone. The backbone partial
charges for each class of NCAA are listed in Supplementary
Table S8. After backbone charge standardization, any charge
difference from the total expected charge is equally distributed
among the side chain atoms directly connected to the backbone.

After Rosetta atom types are assigned and rotatable side chain
bonds are detected by the molfile_to_params_polymer.py script
that is part of the Rosetta tools repository, a backbone-dependent
side chain rotamer library is then generated. Determination of
side chain conformational preferences for each phi/psi
combination, sampled at 10° intervals, follows the method
used by the MakeRotLib protocol in Rosetta (Renfrew et al.,
2012), wherein for a backbone with fixed phi and psi angles, each
side chain rotatable bond, Xi, is exhaustively sampled in regular
small-degree intervals of 1°, 5°, 15°, and 30° prior to an energy
minimization step. The resulting points in X space are then
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clustered around expected idealized torsion values, with the new
X values for each centroid representing the rotamer
conformations used in the rotamer library.

Our method deviates from the previously reported
MakeRotLib protocol (Renfrew et al., 2012) by incorporating
tools from OpenEye. In the interest of minimal user input, the
idealized X angles for a side chain are automatically assigned
using the values from the original OpenEye OMEGA torsion
library (OMEGA 4.1.1.1, 2021). For select cases where the atom
types are of specific types, such as a Xi that rotates a Csp

3-Csp3

bond, the parameterization tool overrides the expected minima of
the torsion library. The sampling of side chain conformations on
a fixed backbone is performed with OMEGA from OpenEye
(OMEGA 4.1.1.1, 2021). The degree of initial side chain sampling
is dependent upon the number of rotatable bonds in the side
chain. Sampling intervals of 1°, 5°, 15°, and 30° are used depending
on whether the side chain has 1, 2, 3, or 4 rotatable bonds
respectively, excluding methyl and hydroxyl groups. After
generating all possible conformations with the prescribed
sampling interval, the conformations are energy minimized
with the MMFF94S force field using the SZYBKI module of
OpenEye tools (SZYBKI 2.3.0.0, 2021). Specifically, the steepest
descent optimizer is used with a gradient tolerance of 0.001 kcal/
mol in conjunction with the Sheffield solvent model with a
dielectric constant of 3.0. Following the first round of energy
minimization, each conformer is assigned to a cluster center that
is initially defined by the expected energy minima from the
OpenEye torsion library. Boltzmann-weighted centroids are
then recalculated for each cluster, using the computed
MMFF94S energies and a kBT value of 4.0. With the updated
cluster centers, the energy-minimized side chain conformations
are reclustered based on their measured distance in X-space to
the new cluster centers as illustrated in Supplementary Figure
S1. One final Boltzmann-weighted centroid calculation yields
the final set of rotamers for the backbone with fixed phi/psi
angles.

Initial rotamer sets were generated using a kBT value of 1.5 to
compute the probability of rotamer i, using the following
equation: Pi � e(−Ei /KbT)

∑s
e(−Ei /KbT) where P is the probability, E is the

rotamer energy, kB is the Boltzmann constant, T is
temperature and s is the rotameric state. When initially testing
AutoRotLib by generating rotamer libraries for canonical amino
acids and applying them to rotamer recovery tests in Rosetta it
was revealed that in some cases Rosetta was not properly
recovering rotamers, correct rotamers were often generated by
AutoRotLib, but were not considered by Rosetta. This was due to
the way in which Rosetta loads rotamers: adding rotamers until
the cumulative rotamer probability is 95% (98% if buried) for a
given backbone conformation or 87% (95% if buried) for semi-
rotameric residues. As shown in Supplementary Table S9,
increasing kBT to 4.0 resulted in a marked improvement in
packing tests. While increasing the temperature parameter has
the effect of leveling the rotamer probability across selected
rotamers for a discrete backbone orientation and reduces the
usefulness of any Rosetta score terms related to rotamer
probability, it nevertheless produces superior results in the
canonical amino acid packing test and should not diminish

the greatly reduced conformational space afforded by the
rotamer sampling of AutoRotLib.

The rotamer recovery test and test set are the same as
described in (Pavlovicz et al., 2020). Instead of directly
comparing repacked side chains to the crystallographic
coordinates, we compute how well the packed rotamers fit the
original electron density to remove any error or bias introduced
by the crystallographers. Specifically, we use the
RRComparerElecDensDiff rotamer recovery protocol in
Rosetta to load the electron density maps and calculate the
various correlation scores of the side chain rotamers to the
density. For any side chain considered to be at the interface,
as determined by the RestrictToInterface task operation
(<RestrictToInterface jump = “1” distance = “8.0”>), we first
determine if the correlation of the deposited coordinates are
within an absolute threshold of 0.71 (Rosetta electron correlation
value). If this threshold is not met, we consider this residue to be
poorly resolved and discard it from the test set. If the threshold is
met, then the electron density correlation difference between the
deposited coordinates and the packed coordinates is computed. If
this difference is less than 0.12, then the packed rotamer is
considered to have successfully recovered the native packing
conformation.

Rotamer Rescoring With Quantum
Mechanical Energy Calculations
Quantum Mechanical energy calculations were performed using
version 5.0.1 of the ORCA package (Neese, 2012, 2018). For each
NCAA, the rotamer set determined using AutoRotLib for two
discrete backbone conformations (alpha: φ = −60°, ψ = −40°; beta:
φ = −140°, ψ = 130°) was optimized using the B3LYP-D3BJ/6-31g*
level of theory including the conductor-like polarizable
continuum model (CPCM) parameterized for water to account
for solvation effects (Cramer and Truhlar, 1999). The dihedral
angles of all rotatable bonds between heavy atoms were
constrained in order to ensure that the conformations stayed
close to the input. A final energy calculation was performed at the
B3LYP-D3BJ/6-311 + g** level of theory including a CPCMwater
solvation model. The energies are reported relative to the lowest
energy conformation in kcal/mol.

Thioether Parameterization
In order to model peptides cyclized by a thioether linkage
between an acetyl group extending from the N-terminus and a
downstream cysteine side chain, a patch was generated to
describe the chemistry. Similar to NCAA preparation, partial
charges for the linker atoms were generated using the
AM1BCCELF10 charging scheme within QUACPAC
(QUACPAC 2.1.2.1, 2021). Torsion constraints were also
generated to better describe the geometry about the C-C-S-C
bond formed from cyclization. Thioether constraints were
predicted using the MMFF94S forcefield as implemented by
the SZYBKI module within OpenEye on a representative piece
of the linker as illustrated in Figure 2A. The linker fragment was
used to characterize the dihedral energy profile about the linking
bond using theMMFF94S force field within the SZYBKI (SZYBKI

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8486893

Holden et al. Computational Site Saturation Mutagenesis

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


2.3.0.0, 2021) module of OpenEye. To minimize the fit between
the MMFF94S and Rosetta-sampled C-C-S-C torsion profiles,
two periodic constraints, f1(x) and f2(x), were parameterized such
that f(x) = k*(1-cos (n (x-xo)), f1: k = 0.71, n = 2, xo = 90° and f2:
k = 1.18, n = 3, xo = 60°. The k values were systematically scanned
to minimize the RMSD between the QM and MM energy profiles
when sampled over 37 data points at regular 10° intervals. These
data were built into the algorithm thioether_macrocycle which
utilizes a GenKic-based sampling (Mandell et al., 2009; Bhardwaj
et al., 2016) to build peptide backbones cyclized through a
thioether bond and optimizes side chain rotamers prior to a
gradient descent-based energy minimization.

Site Saturation Mutagenesis Scanning
The peptide bound NMR and crystal structures of MCL1-PUMA
(PDB 2ROC) and KDM4-CP2 (PDB 5LY1), respectively, were
pre-processed for use within Rosetta as described in the
Supplementary text. To estimate changes in binding energy
upon mutation we used the Rosetta FastDesign (Maguire
et al., 2020) protocol to systematically substitute canonical and
noncanonical residues at every position within the peptide being
analyzed. Changes in binding energy were calculated using the
ddg mover within Rosetta and results were filtered using custom
R scripts (RS Team, 2020) to determine the Δddgcalculated for each
mutation. Since we only evaluated Δddg within Rosetta we did
not calculate the unfolded state reference energies that were
previously utilized for NCAA within Rosetta (Renfrew et al.,
2012) as the reference term is used to calculate both the bound
and unbound state energies and is canceled out by calculating the
difference, or ddg, between the two states.

RESULTS

Streamlining Parameterization and
Rotamer Library Generation for Amino
Acids in Rosetta
Automated tools were developed to generate the necessary input
files to incorporate NCAAs into Rosetta design protocols (see
Methods). Currently, Rosetta requires parameterization of a
NCAA in order to define atom types, connectivity, partial
charges, rotatable bonds, and rotameric states. Since idealized
geometries and rotamer positions for these amino acids cannot be
extracted from the Protein Data Bank, as is done for canonical
amino acids, these atomic-level descriptors need to be determined
empirically using the previously-developed MakeRotLib protocol
(Renfrew et al., 2012). Here, we sought to build upon the
MakeRotLib protocol by automating the parameterization of
NCAAs into Rosetta containing either exotic R groups (those
found outside of the canonical 20 amino acids), N-methylated
residues, or peptoids (Figure 1A). This advancement allows a
user to easily incorporate a wide range of NCAAs into Rosetta. In
short, parameterization using our updated workflow,
AutoRotLib, only requires the user to supply a SMILES string
of the NCAA and the overall charge of the side chain (Figure 1B).
During parameterization, the most probable rotameric states of

each side chain on a set of discretely sampled fixed backbone
conformations are determined by clustering energy-minimized
conformations based on their measured distance in X-space
(Figure 1C). Unlike MakeRotLib, AutoRotLib does not require
the user to specify the number or values of expected energy wells
(bins) for each rotatable bond (Chi, X) in the side chain and
thereby minimizes potential user error while also simplifying the
parameterization process. Moreover, atom typing is
automatically handled by OpenEye during the rotamer
sampling process, further streamlining the parameterization
process.

To assess AutoRotLib for production of reasonable side chain
conformations, we generated rotamer libraries for the 18
canonical amino acids with flexible side chains to benchmark
against the knowledge-based rotamer libraries currently used by
Rosetta (Shapovalov and Dunbrack, 2011), 2011 as well as
rotamer libraries generated by MakeRotLib (Renfrew et al.,
2012). The generated rotamer libraries were evaluated using
examples of side chain conformations from 6,950 residues
found at 153 protein-protein interfaces that were repacked
with Rosetta, as previously reported (Pavlovicz et al., 2020),
where successful repacking was determined by calculating how
well the repacked selected side chain conformation correlates to
the experimental electron density. Overall, AutoRotLib
performed as well as, if not slightly better than, MakeRotLib
when applied to the canonical amino acid rotamer packing test as
shown in Table 1. The knowledge-based Rosetta rotamer libraries
showed the strongest performance in this test, which is expected
given that the Rosetta rotamer libraries were trained based on a
much larger set of structural data found in the Protein Data Bank
(PDB), while MakeRotLib and AutoRotLib rely on empirically-
determined molecular mechanics (MM) force fields. A closer look
at some of the cases in which MakeRotLib and/or AutoRotlib
failed to recover certain side chain conformations in our interface
packing test revealed that some unrecovered side chain
conformations were due to correct rotamers not being
generated by the protocol, while other cases were more
complex in which a cascading effect from a poorly packed
neighboring side chain resulted in surrounding side chains to
subsequently pack incorrectly. This may be due to missing
rotamers or preferred scoring of alternate side chain
combinations over the native-like solution. A more detailed
analysis of this is presented in Supplementary Table S11 and
Supplementary Figure S2. Outperforming knowledge-based
rotamer libraries on canonical side chains was not a goal of
this experiment, but the comparison remains useful as a guide.

Given the ability of AutoRotLib to reproduce rotamer
conformations of canonical amino acids, we next evaluated
AutoRotLib for use with NCAAs composed of exotic R
groups, N-methylation, and peptoids. Unfortunately, most
NCAAs are either underrepresented or completely absent from
the PDB, making it difficult to benchmark NCAA rotamers
against experimental data. Considering that Rosetta only loads
a subset of the most probable rotamers from the rotamer
library—the cumulative top 87% (or 95% if buried)—for a
semi rotameric sidechain at a given backbone conformation,
we elected to compare the rotamers generated by AutoRotLib
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for several NCAAs and rescore those rotamers using quantum
mechanics (QM) by focusing on a small library of 6 NCAAs
(Table 2) composed of different classes of NCAAs (exotic alpha,
N-methyl, and peptoid). Specifically, we compared the rotamer
energies generated by AutoRotLib to QM at two different
backbone conformations for each NCAA: an idealized ɑ-helix
and β-sheet conformation. To rescore rotamers by QM, rotamer

conformations were first minimized with restrained heavy-atom
dihedral angles. Once the QM energies were determined for each
rotamer, the rotamers were rank-ordered and compared to the
AutoRotLib rotamers at the same backbone conformation
(Table 2 and Supplementary Tables S1–S6). In general, there
was excellent agreement between AutoRotLib and QM calculated
energies (Table 2). For residues like 2Np (Supplementary Table
S1), 2Th (Supplementary Table S2), PeG (Supplementary Table
S3), and MeF (Supplementary Table S5), subtle differences were
observed betweenMM and QM rank ordering of rotameric states,
especially at high energy conformations. Considering that the
high energy rotamers would likely not be critical for Rosetta
design and given the general agreement between the relative
energies for each rotamer calculated with the MM and QM
metrics in Table 2, we anticipate NCAAs parameterized with
AutoRotLib are most likely useful for protein design purposes.

Incorporation of Thioether-Based
Cyclization
Computational design and evaluation of thioether-cyclized
macrocycles were accomplished in Rosetta by chemically
modifying the N-terminal residue to add the appropriate
acetyl atoms required for closure of the macrocycle with a
C-terminal thiol group most commonly originating from a
cysteine residue. Additional torsional constraints were added
to better describe the geometry about the C-C-S-C bond
formed from cyclization of the peptide. A representative piece
of the thioether linker (Figure 2A, Supplementary Figure S4)
was used to measure the energy barrier about the C-S bonds using
the MMFF94S (MM) force field as implemented by the SZYBKI
module of OpenEye tools (SZYBKI 2.3.0.0, 2021). With the
application of two periodic constraints, the MM and Rosetta-
sampled C-C-S-C torsional profiles were minimized to an RMSD

FIGURE 1 | AutoRotLib was developed to parameterize chemically diverse NCAAs for Rosetta. (A) NCAAs that can be parameterized with our automated tools
include exotic R groups, N-methyl amino acids, and peptoids with ≤4 heavy atom torsion angles. (B) In order to parameterize a NCAA using the automated tools, only a
SMILES string and residue charge is required for generating files required for use in Rosetta. (C) Parameterization of the non-canonical b-(2-naphthyl)-L-alanine (2Np)
using AutoRotLib requires capping the termini with acetyl and N-methyl groups (colored blue) to produces rotameric positions of the side chain for a given
backbone position. Example rotamers for phi = −60°, psi = −40°; 2-D and 3-D representation (top) and 2-D representation of X angles (bottom) for 2Np.

TABLE 1 | Rotamer recovery of canonical amino acids after repacking with the
Rosetta standard libraries (dun10 with Shapovalov’s corrections) and libraries
generated by the MakeRotLib and AutoRotLib protocols using Rosetta 3.10 and
the REF2015 score function. Rotamer recovery reported as the average
±standard deviation for three separate calculations.

Amino acid Rotamer recovery (%)

Rosetta baseline MakeRotLib AutoRotLib

L-cysteine 96.6 ± 0.0 83.6 ± 0.8 80.2 ± 0.8
L-serine 97.7 ± 0.0 90.8 ± 0.2 91.1 ± 0.3
L-threonine 98.7 ± 0.1 93.5 ± 0.3 94.5 ± 0.3
L-valine 99.6 ± 0.0 97.7 ± 0.2 99.5 ± 0.1
L-leucine 96.3 ± 0.1 89.2 ± 0.4 93.4 ± 0.2
L-isoleucine 98.2 ± 0.0 95.2 ± 0.1 95.8 ± 0.2
L-methionine 84.8 ± 0.2 50.5 ± 0.4 73.1 ± 0.5
L-arginine 63.5 ± 0.4 39.8 ± 0.5 45.7 ± 0.6
L-lysine 86.3 ± 0.4 76.2 ± 0.3 76.6 ± 0.2
L-proline 99.8 ± 0.0 99.8 ± 0.0a 99.4 ± 0.1
L-asparagine 94.2 ± 0.1 80.3 ± 0.3 81.4 ± 0.1
L-aspartic acid 90.8 ± 0.3 75.4 ± 0.1 78.7 ± 0.4
L-glutamine 81.7 ± 0.4 67.4 ± 0.5 77.3 ± 0.1
L-glutamic acid 79.1 ± 0.2 66.6 ± 0.9 72.8 ± 0.4
L-histidine 91.5 ± 0.0 71.6 ± 0.0 71.0 ± 0.6
L-phenylalanine 94.1 ± 0.1 88.1 ± 0.7 91.0 ± 0.7
L-tryptophan 86.8 ± 0.3 75.8 ± 0.6 81.4 ± 1.1
L-tyrosine 87.6 ± 0.2 77.0 ± 0.8 84.6 ± 0.4

aProline uses the Dunbrack rotamer library in the MakeRotLib test due to difficulty
parameterizing the cyclic amino acid.
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of 0.2325 Å when measured over 37 data points sampled at
regular 10° intervals (Figure 2B). To test the torsional
constraints of the thioether linker we wrote an application in
Rosetta, thioether_macrocycle, to generate three-dimensional
models from a primary sequence. The aforementioned
dihedral constraints are applied during energy minimization of
the predicted macrocycle structure. As shown in Figure 2C, this
results in conformer populations that cluster around the expected
energy minima of −60°, 60°, and 180° for the C-C-S-C bonds that
define the thioether linkage. Without the constraints, the C-C-S-
C dihedral angles of the predicted macrocycle structures were
more evenly distributed from ±60–180° (2C, upper), with an
overpopulation of structures occupying a linker torsional space

near the theoretical energy maxima of ±130°. Together, the
structure prediction application with the torsional corrections
demonstrates that the thioether linkage can be modeled within
Rosetta.

Parameterizing a Library for in silico Site
Saturation Mutagenesis
In order to test our automated workflows for computational
design with NCAAs, we parameterized a small library of 15
NCAAs using AutoRotLib (Figure 3A). The library was
curated from a list of 21 NCAAs previously reported for
in vitro site saturation mutagenesis (Rogers et al., 2018) using

TABLE 2 | NCAAs generated by AutoRotLib were scored using a MM force field and rescored using QM.

Noncanonical Rotamer agreement between MM and QM

2D structure phi psi 87% of library 95% of library

b-(2-Naphthyl)-L-alanine (2Np) −60 −40 14 of 16 19 of 19
−110 130 14 of 17 19 of 21

L-2-thienyl-Ala (2Th) −60 −40 9 of 10 10 of 11
−110 130 9 of 10 10 of 11

N-a-Methyl-L-phenylalanine (MeF) −60 −40 7 of 7 7 of 8
−110 130 6 of 7 9 of 9

N-a-Methyl-L-histidine (MeH) −60 −40 19 of 19 21 of 21
−110 130 17 of 17 21 of 21

N-(2-Phenylethyl)-glycine (PeG) −60 −40 13 of 14 16 of 16
−110 130 11 of 12 15 of 16

Cyclopropyl-methyl-glycine (CpG) −60 −40 5 of 5 6 of 6
−110 130 5 of 5 6 of 6
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the RaPID platform. In total, 6 of the 21 NCAAs previously
reported (Rogers et al., 2018) were not included in our
parameterized library because they either contained >4 heavy
atom torsional angles or were not alpha amino acids. Currently,
AutoRotLib is limited to parameterizing NCAAs containing side
chains with ≤4 heavy atom torsion angles due to limitations in the
backbone-dependent rotamer handling code in Rosetta.
Additionally, Rosetta design protocols currently cannot
interconvert between different classes of amino acids, like
N-methyl/peptoids from alpha amino acids. As a result, we
can only evaluate NCAA designs with ≤4 heavy atom torsion
angles that are within the same amino acid class as the parent
residue.

To better understand differences between rotamer libraries
generated with AutoRotLib or derived from the Dunbrack
Library we also evaluated our site saturation mutagenesis
protocols using the different rotamer libraries as inputs for
canonical amino acids (Supplementary Figure S3). While
similar, with native-like rotamers found in all of these libraries,
there are slight conformational differences among them. These
differences can impact the pairwise scoring of the side chain in
question depending on the environment in which it is being packed.
As observed in the analysis of the interface packing benchmark, these
conformational differences can result in scoring differences that
prioritize the selection to favor one mutation over another.

Evaluating a Peptide Antagonist
Since we are interested in using design protocols to engineer and
screen novel side chains that improve peptide interactions with a

target protein, we elected to perform site saturation mutagenesis
studies by sequentially screening every amino acid within our
parameterized library at each residue position using FastDesign
(Maguire et al., 2020) on the peptide PUMA using the ternary
complex of PUMA:MCL-1 (PDB 2ROC, Figure 3). PUMA was
used as a case study as it has been extensively screened and
evaluated for incorporation of canonical and noncanonical amino
acids (Day et al., 2008; Rogers et al., 2014, 2018). To understand
how our in silico predictions compared to previous mutagenesis
studies we first calculated the per residue Δddgcalculated
(ddgwt−ddgdesign) for each design (Figure 3C) and compared
theΔddgcalculated to the previously reported change in binding free
energy (ΔΔGbinding) that was extrapolated from a selection-based
experiment (Rogers et al., 2018). Since neither the Δddgcalculated
nor the experimental ΔΔGbinding are absolute values, we took a
binary approach to characterize mutations as either stabilizing
(Δddgcalculated < 0 and ΔΔGbinding < 0) or destabilizing
(Δddgcalculated > 0 and ΔΔGbinding > 0). Mutations that were
found to be stabilizing or destabilizing in both the previously
reported experimental data and our in silico data were considered
in agreement. For the purpose of evaluating in silico design
accuracy, this type of binary analysis has been used previously
(Nguyen et al., 2019). Overall, we observed varying agreement at
residue positions between the two datasets ranging from 16.7 to
97.2% agreement for the mutations evaluated. Similarly, if we
decouple NCAA fromCAA in our analysis of point mutations, we
found that canonical amino acids have a greater agreement
measured at 20 or 26 residue positions compared to NCAA
(Supplementary Figure S3). For designs at residue positions

FIGURE 2 | Parameterization and application of thioether linker. (A) Representative molecule used for thioether parameterization. The angle scanned for dihedral
parameterization is highlighted by larger spheres. (B) C-C-S-C torsional profiles by the MMFF94S force field (black) and Rosetta (blue) after dihedral constraints were
optimized. (C) C-C-S-C angle distributions for 100,000 thioether-linked 8-mer (AAAAAAAC) macrocycles generated without additional dihedral constraints (top) and
with dihedral constraints applied (bottom). The red dashed lines represent the theoretical maxima of the dihedral energy landscape, while the green lines represent
the theoretical minima for the thioether bond. Note that each thioether bond has two C-C-S-C torsions.
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with low agreement to the experimental dataset, like residue
positions R135 and A150, we noticed these residues were mostly
solvent exposed (Figure 3D and Supplementary Table S10).
Considering the ddg calculation is an estimate of interface
interaction it is not surprising that solvent exposed designs
would be more challenging to evaluate by the ddg metric
within Rosetta. Therefore, these could be excellent positions to
modulate peptide pharmacokinetic properties through
introduction of new side chains without affecting the peptide
binding properties. We also compared our in silico results to
previously published (Rogers et al., 2018) biophysical data
(Supplementary Table S7) and found of the 29 published
mutations 22 mutations were destabilizing (Δddgcalculated > 0
and Kd,mutant > Kd,wt) in both datasets, and 2 mutations were
stabilizing (Δddgcalculated < 0 and Kd,mutant < Kd,wt) in both
datasets (Supplementary Table S7). Importantly, if we filter
the data further and remove Δddgcalculated values between −1
and +1, as these are considered within the noise variance of the
ddg calculation (Barlow et al., 2018), the agreement between
experiments improves to 14 out of 16 mutations (Supplementary
Table S7). The two outliers that were not in agreement between

the filtered data sets include Tyr152Bzt and Ala144Cha. Upon
closer inspection of the design outliers, two observations were
made that should be considered for assessing the accuracy of a
design: 1) changes in the side chain size affect the number of
residue contacts used to calculate a per residue ddg and 2) design
on buried residues, like Ala144, might induce an alternative
binding mode that cannot be modeled accurately by the
FastDesign protocol. This is not surprising considering that
the FastDesign protocol is optimized for small perturbations of
the side chain and does not sufficiently sample small-to-large
substitutions at an interface (Maguire et al., 2020).

Evaluating a Thioether-Linked Macrocycle
Antagonist
To design NCAAs within a thioether-linked peptide macrocycle,
we also tested our automated workflows on the macrocycle CP2
bound to KDM4 (Figure 4A, PDB 5LY1). CP2 was first identified
from an mRNA display screen using the RaPID platform
(Kawamura et al., 2017) and is cyclized through a thioether
bond between an N-terminal acetyl group on D-Tyr1 and the

FIGURE 3 | Mutational scanning of canonical and NCAA on the peptide PUMA bound to MCL-1. (A) NCAA shown in stick format were evaluated and
parameterized with AutoRotLib. The NCAA DAI was previously parameterized in Rosetta as DAL. (B) PUMA peptide depicted in cartoon format and colored blue is
bound to MCL-1 (PDB 2ROC). (C) Heatmap analysis of Δddgcalculated (ddgwt−ddgdesign) for individual residues. Native residues that are >75% solvent exposed are
indicated by an asterisk*. (D) Agreement betweenΔddgcalculated and ΔΔGbinding for point mutations to be stabilizing or destabilizing on PUMApeptide shown as grey
tiles and point mutations that differed between the two datasets are shown as white tiles. Tiles that are marked with an X represent the native residue.
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thiol group of Cys14. Using the crystal structure of CP2 bound to
KDM4, we screened our library of natural amino acids and
AutoRotLib parameterized NCAAs for all possible CP2 single
point mutations at positions 1–13. Point mutations at position 14
were not considered in order to preserve the thiol group required
for cyclization. One distinct advantage of in silico screening over
the RaPID platform for thioether macrocycles is that position 1
can be mutated during design, unlike the RaPID system which is
dependent on in vitro translation with only one initiator tRNA. In
vitro screening of additional residues at position 1 using the
RaPID platform therefore requires generating multiple libraries
with different initiators encoded on the initiator tRNA. Hence,
our ability to evaluate multiple amino acids in silico, especially at
position 1, could help inform design of new libraries and reduce
the number of libraries needed to probe diversity in vitro.

In order to compare our in silico designs on CP2 to previous
mutagenesis binding studies we calculated the number of
mutations that were found to be stabilizing (Δddgcalculated < 0
and ΔΔGbinding < 0) and destabilizing (Δddgcalculated > 0 and
ΔΔGbinding > 0) between the two datasets using the Δddgcalculated
and the experimental ΔΔGbinding values (Rogers et al., 2018).
From our comparative analysis we found the mutational effects
on binding energy range between the two datasets from 17%
agreement to 94% agreement, with 7 of the 12 residue positions
(Position 1 and Position 14 not compared) having >50%
agreement. Moreover, if we separate NCAA from the
canonical amino acids in our analysis of point mutations, we
found that CAA have a greater agreement at 11 of the 12 residue
positions evaluated then the NCAA (Supplementary Figure S3).
For multiple designs at position Ser7 and Gly8 the mutation was
predicted to stabilize the ternary complex based on a per residue
Δddgcalculated < 0; however, the design significantly altered the
backbone conformation of the macrocycle, based on calculating
the RMSD of the design relative to the native structure, rendering
a likely inaccurate binding pose. Assuming that the backbone
conformation is critical for target engagement (Appavoo et al.,

2019), we then filtered our designs using two RMSD filters: 1)
RMSDmacrocycle was calculated using the heavy atoms of the CP2
backbone residues and 2) RMSDinterface was calculated from the
interface residues also using the backbone heavy atoms. The RMSD
filters, were set at 0.3 Å and 0.5 Å for RMSDmacrocycle and
RMSDinterface, respectively, as these values were double the
median RMSD for relaxed structures with the native sequence.
Application of these stringent filters to our dataset of 420 point
mutations on CP2 removed 183 designs; 65 of which were not in
agreement with the in vitro dataset. Despite the benefit of these
additional filters for assessing macrocycle designs, predictive
modeling of side chains that stabilize a binding interface remains
challenging and not always accurate, as reported elsewhere (Nguyen
et al., 2019;Mulligan et al., 2020; Hosseinzadeh et al., 2021). This is in
part because macrocycles are dynamicmolecules that are sensitive to
small perturbations which may alter backbone and side chain
conformations. In order to successfully narrow down the massive
chemical space that should be considered for macrocycle
optimization, experiment and computation will need to be
combined to identify residue positions that are mutable, residue
positions that should remain unchanged, and fine-tune the NCAA
chemical space that should be further evaluated to accelerate
empirical discovery and optimization of macrocycles.

DISCUSSION

In recent years substantial advancements have been made
towards the development and design of peptide therapeutics
that contain NCAAs. Here, we built upon the strategies
initially developed by Renfrew et al. (2012) to simplify and
automate NCAA parameterization for use in the design
program Rosetta. This updated protocol, reported herein,
incorporates tools from OpenEye to build rotamer libraries
that were validated by sampling experiments at protein-
protein interfaces and by QM energy calculations. With the

FIGURE 4 | Site saturation mutagenesis on Macrocycle CP2 bound to target KDM4. (A) The crystal structure of CP2-KDM4 (PDB 5LY1) was used as the initial
model for site saturation mutagenesis. (B) Heat map of Δddgcalculated values for all mutations evaluated. Tiles that are colored black were found to have a Δddgcalculated >
5. Native residues that are >75% solvent exposed are indicated by an asterisk*. (C) Agreement measured between free energy of mutations calculated for designs using
Δddgcalculated and previously reported ΔΔGbinding values (Rogers et al., 2018) displayed as grey tiles with white tiles representing differences between Δddgcalculated
and ΔΔGbinding values. Tiles that are marked with an X represent the native residue.
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ability to quickly parameterize NCAAs that include exotic R
groups, peptoids, or N-methylation, we can now more easily
screen NCAAs in silico to inform in vitro selection experiments
and generate new hypotheses that would otherwise not be feasible
by looking at a simple peptide-target structure.

As part of our effort to accelerate in silico design using
NCAAs in Rosetta, we also developed new tools to design on
thioether based macrocycles. Thioether based cyclization has
the distinct advantage over other cyclization strategies in that
it is an efficient and spontaneous cyclization chemistry that
is amenable to an in vitro translation setting such as the
RaPID system. Moreover, NCAA-containing macrocycles
discovered on the RaPID platform are demonstrated as
potent target binders (Kawamura et al., 2017; Katoh et al.,
2020). While the RaPID platform is a powerful tool for
screening and optimizing macrocycles, the addition of
NCAAs into designs presents a challenge given the vast
chemical space available to NCAAs and the limitations on
the number of AAs that may be encoded in any single
RaPID library. Here, the use of in silico prescreening could
be used to focus a library of NCAAs that should be considered
for in vitro experiments. Together, these approaches have the
potential to rapidly enable affinitymaturation and pharmacokinetic
optimization of peptide macrocycles identified from combinatorial
libraries.

Considering the utility of being able to rapidly screen a
diverse chemical space in silico it is also important to
recognize some of the current limitations for
incorporating NCAAs into Rosetta. First, the
Ramachandran space that is sampled by a NCAA a priori
is unknown. Certainly, this will become an issue of less
concern as the field of NCAAs continues to expand and
new tools are developed for modeling NCAA behavior in
silico, such as molecular dynamics (Khoury et al., 2014).
Nonetheless, we currently have an incomplete
understanding of how a NCAA might alter the backbone
of the peptide scaffold or the conformational landscape of
the unbound peptide. Continued development of design
protocols that stabilize the bound conformation, either
through cross linking or mutagenesis, have the potential
to both decrease the entropic penalty of binding and preserve
the critical interactions that are observed within the
macrocycle bound structure. Second, predictive modeling
of side chains that stabilize a binding interface, including
both the sampling and scoring aspects, remains an
outstanding problem with discrepancies often reported
between calculated ddg’s and experimentally determined
values (Nguyen et al., 2019; Hosseinzadeh et al., 2021;
Mulligan et al., 2021). This can lead to false positive or
false negative interpretations of designs as was observed here
for the PUMA and CP2 designs. Additional design metrics,
enhanced sampling, and new scoring methods like Rosetta’s
genpot score function, under active development, that
introduces additional physics-based score terms need to
be considered to improve designs with NCAAs. This may
require developing new methods that appropriately define
the Rosetta reference energy values for each NCAA to

properly compensate for the sometimes-outsized attractive
van der Waals score component possible for very large side
chains. To address concerns with the reference energy term
for NCAA’s previous studies have introduced the modifiable
reference energy for NCAA (Renfrew et al., 2012) and the
amino acid composition score term (Mulligan et al., 2021).
By enlisting site saturation mutagenesis to probe chemical
space and ddg measurements to evaluate binding, the
contribution of the reference term to the binding pose is
negligible. Nonetheless, methods like in silico saturation
mutagenesis are still limiting from a design perspective as
the user is unable to identify compensatory mutations
without a well-established reference energy for each
NCAA and incorporation of the reference energy will be
necessary for complex design strategies. Despite these
challenges, continued development on the energy score,
NCAA Ramachandran sampling, design filters, and design
algorithms will significantly improve our ability to
accurately design peptides and macrocycles with NCAAs
in Rosetta.

We anticipate tools like AutoRotLib will be useful for peptide
engineers to quickly parameterize NCAAs so that they may be
incorporated into a peptide design. In doing so, a user will be able
to evaluate a variety of side chain isomers, bioisosteres, and
structural analogs at individual residue positions to improve
the binding interactions and pharmacokinetics of a peptide.
Coupled with technologies like the RaPID platform,
computational mutational scanning will be a critical step
informing the design of new libraries that can be screened
empirically to help optimize the potency and properties of
peptide therapeutics.
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