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The B7-CD28 gene family plays a crucial role in modulating immune functions and has
served as potential targets for immunotherapeutic strategies. Therefore, we systematically
analyzed B7-CD28 family gene expression profiles and constructed a B7-CD28 family-
based prognostic signature to predict survival and immune host status in diffuse gliomas.
The TCGA dataset was used as a training cohort, and three CGGA datasets
(mRNAseq_325, mRNAseq_693 and mRNA-array) were employed as validation
cohorts to intensify the findings that we have revealed in TCGA dataset. Ultimately, we
developed a B7-CD28 family-based signature that consisted of CD276, CD274,
PDCD1LG2 and CD80 using LASSO Cox analysis. This gene signature was validated
to have significant prognostic value, and could be used as a biomarker to distinguish
pathological grade and IDH mutation status in diffuse glioma. Additionally, we found that
the gene signature was significantly related to intensity of immune response and immune
cell population, as well as several other important immune checkpoint genes, holding a
great potential to be a predictive immune marker for immunotherapy and tumor
microenvironment. Finally, a B7-CD28 family-based nomogram was established to
predict patient life expectancy contributing to facilitate personalizing therapy for tumor
sufferers. In summary, this is the first mathematical model based on this gene family with
the aim of providing novel insights into immunotherapy for diffuse glioma.
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INTRODUCTION

Diffuse glioma, including low-grade glioma (LGG) and glioblastoma (GBM), is the most common
prevalent and devastating primary tumor in central nervous system, accounting for approximately
80% of malignant brain tumors (Weller et al., 2015; Aquilanti et al., 2018; Hu et al., 2019). Despite the
remarkable progress has been made in neurosurgical resection, radiotherapy, adjuvant
chemotherapy and targeted therapy, the clinical efficiency and prognosis of glioma patients have
not improved significantly. And GBM is still one of the hardest cancers to treat in clinical oncology,
with an overall 5-years survival rate of only 9.8% (Li et al., 2017; Wang et al., 2018). Thus, intensive
study of these tumors should be conducted to discover specific biomarkers for prognosis prediction
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and clinical management optimization. Although amounts of
researchers have taken advantage of genes from the whole
genome or transcriptome modeling to predict glioma
outcomes, for their little consideration of biological function of
selected genes, most of these signatures were simply mathematic
models without the ability to reflect the innate character of
cancer, and had a limited role.

Immune checkpoint inhibitors targeting the B7-CD28 family
members have shown clinically relevant efficacy in a number of
tumor types and have revolutionized the strategy in cancer
treatment (Mahoney et al., 2015; Picarda et al., 2016;
Ramagopal et al., 2017). B7 ligands are widely expressed on
the membrane of antigen-presenting cells, while CD28
receptors are widely expressed on T cells; and the interplay
between these molecules play critical and unique roles in
T-cell co-stimulation and co-inhibition (Chen and Flies, 2013;
Schildberg et al., 2016). Manipulation of the interactions between
B7 ligands and CD28 receptors holds great potential to enhance
anti-tumor immunity and has emerged as a novel treatment
paradigm. Moreover, efficacy of programmed cell death 1/
programmed death ligand 1(PD1/PD-L1) inhibitors has been
reported in preclinical glioma models and in individual human
cases (Reardon et al., 2016; Berghoff et al., 2017; Kim et al., 2017).
Thus, continued efforts to explore clinical and prognostic value of
B7-CD28 family members are warranted.

Some investigations have focused on several single B7-CD28
family members, nevertheless, comprehensive understanding of
B7-CD28 family members is still needed to decode complex
interaction between tumor and immunity. In this article, we
systematically analyzed the prognostic value of the B7-CD28
family in diffuse glioma and construct a B7-CD28 family-
based prognostic signature. We further investigated the
correlation of the signature with clinicopathologic, molecular,
and immunological characteristics of the tumor, which might
provide novel insights into the glioma immune
microenvironment and immunotherapy. Furthermore, a B7-
CD28 family-based predictive nomogram model was
developed to estimate survival for glioma patients.

MATERIALS AND METHODS

Data Collection
In this article, four datasets were obtained for the analysis. In the
TCGA-GBMLGG dataset, RNA-Seq data were extracted from
UCSC Xena database, and the clinical data and survival
information were downloaded from https://tcga-data.nci.nih.
gov/docs/publications/lgggbm_2016/. Then, three CGGA
datasets (mRNAseq_325, mRNAseq_693 and mRNA-array)
containing gliomas of all grades were employed as validation
cohorts to intensify the findings that we have revealed in TCGA
dataset. And the corresponding clinical pathological parameters
were also download form the CGGA database. The transcriptome
profiling of RNAmeasured by FPKM values was performed using
the log2-based transformation for further analysis. After
excluding patients with unknown survival information or
survival time of 0, a total of 1829 patients were identified for

further analysis. The clinical information of patients in each
dataset is summarized in Table 1.

Statistical Analysis and Bioinformatic
Analysis
Univariate Cox regression analysis was conducted to access the
association between the expression of each B7-CD28 family gene
and overall survival. Then, the least absolute shrinkage and
selection operator (LASSO) method was employed to identify
the genes with best prognostic value and establish a risk score
equation (Tibshirani, 1997; Goeman, 2009). Patients with
assigned risk scores then were separated into high- and low-
risk groups using the median risk score as the cutoff point.
Kaplan-Meier method with log-rank test was utilized to
compare survival differences between different groups.
Multivariate Cox regression analysis was performed to evaluate
the independent prognostic value of the B7-CD28 family-based
signature.

The Estimation of STromal and Immune cells in Malignant
Tumours using Expression data (ESTIMATE) algorithm was
employed to calculate the immune and stromal scores
(Yoshihara et al., 2013). The Microenvironment Cell
Populations-counter (MCP) method was utilized to evaluate
the relationship between the gene signature and tumor
microenvironment (Becht et al., 2016). After Spearman
correlation analysis, gene set enrichment analysis (GSEA)
analysis was performed to explore biological functions
associated with the gene signature (Subramanian et al., 2005).
Gene sets used in this work were downloaded from the Molecular
Signatures Database (http://software. broadinstitute.org/gsea/
msigdb/index.jsp). Gene Sets Variation Analysis (GSVA) was
also used to access the inflammatory activities in glioma
microenvironment, as previously described (Rody et al., 2009;
Hänzelmann et al., 2013).

To individualize the 1-, 3- and 5-years predicted overall
survival probability, a nomogram was constructed based on
the results of the multivariate analysis. Calibration curves were
depicted to access the consistency between nomogram-predicted
survival and actual outcome. Discrimination ability of the
nomogram was evaluated by concordance index (C-index),
and time-dependent receiver operating characteristic curve
(ROC) with the area under the curve (AUC) value (Heagerty
et al., 2000). All statistical analyses were conducted using R
project (version 3.5.2, https://www.r-project.org/). A two-sided
p value <0.05 was regarded as significant.

RESULTS

Establishment of the B7-CD28
Family-Based Signature and Evaluation of
its Prognostic Value in TCGA Cohort

The TCGA dataset was used as a training cohort, and we
investigated the expression of sixteen well defined B7-CD28
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family genes in the 604 diffuse glioma patients from this cohort.
As shown in Figure 1A, almost all genes were significantly
associated with prognosis in univariate Cox regression
analysis, suggesting that the important role of this gene family
in glioma outcome. Specifically, increased expression of eleven
genes (PDCD1LG2, PDCD1, ICOSLG, ICOS, CTLA4, CD86,
CD80, CD28, CD276, CD274 and BTLA) were significantly
associated with worse survival, while the other four genes
(VTCN1, TMIGD2, HHLA2 and VSIR) were related to better
outcomes. Then, LASSO Cox analysis was performed to select
best prognostic features and build the gene signature. Ultimately,
a B7-CD28 family-based signature was developed using CD276,
CD274, PDCD1LG2 and CD80 (Figures 1B,C). Risk scores were
calculated for each patient (risk score = 0.613*CD276 +
0.109*CD274 + 0.050*PDCD1LG2 + 0.018*CD80). And
patients were assigned into high- and low-risk groups by their
risk scores using the median risk score as cutoff point
(Figure 1D). In Kaplan-Meier analysis, the high-risk patients
had shorter survival times than their low-risk counterparts (p <
0.05; Figure 2A). After adjusting for available clinicopathological
variables, multivariate Cox analysis revealed that the prognostic
signature-based risk score remained an independent prognostic
factor (HR 2.581, 95%CI 1.503–4.434, p = 0.001, Table 2).

Validation of the B7-CD28 Family
Gene-Based Signature in CGGA Cohorts
To determine whether the B7-CD28 four-gene signature has
robust prognostic value, the performance of the signature was
also assessed in other three cohorts from CGGA databases.
Consistent with the results of the TCGA cohort, patients who
were divided into high-risk group had significantly worse
outcomes than those in low-risk group (All p < 0.05; Figures
2B–D). Multivariate Cox analysis indicated that risk score a
constantly independent role for predicting glioma survival,
although with a borderline significance in CGGA mRNA-array
dataset (Table 2).

Validation of the B7-CD28 Four Gene-Based
Signature in Clinically Important Subsets.
Considering the histopathological heterogeneity of the glioma,
the prognostic value of the signature was further analyzed
according to WHO grade system and IDH mutation status.
Stratification analyses were carried out and showed that our
signature accurately predicted survival in LGG patients.
However, its predictive accuracy seemed to be relatively poor

TABLE 1 | Clinical characteristics of the patients.

Characteristics TCGA mRNAseq_325 mRNAseq_693 mRNA-array

Total 604 (100%) 310 (100%) 617 (100%) 298 (100%)
Age, y
≤47 308 (51.0%) 205 (66.1%) 407 (65.9%) 198 (66.4%)
>47 296 (49.0%) 105 (33.9%) 210 (34.0%) 98 (32.9%)
NA 1 (0.2%) 2 (0.7%)

Sex
Male 350 (57.9%) 193 (62.3%) 356 (57.6%) 177 (59.4%)
Female 254 (42.1%) 117 (37.7%) 262 (42.4%) 121 (40.6%)

Grade
Grade II 213 (35.3%) 97 (31.3%) 173 (28.0%) 115 (38.6%)
Grade III 238 (39.4%) 74 (23.9%) 231 (37.4%) 57 (19.1%)
Grade IV 153 (25.3%) 135 (43.5%) 214 (34.6%) 123 (41.3%)
NA 4 (1.3%) 3 (1%)

IDH status
Wildtype 224 (37.1%) 142 (45.8%) 258 (41.7%) 164 (55.0%)
Mutant 374 (61.9%) 168 (54.2%) 315 (51.0%) 132 (44.3%)
NA 6 (1%) 45 (7.3%) 2 (0.7%)

MGMT promoter status
Unmethylated 148 (24.5%)
Methylated 425 (70.4%)
NA 31 (5.1%)

TERT promoter status
Wildtype 160 (26.5%)
Mutant 154 (25.5%)
NA 290 (48.0%)

Radiotherapy
No 172 (28.5%) 46 (14.8%) 102 (16.5%) 37 (12.4%)
Yes 374 (61.9%) 253 (81.6%) 485 (78.5%) 249 (83.6%)
NA 58 (9.6%) 11 (3.5%) 31 (5.0%) 12 (4.0%)

Chemotherapy
No 120 (38.7%) 139 (22.5%) 126 (42.3%)
Yes 175 (56.5%) 435 (70.4%) 151 (50.7%)
NA 15 (4.8%) 44 (7.1%) 21 (7.0%)

Abbreviations: NA, not available.
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in GBM patients which may due to the small number of low-risk
cases in GBM subgroups (Figures 3A–D and Supplementary
Figure S1A–D). In addition, the performance of the signature
was observed to be favorable in patient subsets with IDH
wildtype, whereas it did not work quite as well in IDH mutant
subgroups (Figures 3E–H and Supplementary Figure S1E–H).

Correlation of the Prognostic Signature
With Pathological and Molecular
Characteristics in Glioma
Then, we further investigated the distribution of the risk score on
basis of the WHO grade and IDH mutation status, to explore the
correlation of the prognostic signature with these parameters in
glioma. And ROC curve analysis was also performed to evaluate
its predictive value. As illustrated in Figures 4A–D, I–L, we found
that risk score was significantly higher in GBM (Grade IV vs.
Grade II/III) and IDH wildtype (IDH wildtype vs. IDH mutant)
subgroups. ROC curve analysis also suggested that this gene

signature could serve as a biomarker to distinguish
pathological grade and IDH mutation status in diffuse glioma
(Figures 4E–H, M–P).

Correlation of the Prognostic Signature
With the Tumor Microenvironment
ESTIMATE and MCP analyses were conducted to investigate the
relationship between the prognostic signature and glioma
microenvironment. And we found that the risk score was
positively related to the immune and stromal scores in all
datasets based on ESTIMATE algorithm (Figure 5A–D and
Supplementary Figure S2A–D). With the MCP method, we
further explored the association of the gene signature with
specific cell populations in the tumor microenvironment. The
findings revealed that risk score was significantly associated with
immune cell population, especially with myeloid dendritic cells,
monocytic lineage and fibroblasts (Figure 5E,F and
Supplementary Figure S2E,F).

FIGURE 1 | Establishment of the B7-CD28 family-based signature. Individual B7-CD28 gene univariate Cox analysis in TCGA Cohort (A). LASSO Cox analysis
identified four genes most correlated to overall survival in TCGA cohort (B and C). Risk scores distribution, survival status of each patient, and the heatmap of B7-CD28
family-based signature in TCGA cohort (D).
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The Prognostic Signature-Related
Biological Process
Since the prognostic signature was significantly related to tumor
malignancy and microenvironment, GSEA analysis was
performed to explore the potential biologic functions. First, we
calculated the correlation between risk score and all genes. After
GSEA analysis, we found that genes positively correlated with risk
score (ranked by Spearman lRl) were mainly enriched in adaptive
immune response, B cell mediated immunity, positive regulation
of T cell activation, T cell proliferation and toll-like receptor
signaling pathway (Figure 6A,B and Supplementary Figure
S3A,B).

Correlation of the Prognostic Signature
With Inflammatory Response
Given the strong association of the gene signature with
immunologic biological processes, we further performed
GSVA analysis with six inflammatory metagene clusters to
specifically analyze the relationship between the gene signature

and inflammatory response (Supplementary Table S1). The
results showed that the signature-based risk score was
positively related to HCK, LCK, MHC-I, MHC-II and STAT1,
but negatively associated with IgG (Figure 7A,B and
Supplementary Figure S4A,B). As a subpopulation of T cells,
the regulatory T cells (Tregs), formerly known as suppressor
T cells, play an important role in regulation of the immune system
(Severin et al., 2016). Then we attempted to investigate the
association between the risk score and Treg signatures
(Supplementary Table S2). And we found that risk score was
significantly positively related to Treg signatures expression
(Figures 7C,D and Supplementary Figure S4C,D). In sum,
these results demonstrated that B7-CD28 four gene-based
signature was related to inflammation cells transduction
signals activation and immunosuppressive functions.

Correlation of the Prognostic Signature
With Immune Checkpoints
Drugs targeting immune checkpoints has been developed and are
being extensively tested in preclinical or clinical trials (Daly et al.,

FIGURE 2 | Kaplan–Meier curves of overall survival for high-risk and low-risk TCGA (n = 604, (A)], mRNAseq_325 (n = 310, (B)], mRNAseq_693 (n = 617, (C)], and
mRNA-array (n = 298, (D)] patients.
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2015). Then we enrolled checkpoint members, including
PDCD1LG2, PDCD1, LAG3, IDO1, ICOS, HAVCR2, CTLA4,
CD274 and C10orf54, into the analysis. And we found that
expression of most of these checkpoint genes were
significantly associated with risk score (Figure 7E and
Supplementary Figure S4E), indicating that the prognostic
signature could aid in identification of patients who were
more sensitive to immune checkpoint blockade therapies.

Construction of the B7-CD28 Family-Based
Nomogram
In order to make full use of the gene signature we developed, based
on the results of multivariate analysis in TCGA cohort, we
established a nomogram in which the signature integrated the
other four independent prognostic factors to estimate overall
survival for glioma patients (IDH status, age, tumor grade and
radiotherapy; Figure 8A). Calibration curves of nomogram-
predicted survival vs. actual outcomes demonstrated excellent
concordance (Figure 8B). The C-index for the nomogram was
0.852 (95%CI, 0.828–0.877), showing favorable discrimination
ability. We also compared the predictive accuracy of this
nomogram with individual predictors including gene signature-
based risk score, IDH status, tumor grade and patient age. And
the time-dependent C-index and ROC curve analysis revealed that
the nomogram had best performance, showing that this model was
of good stability and powerful prediction ability (Figures 8C–F).

DISCUSSION

Although considerable advancement has been made in surgical
resection, along with radiotherapy and chemotherapy for glioma

patients, clinical efficacy of these conventional therapies is still far
from satisfactory. Exploring new therapeutic approaches to
improve survival for glioma patients is urgently needed in this
context. With the rise of immunotherapy, an unprecedented
number of clinical trials are under the way to investigate the
clinical applicability of immunotherapy in glioma, encouraged by
the recent FDA approvals of immune checkpoint inhibitors in
serval types of other advanced cancer (Hodges et al., 2017; Jahan
et al., 2018). Hence, specific biomarkers that both predict clinical
outcome and immunotherapeutic responses while also
immunological characteristics in diffuse gliomas are still
urgently to be discovered, in an effort to bolster clinical tools
for immunotherapeutic response assessment and biological
insight of this tumor.

In current study, we systematically explored the association of
the B7-CD28 family genes with glioma outcome, and developed a
B7-CD28 family-based model significantly related to the survival
of glioma patients using TCGA-GBMLGG cohort. We validated
its prognostic value in important clinical subgroups and three
independent cohorts from CGGA database. In addition, we
investigated the role of the gene signature as a predictive
immune marker for immunotherapy and tumor
microenvironment. Afterwards, we further explored the gene
signature-related underlying mechanisms to deepen the
understanding of the cross talk between tumor and immune
system.

Finally, a B7-CD28-based nomogram was established to
predict patient life expectancy contributing to facilitate
personalizing therapy for tumor sufferers. Some studies had
also used public-access databases with large scale samples to
explore the several single B7-CD28 family members in whole
grade glioma. Zhang et al. found that CD276 indicated the
malignant phenotype of glioma and independently predicted

TABLE 2 | Multivariate Cox regression analysis of the B7-CD28 family-based signature and characteristics with.

Characteristics TCGA mRNAseq_325 mRNAseq_693 mRNA-array

HR (95%CI) P HR (95%CI) P HR (95%CI) P HR (95%CI) P

Risk score
High vs. Low 2.581 (1.503–4.434) 0.001 2.826 (1.943–4.108) <0.001 1.555 (1.209–2.001) 0.001 1.362 (0.988–1.879) 0.060

Age
>47 vs. ≤47 2.661 (1.666–4.252) <0.001 1.574 (1.110–2.234) <0.001 1.144 (0.898–1.459) 0.277 1.642 (1.175–2.293) 0.004

Sex
Female vs. Male 0.939 (0.672–1.312) 0.711 1.117 (0.825–1.511) 0.475 0.939 (0.749–1.175) 0.581 0.906 (0.666–1.231) 0.528

Grade
Grade IV vs. Grade II/III 2.523 (1.561–4.076) <0.001 2.633 (1.835–3.778) <0.001 2.580 (1.924–3.459) <0.001 3.501 (2.382–5.146) <0.001

IDH status
Mutant vs. Wildtype 0.281 (0.156–0.506) <0.001 1.118 (0.765–1.634) 0.556 0.509 (0.384–0.674) <0.001 0.878 (0.598–1.291) 0.508

MGMT promoter status
Methylated vs.

Unmethylated
0.882 (0.594–1.308) 0.531

TERT promoter status
Mutant vs. Wildtype 0.860 (0.490–1.497) 0.594

Radiotherapy
Yes vs. No 0.485 (0.312–0.754) <0.001 0.673 (0.466–0.971) 0.034 1.023 (0.711–1.471) 0.903 0.519 (0.324–0.830) 0.006

Chemotherapy
Yes vs. No 0.858 (0.627–1.173) 0.337 0.959 (0.693–1.328) 0.758 1.078 (0.775–1.499) 0.655

Overall survival.
Abbreviations: HR, hazard ratio; CI, confidence intervals.
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worse prognosis in glioma patients (Zhang et al., 2018). And the
association of the CD276 collaborating with other checkpoint
members with dysfunctional phenotype of T cell was also
observed. However, we conducted a comprehensive analysis
on all B7-CD28 family genes in our study to provide in-depth
understanding of these genes in gliomas.

The core genes constituted our genetic signature were CD276
(B7-H3), CD274 (PD-L1), PDCD1LG2 (PD-L2) and CD80 (B7-
1), belonging to the B7 family. CD276 is overexpressed in various
human malignancies, although its receptor has not been
identified yet (Zhang et al., 2018). Compared separate B7-
CD28 family member, we found CD276 was the strongest

factor influencing the outcome. And recent studies have
reported that CD276 had functions on T-cell co-inhibition
contributing to tumor cell evasion (Wang et al., 2014; Picarda
et al., 2016; Lee et al., 2017). Also, CD276 may act as a potent
adjunct to facilitating the immune evasion function of
macrophages (Zhang et al., 2018) and NK cells. In our study,
through specific immune cell population association analysis, the
associations of the signature with myeloid dendritic cells and
monocytic lineage were also observed, indicating that signature
could also act as indicator for the immune evasion function of the
immune cells such as macrophages. Better elucidating the
involvement of CD276 pathway in immune responses will

FIGURE 3 | Kaplan–Meier curves of overall survival for high-risk and low-risk patients stratified by pathological grade (A–D), IDH status (E–H) in TCGA and
mRNAseq_325 cohorts. LGG, low grade glioma; GBM, glioblastoma.
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promote the great development of immunotherapy for glioma.
CD274 was commonly expressed on normal cells and immune
cells, while PDCD1LG2 mainly expressed on antigen-presenting
cells; they bind with programmed cell death protein-1 (PD-1) on
T cell surface playing important roles in suppression of T-cell
immunity and are, accordingly, important targets for blockade-
based immunotherapy in cancer (Yearley et al., 2017; Wang et al.,
2019). CD80 (B7-1) and CD86(B7-2) are ligands typically
expressed on antigen presenting cells (Zhang et al., 2014).
They can interact with CD28 to trigger a costimulatory signal

that potentiates T-cell activation and function, but can also
inhibit certain effector T-cell responses via interacting with
CTLA-4, contributing to a balance between T-cell activation
and suppression (Stamper et al., 2001; Intlekofer and
Thompson, 2013; Chen et al., 2020). And we observed that
increased expression of CD80 was a risk factor related to
worse survival in our study, suggesting that balance has shifted
and interaction between CD80 and CTLA-4 may account for the
dominant in diffuse glioma. Thus, targeting CD80 may become
an attractive strategy in immunotherapy for glioma. Consistent

FIGURE 4 | The distribution of the signature-based risk scores in stratified patients by pathological grade (A–D) and IDH status (I–L) in all cohorts. ROC curve
analysis showed that B7-CD28 family-based signature had highly sensitivity and specificity to predict pathological grade (E–H) and IDH status (M–P) in diffuse glioma.
pp, ppp and pppp represent p < 0.01, p < 0.001 and p < 0.0001, respectively.
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with all above, genes positively correlated with the signature-
based risk score were mainly enriched in immune related process.
Through analyzing the association of the signature with
inflammatory-related clusters and Treg signatures expression,

we uncovered its related biological function involving in
inflammation cells transduction signals activation and
immunosuppression. Furthermore, the good relationship
between the risk score and other immune checkpoints was

FIGURE 5 | The B7-CD28 family-based signature was tightly associated with immune score (A,B), stromal score (C,D) and infiltrated cells in tumor
microenvironment (E,F) in TCGA and mRNAseq_325 cohorts.

FIGURE 6 | Gene set enrichment analysis indicated that genes positively correlated with the signature-based risk score were mainly enriched in adaptive immune
response, B cell mediated immunity, positive regulation of T cell activation, T cell proliferation and toll-like receptor signaling pathway in TCGA (A) and mRNAseq_325
cohorts (B).
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observed, indicating our prognostic model could also assist in
selecting ideal immunotherapies for individual patients and
optimizing immunotherapy strategies.

Although the B7-CD28 family gene signature may have
substantial clinical value for diffuse glioma, several limitations
of this study should be noted as well. Firstly, our study enrolled
multi-institutional cohorts for analysis, but for its retrospective
nature, further prospective studies are still needed. Meanwhile,
the reliability of our molecular results remains challenged without
validation in vitro or in vivo experiments. Secondly, since our

model was only in consideration of B7-CD28 family members, it
may could reflect more tumor related characteristics but may also
lost some prognostic predictive ability. Thirdly, patients we
analyzed were not treated by immunotherapy, it is unclear
whether the prognostic signature is still stable in patients
received such treatment. Finally, our B7-CD28 family-based
nomogram could improve predictive performance by
incorporating more clinical parameters.

In summary, we identified and validated a B7-CD28 family-
based signature that had independent prognostic significance for

FIGURE 7 | The associations of the B7-CD28 family-based signature with inflammatory activities (A,B), Treg signatures expression (C,D) and several checkpoint
members (E). pppp represents p < 0.0001 in TCGA and mRNAseq_325 cohorts.
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diffuse glioma patients, and had great potential to reflect the
clinicopathologic, molecular, and immunological features of the
tumor. Our workflow was summarized in Supplementary Figure
S5. Considering the crucial role of B7-CD28 family in
development of immunotherapy, underlying mechanisms
should be further elucidated to find out more ideal therapeutic
targets. Moreover, this is the first mathematical model based on
this gene family with the aim of providing novel insights into
immunotherapy for diffuse glioma, and further validations were
also required.
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