

The Systemic Inflammation Response Index as an Independent Predictor of Survival in Breast Cancer Patients: A Retrospective Study

Mengliu Zhu¹, Li Chen^{1,2}, Xiangyi Kong¹, Xiangyu Wang¹, Yi Fang¹*, Xingrui Li²* and Jing Wang¹*

¹Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, ²Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China

OPEN ACCESS

Edited by: Na Luo, Nankai University, China

Reviewed by:

Shun Gong, Northern Theater General Hospital, China Anqiang Wang, Peking University Cancer Hospital, China

*Correspondence:

Yi Fang fangyi@cicams.ac.cn Xingrui Li lixingrui@tjh.tjmu.edu.cn Jing Wang wangjing@cicams.ac.cn

Specialty section:

This article was submitted to Molecular Diagnostics and Therapeutics, a section of the journal Frontiers in Molecular Biosciences

> Received: 16 January 2022 Accepted: 08 February 2022 Published: 28 February 2022

Citation:

Zhu M, Chen L, Kong X, Wang X, Fang Y, Li X and Wang J (2022) The Systemic Inflammation Response Index as an Independent Predictor of Survival in Breast Cancer Patients: A Retrospective Study. Front. Mol. Biosci. 9:856064. doi: 10.3389/fmolb.2022.856064 There is a close relationship between inflammatory cells and tumors, but the pathways that connect the two remain unclear. This research explores the clinical and prognostic value of the systemic inflammation response index (SIRI) in breast cancer patients. The study included 477 breast cancer patients who underwent neoadjuvant chemotherapy and 308 breast cancer patients who did not in our center between January 1998 and December 2016. Optimal SIRI threshold values were determined using the receiver operating characteristic curve (ROC). Patients were then reclassified as SIRI ≥0.80 group (High SIRI group) and SIRI <0.80 group (Low SIRI group). The outcomes were analyzed by statistical methods. The univariate and multivariate analyses demonstrated that SIRI independently predicted survival in breast cancer. The disease-free survival (DFS) and overall survival (OS) in patients with low SIRI scores were significantly longer in contrast to those with high SIRI scores (41.50 vs. 37.63 months, and 64.57 vs. 58.42 months). Further subgroup analyses revealed that low SIRI score patients who also had either early breast cancer, advanced breast cancer, or different molecular subtypes also possessed longer mean survival time of DFS and OS in contrast to those with high SIRI levels ($\chi 2 = 2.379$, p =0.123, and $\chi^2 = 5.153$, p = 0.023; $\chi^2 = 11.080$, p = 0.0009 and $\chi^2 = 15.900$, p < 0.0001; $\chi^2 = 16.020, p < 0.0001$ and $\chi^2 = 22.050, p < 0.0001$, respectively). SIRI serves as an easily accessible, replicable, and minimally invasive prognostic tool in breast cancer patients. Lower SIRI scores were predictive of a longer DFS and OS after surgery in breast cancer patients. SIRI may serve as a marker to guide clinical management and prognostication of breast cancer.

Keywords: breast cancer, neoadjuvant chemotherapy, systemic inflammation response index (SIRI), prognosis, disease-free survival (DFS), overall survival (OS)

INTRODUCTION

Breast cancer is among the most frequently diagnosed cancers in females. This malignancy exerts a deleterious effect on patient quality of life and is a significant public health issue (Dan et al., 2020). The GLOBOCAN 2018 Research reports that there are more than 2 million new cases of breast cancer annually, with more than 600,000 deaths due to breast cancer occurring each year. There is a

1

concerning trend towards a younger age of the first diagnosis, along with an overall higher number of breast cancer cases (Bray et al., 2020). Recent data in China shows a marked rise in breast cancer incidence, especially in its developed coastal cities. Experts predict that breast cancer incidences in China are expected to reach a staggering 100 cases per 100,000 postmenopausal women in the future (Li et al., 2019). Despite the comprehensiveness of current treatment modalities of breast cancer that includes surgery, adjuvant chemotherapy, radiotherapy, targeted therapy, immunotherapy, and Chinese medicine treatment, patient outcomes are still unsatisfactory (Chen et al., 2017).

The tumor microenvironment, which includes the extracellular matrix, stromal cells, lymphatic and blood vessels, as well as resident immune cells, has been found to be a key determinant in dictating tumor behavior. Of interest is the role of inflammation, which is postulated to be influential in tumor progression and metastasis (Singh et al., 2019). Recent studies have confirmed that various markers of the systemic inflammatory response, for example, the C-reactive Protein (CRP), Platelet to Lymphocyte Ratio (PLR), Lymphocyte to Monocyte Ratio (LMR), and Neutrophil to Lymphocyte Ratio (NLR), all correlate to the prognosis of a myriad of tumors such as high-grade glioma (He et al., 2021b), colorectal cancer (Dagmura et al., 2021), head and neck cancer (Saroul et al., 2021), oral squamous cell cancer (Yamagata et al., 2021), and gastric cancer (Liu et al., 2021). The latest evidence also suggests that a similar tumor-inflammation relationship exists for breast cancer, indicating that quantifying the inflammatory response may be useful in treating and prognosticating breast cancer (Dong et al., 2021). Common blood indices, including platelets (P), monocytes (M), neutrophils (N), hemoglobin (Hb), total red blood cell count (R), total white blood cell count (WBC), and serum albumin (ALB), along with its derivatives, NLR, MLR, LMR, PLR, D-NLR, prognostic nutritional value [PNI, 10 × serum ALB $(g/dL) + 0.005 \times \text{total lymphocyte count}]$, and SIRI (Neutrophil × Platelet/Lymphocyte) may all be reflective of malignant tumor states (Mantovani et al., 2008). Breast cancer is currently diagnosed by a combination of pathological assessments of tissue samples taken via core needle biopsy (CNB) and various imaging modalities including breast ultrasound, mammography, and magnetic resonance imaging (MRI) (Al-Hattali et al., 2019). Nevertheless, the concept of being able to prognosticate breast cancer based on routine peripheral blood examinations is attractive given the ease of access, replicability, and lower cost. This investigation seeks to determine the utility of common inflammatory markers in the context of breast cancer.

MATERIALS AND METHODS

Study Population

Our study comprised 785 breast cancer patients. Of these, 477 underwent surgery and received neoadjuvant chemotherapy (NACT) in our center between January 1998 to December 2016 were included in our study. The control cohort comprised308 breast cancer patients who received surgical treatment only at the same center and during the same timeframe. All participants underwent routine examination and examination on admission, a comprehensive assessment of their condition, and provided written informed consent prior to study inclusion. All patients were diagnosed by CNB or histopathology. TNM staging was carried out in accordance with the eighth edition AJCC (American Joint Committee on Cancer) and the Union for International Cancer Control (UICC) (Weigelt and Reis-Filho, 2009; Cserni et al., 2018).

Inclusion and Exclusion Criteria

The inclusion criterion was as follows: 1) Breast cancer was confirmed by CNB or pathological examination; 2) Zubrod-Ecog-WHO (ZPS) between 0 and 2 and Karnofsky Performance Scores (KPS) \geq 80; 3) Expected to survive more than 3 months; 4) Patients did not receive anti-tumor treatment before admission, including chemotherapy, radiotherapy, immunotherapy, interventional therapy, and traditional Chinese medicine treatment; 5) Surgery was performed after the completion of NACT; 6) Admission examination showed no obvious abnormalities in liver, kidney, lung, heart, brain, and bone marrow; 7) Inpatient medical records and postoperative follow-up data were complete.

The following was our exclusion criteria: 1) The possibility of distant organ metastasis was not able to be excluded on imaging examinations such as abdominal B-ultrasound, chest Computed Tomography (CT), and breast MRI, or the breast tumor was not able to be resected due to the definite presence of metastasis; 2) Patients received anti-tumor therapy, such as radiotherapy, chemotherapy, and targeted therapy; 3) The presence of serious comorbidities that were refractory to treatment such as hypertension, heart disease, and diabetes; 4) Advanced breast cancer, including breast cancer ulcers, inflammatory breast cancer, and infected tumors; 5) Blood transfusion history within 1 month before receiving NACT; 6) Patients who were poorly compliant and not cooperative with treatment.

Chemotherapy Regimen

The NACT treatment regimen included anthracyclines and/or taxanes. Protocols used included the AC regimen, ACF regimen, CT regimen, ACT regimen, AT regimen, and TP regimen.

Peripheral Venous Blood Collection Method

All patients took an early morning fasting peripheral venous blood sample of 2-5 ml. Peripheral venous blood specimens were obtained within 7 days before surgery in patients without neoadjuvant chemotherapy. And others were obtained within 7 days before neoadjuvant chemotherapy. WBC, neutrophils, hemoglobin, lymphocytes, monocytes, platelets, eosinophils, basophils, and other hematological parameters in peripheral venous blood were evaluated using the XE-2100 hematology analyzer (Sysmex, KOBE, Japan). SIRI was calculated based on the following formula: (neutrophils \times monocytes)/lymphocyte count.

Evaluation Assays

The size of the tumor, invasion depth, and the degree of lymph node metastasis were determined by breast ultrasound, mammography, and MRI. Tumor diameters were taken as their largest measurable diameter. The eighth edition of AJCC guided TNM staging (Weigelt and Reis-Filho, 2009; Cserni et al., 2018). The main pathological types of breast cancer were invasive lobular carcinoma, invasive ductal carcinoma, and other types. Molecular classification of breast cancer were triple-negative breast cancers, HER2 overexpressing tumors, Luminal B/HER-2-negative, Luminal B/HER2-positive, and Luminal A types (He et al., 2021a). The Miller and Payne histological grade (MPG) allowed for evaluation of the reduction of tumor cells after NACT and is divided into five grades (Therasse et al., 2000). The efficacy of NACT on tumor lesions after treatment was done in accordance with the 2000 RECIST criteria (Amat et al., 2002). The histological classification of breast cancer is based on the Nottingham Joint Histological Classification (Elston and Ellis modification of the Scarff-Bloom-Richardson grading protocol) (Kaba et al., 2004). NACT toxicity and adverse effects were assessed based on the National Cancer Institute Common Toxicity Criteria (NCI-CTC) (Diakos et al., 2014).

Follow-Up

Follow-up was performed according to the NCCN (2020) guidelines: 1) every 3 months for 1–2 years postoperatively, 2) every 6 months for 3–5 years postoperatively, and 3) every year after 5 years until death. Disease-Free Survival (DFS) was the duration between postoperative day 1 until tumor recurrence, distant metastasis, or death from other causes. The duration between postoperative day 1 until the last follow-up or death was defined as Overall Survival (OS). The duration between postoperative day 1 until death or the last follow-up was deemed as survival.

Statistical Methods

SPSS 17.0 (version 17.0; SPSS Inc., Chicago, IL, United States) and GraphPad Prism Software (Version 8.0; GraphPad Inc., La Jolla, CA, United States) were used to carry out all statistical analyses. The critical optimal threshold values of related variables were identified utilizing receiver operating characteristic curves (ROC), while the area under the curve (AUC) value was used to evaluate the prognostic accuracy. Qualitative data was depicted in terms of the number of cases (%), with intergroup comparisons carried out *via* the χ^2 test or Fisher's exact test. OS was determined via the Kaplan-Meier test. The survival rate between the two groups was contrasted with the log-rank method. Univariate and multivariate Cox proportional hazards regression models were used to discern potential prognostic factors. The association between various parameters and breast cancer prognosis was determined using hazard ratios (HRs) and 95% confidence intervals (CIs). A two-tailed p value of less than 0.05 was interpreted as achieving statistical significance.

RESULTS

SIRI is Predictive of Clinical Outcomes in Breast Cancer Before Neoadjuvant Chemotherapy

We applied the ROC curve to confirm that the optimal SIRI threshold was 0.80. Based on the optimal threshold, two SIRI

groups were formed: SIRI <0.80 group (Low SIRI group) and SIRI \geq 0.80 group (High SIRI group). All enrolled patients were female between ages 22–82 years. The average age of 47 \pm 10 years, and the median age of 47 years 756 patients (96.31%) were married, and 29 patients (3.69%) were unmarried. BMI ranged from 16.36 to 38.19, with a median BMI of 24.00 and a mean BMI of 24.45 \pm 3.55. 292 patients were postmenopausal (37.20%), and 493 patients were premenopausal (62.80%). ABO blood group distribution showed that there were 214 patients with type A (27.26%), 262 patients with type B (33.38%), 234 patients with type O (29.81%), and 75 patients with type AB (9.55%). All patients received surgical treatment, among which 606 cases (77.20%) underwent total resection of breast cancer and 179 cases (22.80%) underwent breast-conserving surgery. There were 758 cases of ductal carcinoma (96.56%), 13 cases of lobular carcinoma (1.66%), and 14 cases of other types of breast cancer (1.78%). The histological classification of breast cancer included 133 cases of grade I (16.94%), 431 cases of grade II (54.90%), and 221 cases of grade III (28.15%). There were 516 cases (65.73%) who received postoperative chemotherapy and 269 cases (34.27%) who did not receive postoperative chemotherapy. 483 cases (61.53%) received endocrine therapy after breast cancer surgery, and 302 cases (38.47%) did not receive endocrine therapy. 202 cases (25.73%) received targeted therapy after breast cancer surgery, while 583 cases (74.27%) did not receive targeted therapy. The clinical data of 785 breast cancer patients are depicted in Table 1.

- 1) In all breast cancer patients, there were 484 cases in the low SIRI group and 301 cases in the high SIRI group. Statistical analysis showed that BMI ($\chi 2 = 4.801$, p = 0.028), clinical T stage ($\chi 2 = 19.137$, p = 0.0007), clinical N stage ($\chi 2 = 14.841$, p = 0.005), clinical TNM stage ($\chi 2 = 12.114$, p = 0.002), postoperative chemotherapy regimen ($\chi 2 = 16.590$, p = 0.005), postoperative chemotherapy times ($\chi 2 = 13.066$, p = 0.0003), and postoperative targeted therapy ($\chi 2 = 9.697$, p = 0.002) demonstrated statistically significant differences between the two SIRI groups.
- 2) In the NACT group (477 patients), there were 267 cases in the low SIRI group and 210 cases in the high SIRI group. Statistical analysis showed that clinical T stage ($\chi 2 = 10.284$, p = 0.036), neoadjuvant chemotherapy regimen ($\chi 2 = 46.320$, p < 0.0001), postoperative chemotherapy ($\chi 2 = 9.882$, p = 0.043), postoperative chemotherapy times ($\chi 2 = 5.320$, p = 0.021) and postoperative targeted ($\chi 2 = 4.153$, p = 0.042) were statistically significant.
- 3) In the non-NACT group (308 breast cancer patients), there were 217 cases in the low SIRI group and 91 cases in the high SIRI group. Statistical analysis showed that postoperative chemotherapy ($\chi 2 = 13.250$, p = 0.021) was statistically significant.

Hematological Parameters

Breast cancer patient nutritional statuses were evaluated using several parameters, with their median values shown in brackets: ALB (45.2 g/L), blood glucose (GLU) (5.33 mmol/L), alkaline

Parameters	N		SIRI 78	5		N		SIRI 47	7		Ν		SIRI 30	8	
Cases (n)	785	Low SIRI 484	High SIRI 301	χ2	p value		Low SIRI 267	High SIRI 210	χ 2	p value		Low SIRI 217	High SIRI 91	χ2	p value
Age (years)				0.193	0.660				0.054	0.816				1.504	0.220
<47	386	235	151			230	130	100			156	105	51		
	(49.17%)	(48.55%)	(50.17%)			(48.22%)	(48.69%)	(47.62%)			(50.65%)	(48.39%)	(56.04%)		
≥47	399	249	150			247	137	110			152	112	40		
	(50.83%)	(51.45%)	(49.83%)			(51.78%)	(51.31%)	(52.38%)			(49.35%)	(51.61%)	(43.96%)		
Marital status				0.117	0.732				0.690	0.406				3.013	0.083
Married	756	467	289			457	254	203			299	213	86		
	(96.31%)	(96.49%)	(96.01%)			(95.81%)	(95.13%)	(96.67%)			(97.08%)	(98.16%)	(94.51%)		
Unmarried	29 (3.69%)	17 (3.51%)	12 (3.99%)			20 (4.19%)	13 (4.87%)	7 (3.33%)			9 (2.92%)	4 (1.84%)	5 (5.49%)		
Occupation				3.276	0.194				0.133	0.936				7.681	0.022
Mental worker	358	226	132			238	135	103			120	91	29		
	(45.61%)	(46.69%)	(43.85%)			(49.90%)	(50.56%)	(49.05%)			(38.96%)	(41.94%)	(31.87%)		
Manual worker	125	83	42			66 (13.84%)	37	29			59	46	13		
	(15.92%)	(17.15%)	(13.95%)				(13.86%)	(13.81%)			(19.16%)	(21.20%)	(14.29%)		
Others	302	175	127			173	95	78			129	80	49		
	(38.47%)	(36.16%)	(42.19%)			(36.27%)	(35.58%)	(37.14%)			(41.88%)	(36.87%)	(53.85%)		
Weight (kg)				1.014	0.314				0.677	0.411				0.465	0.495
<62.00	383	243	140			235	136	99			148	107	41		
	(48.79%)	(50.21%)	(46.51%)			(49.27%)	(50.94%)	(47.14%)			(48.05%)	(49.31%)	(45.05%)		
≥62.00	402	241	161			242	131	111			160	110	50		
	(51.21%)	(49.79%)	(53.49%)			(50.73%)	(49.06%)	(52.86%)			(51.95%)	(50.69%)	(54.95%)		
Height (m)				1.696	0.193				0.036	0.850				2.244	0.134
<1.60	337	199	138			218	121	97			119	78	41		
	(42.93%)	(41.12%)	(45.85%)			(45.70%)	(45.32%)	(46.19%)			(38.64%)	(35.94%)	(45.05%)		
≥1.60	448	285	163			259	146	113			189	139	50		
	(57.07%)	(58.88%)	(54.15%)			(54.30%)	(54.68%)	(53.81%)			(61.36%)	(64.06%)	(54.95%)		
BMI				4.801	0.028				2.674	0.102				3.186	0.074
<24.00	391	256	135			245	146	99			146	110	36		
	(49.81%)	(52.89%)	(44.85%)			(51.36%)	(54.68%)	(47.14%)			(47.40%)	(50.69%)	(39.56%)		
≥24.00	394	228	166			232	121	111			162	107	55		
	(50.19%)	(47.11%)	(55.15%)			(48.64%)	(45.32%)	(52.86%)		0.407	(52.60%)	(49.31%)	(60.44%)		
Menarche age (year)		100	105	1.076	0.300	100	100		0.484	0.487			0.5	0.246	0.620
<14	308	183	125			196	106	90			112	77	35		
	(39.24%)	(37.81%)	(41.53%)			(41.09%)	(39.70%)	(42.86%)			(36.36%)	(35.48%)	(38.46%)		
≥14	477	301	176			281	161	120			196	140	56		
	(60.76%)	(62.19%)	(58.47%)			(58.91%)	(60.30%)	(57.14%)			(63.64%)	(64.52%)	(61.54%)		
Menopause	400	007	100	1.119	0.290	000	1 10	100	2.674	0.102	010	1 40		0.083	0.773
No	493	297	196			280	148	132			213	149	64		
Vee	(62.80%)	(61.36%)	(65.12%)			(58.70%)	(55.43%)	(62.86%)			(69.16%)	(68.66%)	(70.33%)		
Yes	292	187	105			197	119	78			95	68	27		
	(37.20%)	(38.64%)	(34.88%)	0.440	0.054	(41.30%)	(44.57%)	(37.14%)	4 400	0.054	(30.84%)	(31.34%)	(29.67%)	0.050	0 500
ABO blood type	014	100	05	2.449	0.654	100	60	64	4.406	0.354	00	61	01	2.856	0.582
A	214	129	85			132	68 (05.470/)	64			82	61	21		
D	(27.26%)	(26.65%)	(28.24%)			(27.67%)	(25.47%)	(30.48%)			(26.62%)	(28.11%)	(23.08%)		
В	262	168	94			145	83	62			117	85	32		
	(33.38%)	(34.71%)	(31.23%)			(30.40%)	(31.09%)	(29.52%)			(37.99%)	(39.17%)	(35.16%)		

Parameters	N		SIRI 78	5		N		SIRI 47	77		Ν		SIRI 30	8	
Cases (n)	785	Low SIRI 484	High SIRI 301	χ2	p value		Low SIRI 267	High SIRI 210	χ2	p value		Low SIRI 217	High SIRI 91	χ 2	p value
0	234 (29.81%)	146 (30.17%)	88 (29.24%)			146 (30.61%)	90 (33.71%)	56 (26.67%)			88 (28.57%)	56 (25.81%)	32 (35.16%)		
AB	75 (9.55%)	41 (8.47%)	34 (11.30%)			54 (11.32%)	26 (9.74%)	28 (13.33%)			21 (6.82%)	15 (6.91%)	6 (6.59%)		
Tumor site			(0.049	0.824			(,	1.404	0.236				2.417	0.120
Right	369 (47.01%)	226 (46.69%)	143 (47.51%)			233 (48.85%)	124 (46.44%)	109 (51.90%)			136 (44.16%)	102 (47.00%)	34 (37.36%)		
Left	416 (52.99%)	258 (53.31%)	158 (52.49%)			244 (51.15%)	143 (53.56%)	101 (48.10%)			172 (55.84%)	115 (53.00%)	57 (62.64%)		
Clinical T stage				19.137	0.001				10.284	0.036				3.161	0.531
T1	168 (21.40%)	113 (23.35%)	68 (22.59%)			65 (13.63%)	43 (16.10%)	22 (10.48%)			103 (33.44%)	70 (32.26%)	33 (36.26%)		
T2	413 (52.61%)	269 (55.58%)	132 (43.85%)			226 (47.38%)	133 (49.81%)	93 (44.29%)			187 (60.71%)	136 (62.67%)	51 (56.04%)		
Т3	131 (16.69%)	71 (14.67%)	59 (19.60%)			115 (24.11%)	62 (23.22%)	53 (25.24%)			16 (5.19%)	9 (4.15%)	7 (7.69%)		
T4	73 (9.30%)	31 (6.40%)	42 (13.95%)			71 (14.88%)	29 (10.86%)	42 (20.00%)			2 (0.65%)	2 (0.92%)	0 (0.00%)		
Clinical N stage				14.841	0.005				0.665	0.956				5.613	0.230
NO	299 (38.09%)	210 (43.39%)	90 (29.90%)			73 (15.30%)	44 (16.48%)	29 (13.81%)			226 (73.38%)	166 (76.50%)	60 (65.93%)		
N1	233 (29.68%)	135 (27.89%)	97 (32.23%)			164 (34.38%)	90 (33.71%)	74 (35.24%)			69 (22.40%)	45 (20.74%)	24 (26.37%)		
N2	160 (20.38%)	88 (18.18%)	72 (23.92%)			151 (31.66%)	84 (31.46%)	67 (31.90%)			9 (2.92%)	4 (1.84%)	5 (5.49%)		
N3	93 (11.85%)	51 (10.54%)	42 (13.95%)			89 (18.66%)	49 (18.35%)	40 (19.05%)			4 (1.30%)	2 (0.92%)	2 (2.20%)		
Clinical TNM stage				12.114	0.002				1.930	0.381				0.555	0.758
I	92 (11.72%)	66 (13.64%)	26 (8.64%)			14 (2.94%)	10 (3.75%)	4 (1.90%)			78 (25.32%)	56 (25.81%)	22 (24.18%)		
II	382 (48.66%)	248 (51.24%)	134 (44.52%)			168 (35.22%)	97 (36.33%)	71 (33.81%)			214 (69.48%)	151 (69.59%)	63 (69.23%)		
Ш	311 (39.62%)	170 (35.12%)	141 (46.84%)			295 (61.84%)	160 (59.93%)	135 (64.29%)			16 (5.19%)	10 (4.61%)	6 (6.59%)		
Neoadjuvant															
Chemotherapy Chemotherapy									46.320	<0.0001					
regimen															
EC/ECF						28 (5.87%)	21 (7.87%)	7 (3.33%)							
CT/ECT						27 (5.66%)	21 (7.87%)	6 (2.86%)							
ET						223	131	92							
TP						(46.75%) 141 (20.56%)	(49.06%) 61 (22.85%)	(43.81%) 80							
Others						(29.56%) 58 (12.16%)	(22.85%) 33 (12.36%)	(38.10%) 25 (11.90%)							
							(12.0070)	(11.9070)					(Continued o	n following	g page)

SIRI in Breast Cancer

Zhu et al.

TABLE 1 | (Continued) Demographic and clinicopathologic characteristics of 785 patients with breast cancer.

Parameters	N		SIRI 78	5		N		SIRI 47	7		Ν		SIRI 30	8	
Cases (n)	785	Low SIRI 484	High SIRI 301	χ2	<i>p</i> value		Low SIRI 267	High SIRI 210	χ2	p value		Low SIRI 217	High SIRI 91	χ 2	p value
Chemotherapy times									3.407	0.065					
<6						134	84	50							
						(28.09%)	(31.46%)	(23.81%)							
≥6						343	183	160							
						(71.91%)	(68.54%)	(76.19%)							
Response									1.326	0.857					
CR						7 (1.47%)	6 (2.25%)	1 (0.48%)							
PR						312	169	143							
00						(65.41%)	(63.30%)	(68.10%)							
SD						151	86	65							
PD						(31.66%)	(32.21%)	(30.95%)							
Miller and Payne grade						7 (1.47%)	6 (2.25%)	1 (0.48%)	9.371	0.053					
1						22 (4.61%)	11 (4.12%)	11 (5.24%)	9.371	0.000					
2						126	70	56							
2						(26.42%)	(26.22%)	(26.67%)							
3						177	112	65							
-						(37.11%)	(41.95%)	(30.95%)							
4						62 (13.00%)	26 (9.74%)	36							
						. ,	, ,	(17.14%)							
5						90 (18.87%)	48	42							
							(17.98%)	(20.00%)							
Pathological response									0.024	0.876					
pCR						72 (15.09%)	40	32							
							(14.98%)	(15.24%)							
non-pCR						405	229	176							
						(84.91%)	(85.77%)	(83.81%)							
Post-chemotherapy				16.590	0.005				6.457	0.264				13.250	0.021
regimen							//>								
EC/ECF	125	88	37			43 (9.01%)	25 (9.36%)	18 (8.57%)			82	63	19		
07/507	(15.92%)	(18.18%)	(12.29%)				00 (7 400()	10 (1 700()			(26.62%)	(29.03%)	(20.88%)		
CT/ECT	125	75	50			30 (6.29%)	20 (7.49%)	10 (4.76%)			95	55	40		
ET	(15.92%) 97	(15.50%)	(16.61%)			07 (7 760/)	05 (0.060/)	10 (5 710/)			(30.84%) 60	(25.35%)	(43.96%)		
	(12.36%)	71 (14.67%)	26 (8.64%)			37 (7.76%)	25 (9.36%)	12 (5.71%)			(19.48%)	46 (21.20%)	14 (15.38%)		
TP	61 (7.77%)	(14.07 %) 37 (7.64%)	24 (7.97%)			39 (8.18%)	23 (8.61%)	16 (7.62%)			(19.40%) 22 (7.14%)	(21.20 <i>%</i>) 14 (6.45%)	(13.30 <i>%</i>) 8 (8.79%)		
Others	108	68	40			81 (16.98%)	48	33			27 (8.77%)	14 (0.43 <i>%</i>) 20 (9.22%)	7 (7.69%)		
Others	(13.76%)	(14.05%)	(13.29%)			01 (10.9070)	(17.98%)	(15.71%)			21 (0.1170)	20 (3.2270)	1 (1.0370)		
NO	269	145	124			247(51.78%)	126	121			22 (7.14%)	19 (8.76%)	3 (3.30%)		
	(34.27%)	(29.96%)	(41.20%)			(0 0 /0)	(47.19%)	(57.62%)			(0 (0.0070)		
Type of surgery	(0.121.70)	(2010070)	(0,0)	0.082	0.775		((01.02,0)	0.037	0.848				0.654	0.419
Mastectomy	606	372	234			406	228	178			200	144	56		2
,	(77.20%)	(76.86%)	(77.74%)			(85.12%)	(85.39%)	(84.76%)			(64.94%)	(66.36%)	(61.54%)		
Breast-conserving	179	112	67			71 (14.88%)	39	32			108	73	35		
surgery	(22.80%)	(23.14%)	(22.26%)				(14.61%)	(15.24%)			(35.06%)	(33.64%)	(38.46%)		
Tumor size (cm)				0.785	0.675				0.512	0.774				0.016	0.992
													(Continued o	n following	

TABLE 1 | (Continued) Demographic and clinicopathologic characteristics of 785 patients with breast cancer.

Parameters	N		SIRI 78	5		N		SIRI 47	7		Ν		SIRI 30	8	
Cases (n)	785	Low SIRI 484	High SIRI 301	χ2	<i>p</i> value		Low SIRI 267	High SIRI 210	χ2	p value		Low SIRI 217	High SIRI 91	χ2	p valu
≤2 cm	437	267	170			263	144	119			174	123	51		
	(55.67%)	(55.17%)	(56.48%)			(55.14%)	(53.93%)	(56.67%)			(56.49%)	(56.68%)	(56.04%)		
> 2 and <5 cm	299	189	110			172	100	72			127	89	38		
	(38.09%)	(39.05%)	(36.54%)			(36.06%)	(37.45%)	(34.29%)			(41.23%)	(41.01%)	(41.76%)		
≥5 cm	49 (6.24%)	28 (5.79%)	21 (6.98%)			42 (8.81%)	23 (8.61%)	19 (9.05%)			7 (2.27%)	5 (2.30%)	2 (2.20%)		
Histologic type				1.481	0.477				0.906	0.636				3.556	0.169
Ductal	758	470	288			461	258	203			297	212	85		
	(96.56%)	(97.11%)	(95.68%)			(96.65%)	(96.63%)	(96.67%)			(96.43%)	(97.70%)	(93.41%)		
Lobular	13 (1.66%)	6 (1.24%)	7 (2.33%)			7 (1.47%)	3 (1.12%)	4 (1.90%)			6 (1.95%)	3 (1.38%)	3 (3.30%)		
Others	14 (1.78%)	8 (1.65%)	6 (1.99%)			9 (1.89%)	6 (2.25%)	3 (1.43%)			5 (1.62%)	2 (0.92%)	3 (3.30%)		
Histologic grade	11(11070)	0 (1.0070)	0 (1.0070)	3.881	0.144	0 (1.00 /0)	0 (2.2070)	0 (111070)	3.327	0.190	0 (1.02 /0)	2 (0.0270)	0 (0.0070)	5.327	0.070
	133	76	57	0.001	0.144	108	54	54	0.021	0.100	25 (8.12%)	22	3 (3.30%)	0.021	0.070
İ	(16.94%)	(15.70%)	(18.94%)			(22.64%)	(20.22%)	(25.71%)			23 (0.1270)	(10.14%)	3 (3.30 /0)		
Ш	. ,	279	. ,			. ,	, ,	,			107	. ,	E A		
II	431		152			244	146	98			187	133	54		
	(54.90%)	(57.64%)	(50.50%)			(51.15%)	(54.68%)	(46.67%)			(60.71%)	(61.29%)	(59.34%)		
III	221	129	92			125	67	58			96	62	34		
	(28.15%)	(26.65%)	(30.56%)			(26.21%)	(25.09%)	(27.62%)			(31.17%)	(28.57%)	(37.36%)		
Pathological TNM classifi	cation														
Pathological T stage				4.021	0.403				2.050	0.727				1.824	0.768
Tis/T0	92	50	42			88 (18.45%)	46	42			4 (1.30%)	4 (1.84%)	0 (0.00%)		
	(11.72%)	(10.33%)	(13.95%)				(17.23%)	(20.00%)							
T1	302	187	115			190	108	82			112	79	33		
	(38.47%)	(38.64%)	(38.21%)			(39.83%)	(40.45%)	(39.05%)			(36.36%)	(36.41%)	(36.26%)		
T2	326	208	118			149	85	64			177	123	54		
	(41.53%)	(42.98%)	(39.20%)			(31.24%)	(31.84%)	(30.48%)			(57.47%)	(56.68%)	(59.34%)		
T3	45 (5.73%)	29 (5.99%)	16 (5.32%)			34 (7.13%)	21 (7.87%)	13 (6.19%)			11 (3.57%)	8 (3.69%)	3 (3.30%)		
T4	20 (2.55%)	10 (2.07%)	10 (3.32%)			16 (3.35%)	7 (2.62%)	9 (4.29%)			4 (1.30%)	3 (1.38%)	1 (1.10%)		
Pathological N stage	20 (2:00 /0)	10 (2101 /0)	10 (010270)	2.054	0.726	10 (0100 /0)	. (210270)	0 (112070)	1.523	0.823	. (0 (110070)	. (1.628	0.804
N0	326	201	125	2.004	0.120	176	96	80	1.020	0.020	150	105	45	1.020	0.004
NO	(41.53%)	(41.53%)	(41.53%)			(36.90%)	(35.96%)	(38.10%)			(48.70%)	(48.39%)	(49.45%)		
N1	175	115	60			101	(33.9078) 62	(38.1076) 39			(40.7070) 74	(40.3976) 53	(49.4376) 21		
INT															
NO	(22.29%)	(23.76%)	(19.93%)			(21.17%)	(23.22%)	(18.57%)			(24.03%)	(24.42%)	(23.08%)		
N2	122	71	51			77 (16.14%)	42	35			45	29	16		
	(15.54%)	(14.67%)	(16.94%)				(15.73%)	(16.67%)			(14.61%)	(13.36%)	(17.58%)		
N3	162	97	65			123	67	56			39	30	9 (9.89%)		
	(20.64%)	(20.04%)	(21.59%)			(25.79%)	(25.09%)	(26.67%)			(12.66%)	(13.82%)			
Pathological TNM				2.384	0.666				1.795	0.773				1.621	0.805
stage															
Tis/T0	74 (9.43%)	43 (8.88%)	31			71 (14.88%)	40	31			3 (0.97%)	3 (1.38%)	0 (0.00%)		
			(10.30%)				(14.98%)	(14.76%)							
1	157	96	61			83 (17.40%)	44	39			74	52	22		
	(20.00%)	(19.83%)	(20.27%)				(16.48%)	(18.57%)			(24.03%)	(23.96%)	(24.18%)		
II	262	171	91			118	72	46			144	99	45		
	(33.38%)	(35.33%)	(30.23%)			(24.74%)	(26.97%)	(21.90%)			(46.75%)	(45.62%)	(49.45%)		
Ш	292	174	118			205	111	94			87	63	24		
	(37.20%)	(35.95%)	(39.20%)			(42.98%)	(41.57%)	(44.76%)			(28.25%)	(29.03%)	(26.37%)		
	(01.20/0)	(00.30/0)	(00.20/0)			(+2.50/0)	(+1.07/0)	(++.10/0)			(20.20/0)	(20.00/0)	(20.01 /0)		

Zhu et al.

SIRI in Breast Cancer

Parameters	Ν		SIRI 78	5		N		SIRI 47	7		Ν		SIRI 30	8	
Cases (n)	785	Low SIRI 484	High SIRI 301	χ2	p value		Low SIRI 267	High SIRI 210	χ 2	p value		Low SIRI 217	High SIRI 91	χ 2	p value
Total lymph nodes				0.204	0.652				2.866	0.091				0.047	0.829
<21	391 (49.81%)	238 (49.17%)	153 (50.83%)			202 (42.35%)	104 (38.95%)	98 (46.67%)			189 (61.36%)	134 (61.75%)	55 (60.44%)		
≥21	394 (50.19%)	246 (50.83%)	148 (49.17%)			275 (57.65%)	163 (61.05%)	112 (53.33%)			119 (38.64%)	83 (38.25%)	36 (39.56%)		
Positive lymph nodes				0.103	0.749				0.175	0.676				0.109	0.742
<1	329 (41.91%)	205 (42.36%)	124 (41.20%)			179 (37.53%)	98 (36.70%)	81 (38.57%)			150 (48.70%)	107 (49.31%)	43 (47.25%)		
≥1	456 (58.09%)	279 (57.64%)	177 (58.80%)			298 (62.47%)	169 (63.30%)	129 (61.43%)			158 (51.30%)	110 (50.69%)	48 (52.75%)		
Postoperative complications				0.002	0.968				0.017	0.898				0.375	0.540
No	728 (92.74%)	449 (92.77%)	279 (92.69%)			449 (94.13%)	251 (94.01%)	198 (94.29%)			279 (90.58%)	198 (91.24%)	81 (89.01%)		
Yes	57 (7.26%)	35 (7.23%)	22 (7.31%)			28 (5.87%)	16 (5.99%)	12 (5.71%)			29 (9.42%)	19 (8.76%)	10 (10.99%)		
Postoperative chemotherapy				10.404	0.001				5.120	0.024				2.881	0.090
No	269 (34.27%)	145 (29.96%)	124 (41.20%)			247 (51.78%)	126 (47.19%)	121 (57.62%)			22 (7.14%)	19 (8.76%)	3 (3.30%)		
Yes	516 (65.73%)	339 (70.04%)	177 (58.80%)			230 (48.22%)	141 (52.81%)	89 (42.38%)			286 (92.86%)	198 (91.24%)	88 (96.70%)		
Postoperative chemotherapy times				13.066	0.0003				5.320	0.021				1.473	0.225
<4	374 (47.64%)	206 (42.56%)	168 (55.81%)			340 (71.28%)	179 (67.04%)	161 (76.67%)			34 (11.04%)	27 (12.44%)	7 (7.69%)		
≥4	411 (52.36%)	278 (57.44%)	133 (44.19%)			137 (28.72%)	88 (32.96%)	49 (23.33%)			274 (88.96%)	190 (87.56%)	84 (92.31%)		
Postoperative radiotherapy	(82.887.8)	(01111/0)	(1.1.070)	0.496	0.481	(2011 270)	(0210070)	(2010070)	0.118	0.732	(0010070)	(0110070)	(0210170)	2.750	0.097
No	196 (24.97%)	125 (25.83%)	71 (23.59%)			119 (24.95%)	65 (24.34%)	54 (25.71%)			77 (25.00%)	60 (27.65%)	17 (18.68%)		
Yes	589 (75.03%)	359 (74.17%)	230 (76.41%)			358 (75.05%)	202 (75.66%)	156 (74.29%)			231 (75.00%)	(72.35%)	(10.0070) 74 (81.32%)		
Postoperative endocrine therapy	(10.0070)	(14.1770)	(10.4170)	1.927	0.165	(10.0070)	(10.0070)	(14.2070)	0.059	0.808	(10.0070)	(12:0070)	(01:0270)	1.563	0.211
No	302 (38.47%)	177 (36.57%)	125 (41.53%)			206 (43.19%)	114 (42.70%)	92 (43.81%)			96 (31.17%)	63 (29.03%)	33 (36.26%)		
Yes	483	307	176			271	153	118			212	154	(30.20%) 58 (63.74%)		
Postoperative targeted therapy	(61.53%)	(63.43%)	(58.47%)	9.697	0.002	(56.81%)	(57.30%)	(56.19%)	4.153	0.042	(68.83%)	(70.97%)	(03.74%)	2.753	0.097
No	583	378	205			332	196	136			251	182	69		
Yes	(74.27%) 202 (25.73%)	(78.10%) 106 (21.90%)	(68.11%) 96 (31.89%)			(69.60%) 145 (30.40%)	(73.41%) 71 (26.59%)	(64.76%) 74 (35.24%)			(81.49%) 57 (18.51%)	(83.87%) 35 (16.13%)	(75.82%) 22 (24.18%)		

TABLE 2 The correlations between nutritional parameters/blood parameters and SIF	RI.
--	-----

Parameters	N		SIRI 78	35		Ν		SIRI 47	77		Ν		SIRI 308	3	
Cases (n)	785	Low SIRI 484	High SIRI 301	χ2	p value		Low SIRI 267	High SIRI 210	χ2	p value		Low SIRI 217	High SIRI 91	χ2	p value
ALT (U/L)				0.820	0.365				0.071	0.791				1.699	0.192
<15	370	234	136			208	115	93			162	119	43 (47.25%)		
	(47.13%)	(48.35%)	(45.18%)			(43.61%)	(43.07%)	(44.29%)			(52.60%)	(54.84%)			
≥15	416	250	166			269	152	117			147	98	49 (53.85%)		
	(52.99%)	(51.65%)	(55.15%)			(56.39%)	(56.93%)	(55.71%)			(47.73%)	(45.16%)	· · · · ·		
AST (U/L)	(,,,,,,,,,	((000000,0)	0.092	0.762	(00000,0)	()	(00000,00)	0.153	0.696	((0.444	0.505
<18	378	231	147			211	116	95			167	115	52 (57.14%)		
	(48.15%)	(47.73%)	(48.84%)			(44.23%)	(43.45%)	(45.24%)			(54.22%)	(53.00%)			
≥18	407	253	154			266	151	115			141	102	39 (42.86%)		
210	(51.85%)	(52.27%)	(51.16%)			(55.77%)	(56.55%)	(54.76%)			(45.78%)	(47.00%)	00 (42.0070)		
LDH (U/L)	(01.0070)	(02.2170)	(01.1070)	4.337	0.037	(00.1170)	(00.0070)	(04.7070)	3.509	0.061	(40.7070)	(47.0070)		0.056	0.813
<167	376	246	130	4.007	0.037	193	118	75	3.309	0.001	183	128	55(60.44%)	0.000	0.015
<107													55(60.44%)		
	(47.90%)	(50.83%)	(43.19%)			(40.46%)	(44.19%)	(35.71%)			(59.42%)	(58.99%)	00 (00 500)		
≥167	409	238	171			284	149	135			125	89	36 (39.56%)		
	(52.10%)	(49.17%)	(56.81%)			(59.54%)	(55.81%)	(64.29%)			(40.58%)	(41.01%)			
GGT (U/L)				2.314	0.128				1.413	0.235				0.084	0.772
<17	366	236	130			203	120	83			163	116	47 (51.65%)		
	(46.62%)	(48.76%)	(43.19%)			(42.56%)	(44.94%)	(39.52%)			(52.92%)	(53.46%)			
≥17	419	248	171			274	147	127			145	101	44 (48.35%)		
	(53.38%)	(51.24%)	(56.81%)			(57.44%)	(55.06%)	(60.48%)			(47.08%)	(46.54%)			
ALP (U/L)				0.273	0.601				2.149	0.143				1.369	0.242
<64	377	236	141			227	135	92			150	101	49 (53.85%)		
	(48.03%)	(48.76%)	(46.84%)			(47.59%)	(50.56%)	(43.81%)			(48.70%)	(46.54%)			
≥64	408	248	160			250	132	118			158	116	42 (46.15%)		
	(51.97%)	(51.24%)	(53.16%)			(52.41%)	(49.44%)	(56.19%)			(51.30%)	(53.46%)			
GLU (mmol/L)				0.093	0.761				0.002	0.962				0.013	0.909
<5.33	391	239	152			247	138	109			144	101	43 (47.25%)		
	(49.81%)	(49.38%)	(50.50%)			(51.78%)	(51.69%)	(51.90%)			(46.75%)	(46.54%)	· · · · ·		
≥5.33	394	245	149			230	129	101			164	116	48 (52.75%)		
20100	(50.19%)	(50.62%)	(49.50%)			(48.22%)	(48.31%)	(48.10%)			(53.25%)	(53.46%)	10 (0211 0 /0)		
ALB (g/L)	(0011070)	(0010270)	(1010070)	3.817	0.051	(1012270)	(1010170)	(1011070)	0.007	0.933	(0012070)	(0011070)		9.576	0.002
<45.2	392	255	137	0.011	01001	235	132	103	0.001	01000	157	123	34 (37.36%)	0.010	0.002
(10.2	(49.94%)	(52.69%)	(45.51%)			(49.27%)	(49.44%)	(49.05%)			(50.97%)	(56.68%)	01 (01.0070)		
≥45.2	(49.9478) 393	(32.0976) 229	(43.3176)			242	(49.44 %)	(49.0376)			151	(30.0878) 94	57 (62.64%)		
240.2		229 (47.31%)					(50.56%)						57 (02.04%)		
	(50.06%)	(47.3170)	(54.49%)	17 100	<0.0001	(50.73%)	(30.30%)	(50.95%)	0 475	0.110	(49.03%)	(43.32%)		11 700	0.001
CRP (mg/dl)	004	005	110	17.198	<0.0001	107	110	74	2.475	0.116	107	150	45 (40, 450()	11.798	0.001
<0.02	384	265	119			187	113	74			197	152	45 (49.45%)		
	(48.92%)	(54.75%)	(39.53%)			(39.20%)	(42.32%)	(35.24%)			(63.96%)	(70.05%)	10 (50 550()		
≥0.02	401	219	182			290	154	136			111	65	46 (50.55%)		
	(51.08%)	(45.25%)	(60.47%)			(60.80%)	(57.68%)	(64.76%)			(36.04%)	(29.95%)			
CA125 (U/ml)				5.051	0.025				2.956	0.086				0.784	0.376
<13.35	392	257	135			221	133	88			171	124	47 (51.65%)		
	(49.94%)	(53.10%)	(44.85%)			(46.33%)	(49.81%)	(41.90%)			(55.52%)	(57.14%)			
≥13.35	393	227	166			256	134	122			137	93	44 (48.35%)		
	(50.06%)	(46.90%)	(55.15%)			(53.67%)	(50.19%)	(58.10%)			(44.48%)	(42.86%)			
				0.236	0.627				0.723	0.395				2.060	0.151
CA153 (U/ml)				0.200	0.021				011 20	0.000				2.000	

Parameters	Ν		SIRI 78	35		Ν		SIRI 47	77		Ν		SIRI 308	3	
Cases (n)	785	Low SIRI 484	High SIRI 301	χ 2	p value		Low SIRI 267	High SIRI 210	χ2	p value		Low SIRI 217	High SIRI 91	χ2	p value
<11.63	392	245	147			208	121	87			184	124	60 (65.93%)		
≥11.63	(49.94%) 393	(50.62%) 239	(48.84%) 154			(43.61%) 269	(45.32%) 146	(41.43%) 123			(59.74%) 124	(57.14%) 93	31 (34.07%)		
	(50.06%)	(49.38%)	(51.16%)			(56.39%)	(54.68%)	(58.57%)			(40.26%)	(42.86%)			
CEA (ng/ml)				2.025	0.155				2.025	0.155				2.174	0.140
<1.66	392	232	160			212	111	101			180	121	59 (64.84%)		
	(49.94%)	(47.93%)	(53.16%)			(44.44%)	(41.57%)	(48.10%)			(58.44%)	(55.76%)			
≥1.66	393	252	141			265	156	109			128	96	32 (35.16%)		
	(50.06%)	(52.07%)	(46.84%)	0 4 47	0 700	(55.56%)	(58.43%)	(51.90%)	0.000	0.044	(41.56%)	(44.24%)		5 007	0.005
D-D (mg/L)	007	000		0.147	0.702	000	440	07	0.039	0.844	107	100	04 (70 000)	5.007	0.025
<0.29	387	236	151			200	113	87			187	123	64 (70.33%)		
0.00	(49.30%)	(48.76%)	(50.17%)			(41.93%)	(42.32%)	(41.43%)			(60.71%)	(56.68%)	07 (00 070)		
≥0.29	398	248	150			277	154	123			121	94	27 (29.67%)		
	(50.70%)	(51.24%)	(49.83%)			(58.07%)	(57.68%)	(58.57%)			(39.29%)	(43.32%)			
FIB (g/L)		0.05	100	14.320	0.0002		100		11.241	0.001	170	100		1.468	0.226
<2.85	388	265	123			216	139	77			172	126	46 (50.55%)		
0.05	(49.43%)	(54.75%)	(40.86%)			(45.28%)	(52.06%)	(36.67%)			(55.84%)	(58.06%)	15 (10 150)		
≥2.85	397	219	178			261	128	133			136	91	45 (49.45%)		
	(50.57%)	(45.25%)	(59.14%)	1.010	0.040	(54.72%)	(47.94%)	(63.33%)	0.004	0.047	(44.16%)	(41.94%)		0.405	0 545
NR	0.05	000	100	4.218	0.040	4 7 7	101	70	0.884	0.347	100	105	50 (50 0 40()	0.425	0.515
<0.93	365	239	126			177	104	73			188	135	53 (58.24%)		
0.00	(46.50%)	(49.38%)	(41.86%)			(37.11%)	(38.95%)	(34.76%)			(61.04%)	(62.21%)	00 (44 700()		
≥0.93	420	245	175			300	163	137			120	82	38 (41.76%)		
	(53.50%)	(50.62%)	(58.14%)	4 001	0.000	(62.89%)	(61.05%)	(65.24%)	0.000	0.504	(38.96%)	(37.79%)		0.005	0.155
FDP (ug/ml)	007	0.41	100	4.691	0.030	107	74	00	0.300	0.584	000	107	00 (00 000()	2.025	0.155
<1.40	367	241	126			137	74	63			230	167	63 (69.23%)		
1.10	(46.75%)	(49.79%)	(41.86%)			(28.72%)	(27.72%)	(30.00%)			(74.68%)	(76.96%)	00 (00 770)		
≥1.40	418	243	175			340	193	147			78	50	28 (30.77%)		
	(53.25%)	(50.21%)	(58.14%)	75 400	0.0001	(71.28%)	(72.28%)	(70.00%)	57.010	0.0001	(25.32%)	(23.04%)		00.040	0.0001
White blood cell (W) (×10 ⁹ /L)				75.436	<0.0001				57.819	<0.0001				20.949	<0.0001
<6.01	389	299	90			239	175	64			150	124	26 (28.57%)		
	(49.55%)	(61.78%)	(29.90%)			(50.10%)	(65.54%)	(30.48%)			(48.70%)	(57.14%)			
≥6.01	396	185	211			238	92	146			158	93	65 (71.43%)		
	(50.45%)	(38.22%)	(70.10%)			(49.90%)	(34.46%)	(69.52%)			(51.30%)	(42.86%)			
Red blood cell (R) (×10 ¹² /L)				7.107	0.008				5.283	0.022				1.887	0.170
<4.40	389	258	131			235	144	91			154	114	40 (43.96%)		
	(49.55%)	(53.31%)	(43.52%)			(49.27%)	(53.93%)	(43.33%)			(50.00%)	(52.53%)			
≥4.40	396	226	170			242	123	119			154	103	51 (56.04%)		
	(50.45%)	(46.69%)	(56.48%)			(50.73%)	(46.07%)	(56.67%)			(50.00%)	(47.47%)			
Hemoglobin (Hb) (×10 ⁹ /L)				7.361	0.007				4.887	0.027				4.100	0.043
<132	382	254	128			243	148	95 (45-24%)			139	106	33 (36.26%)		
≥132	(48.66%)	(52.48%)	(42.52%)			(50.94%)	(55.43%)	(45.24%)			(45.13%)	(48.85%)	58 (63.74%) (Continued	on followi	

Zhu et al.

SIRI in Breast Cancer

Parameters	Ν		SIRI 7	85		Ν		SIRI 4	77		Ν		SIRI 308	В	
Cases (n)	785	Low SIRI 484	High SIRI 301	χ 2	p value		Low SIRI 267	High SIRI 210	χ 2	p value		Low SIRI 217	High SIRI 91	χ2	p value
	403 (51.34%)	230 (47.52%)	173 (57.48%)			234 (49.06%)	119 (44.57%)	115 (54.76%)			169 (54.87%)	111 (51.15%)			
Neutrophil (N) (×10 ⁹ /L)	(22.)	((,,,,,,,,,,	142.491	<0.0001	(******,*)	(, . ,	(2 2 , 2 ,	98.716	<0.0001	(2	(= = , . ,)		42.839	<0.0001
<3.68	392 (49.94%)	323 (66.74%)	69 (22.92%)			229 (48.01%)	182 (68.16%)	47 (22.38%)			163 (52.92%)	141 (64.98%)	22 (24.18%)		
≥3.68	393 (50.06%)	161 (33.26%)	232 (77.08%)			248 (51.99%)	85 (31.84%)	163 (77.62%)			145 (47.08%)	76 (35.02%)	69 (75.82%)		
Lymphocyte (L) (×10 ⁹ /L)	()	()	(7.843	0.005	()	()	(1.884	0.170	(()		4.817	0.028
<1.76	391 (49.81%)	222 (45.87%)	169 (56.15%)			258 (54.09%)	137 (51.31%)	121 (57.62%)			133 (43.18%)	85 (39.17%)	48 (52.75%)		
≥1.76	394 (50.19%)	262 (54.13%)	132 (43.85%)			219 (45.91%)	130 (48.69%)	89 (42.38%)			175 (56.82%)	132 (60.83%)	43 (47.25%)		
Monocyte (M) (×10 ⁹ /L)	()	()	(,	124.109	<0.0001	()	()	(100.469	<0.0001	(******)	()		26.521	<0.0001
<0.35	367 (46.75%)	302 (62.40%)	65 (21.59%)			216 (45.28%)	175 (65.54%)	41 (19.52%)			151 (49.03%)	127 (58.53%)	24 (26.37%)		
≥0.35	418 (53.25%)	182 (37.60%)	236 (78.41%)			261 (54.72%)	92 (34.46%)	169 (80.48%)			157 (50.97%)	90 (41.47%)	67 (73.63%)		
Eosinophils (E) (×10 ⁹ /L)	()	()	(3.395	0.065	()	()	()	0.041	0.839	(******)	(6.697	0.010
<0.06	356 (45.35%)	207 (42.77%)	149 (49.50%)			241 (50.52%)	136 (50.94%)	105 (50.00%)			115 (37.34%)	71 (32.72%)	44 (48.35%)		
≥0.06	429 (54.65%)	277 (57.23%)	152 (50.50%)			236 (49.48%)	131 (49.06%)	105 (50.00%)			193 (62.66%)	146 (67.28%)	47 (51.65%)		
Basophils (B) (×10 ⁹ /L)	()	x ,	, , , , , , , , , , , , , , , , , , ,	9.429	0.002	, , ,	. ,	,	2.588	0.108	()	,		9.248	0.002
<0.02	224 (28.54%)	157 (32.44%)	67 (22.26%)			136 (28.51%)	84 (31.46%)	52 (24.76%)			88 (28.57%)	73 (33.64%)	15 (16.48%)		
≥0.02	561 (71.46%)	327 (67.56%)	234 (77.74%)			341 (71.49%)	183 (68.54%)	158 (75.24%)			220 (71.43%)	144 (66.36%)	76 (83.52%)		
Platelet (P) (×10 ⁹ /L)	((0.100,0)	(13.231	0.0003	((0000,000)	(8.329	0.004	((*********		3.482	0.062
<243	388 (49.43%)	264 (54.55%)	124 (41.20%)			224 (46.96%)	141 (52.81%)	83 (39.52%)			164 (53.25%)	123 (56.68%)	41 (45.05%)		
≥243	397 (50.57%)	220 (45.45%)	177 (58.80%)			253 (53.04%)	126 (47.19%)	127 (60.48%)			144 (46.75%)	94 (43.32%)	50 (54.95%)		

TABLE 3 Survival analyses based on univariate and multivariate Cox regression methods for predicting breast cancer patient DFS and OS.

Parameters		DFS				OS		p value
	Univariate analysis		Multivariate analysis		Univariate analysis		Multivariate analysis	
	Hazard ratio (95%Cl)	p value	Hazard ratio (95%CI)	p value	Hazard ratio (95%Cl)	p value	Hazard ratio (95%Cl)	-
Menopause		0.011		0.001		0.007		0.014
No	1 (reference)		1 (reference)		1 (reference)		1 (reference)	
Yes	1.598		1.487		1.392		1.344	
	(1.113-2.295)		(1.180–1.873)		(1.094-1.771)		(1.063-1.700)	
GLU (mmol/L)		0.003		0.006		0.013		0.018
<5.33	1 (reference)		1 (reference)		1 (reference)		1 (reference)	
≥5.33	0.662		0.732		0.692		0.749	
	(0.502-0.872)		(0.585–0.915)		(0.518–0.924)		(0.590-0.952)	
CA125 (U/ml)		0.013		0.026		0.018		0.049
<13.35	1 (reference)		1 (reference)		1 (reference)		1 (reference)	
≥13.35	1.395		1.295		1.330		1.261	
	(1.073–1.813)		(1.032-1.624)		(1.050-1.685)		(1.001–1.589)	
CA153 (U/ml)		0.073				0.002		0.012
<11.63	1 (reference)				1 (reference)		1 (reference)	
≥11.63	1.291				1.554		1.331	
	(0.976–1.708)				(1.171–2.063)		(1.065–1.664)	
Neutrophil (N)×10 ⁹ /L		0.482				0.278		
<3.68	1 (reference)				1 (reference)			
≥3.68	0.875				0.806			
	(0.603–1.269)				(0.545–1.190)			
Lymphocyte (L)×10 ⁹ /L		0.481				0.412		
<1.76	1 (reference)				1 (reference)			
≥1.76	0.898				1.133			
_	(0.668–1.209)				(0.840–1.527)			
Monocyte (M)×10 ⁹ /L		0.004		<0.0001		<0.0001		<0.0001
<0.35	1 (reference)		1 (reference)		1 (reference)		1 (reference)	
≥0.35	1.419		1.627		1.869		1.637	
_	(1.118–1.799)		(1.275–2.078)		(1.396–2.503)		(1.269–2.110)	
Eosinophils (E)×10 ⁹ /L		0.015		0.008		0.001		0.010
<0.06	1 (reference)		1 (reference)		1 (reference)		1 (reference)	
≥0.06	0.717		0.740		0.636		0.744	
	(0.548–0.937)		(0.592–0.925)		(0.483–0.839)		(0.594–0.932)	
Platelet (P)×10 ⁹ /L		0.137				0.304		
<243	1 (reference)				1 (reference)			
≥243	0.839				0.874			
	(0.666–1.058)				(0.678–1.128)			
Systemic inflammation response index (SIRI)		0.016		0.013		<0.0001		<0.0001
<112	1 (reference)		1 (reference)		1 (reference)		1 (reference)	
≥112	1.461		1.475		1.970		1.637	
	(1.074–1.988)		(1.085–2.005)		(1.431–2.712)		(1.269–2.110)	
Clinical stage								
Clinical N stage		0.230				0.001		<0.0001
NO	1 (reference)				1 (reference)		1 (reference)	
N1	0.934				1.532		1.371	
	(0.622–1.401)				(1.101–2.132)		(1.053–1.786)	
N2	0.883				1.704		1.400	
	(0.439–1.777)				(1.010–2.934)		(1.010–1.942)	
N3	1.476				3.525		3.034	
	(0.689–3.160)				(1.852–6.708)		(2.080–4.427)	
Histologic type		0.021		0.028		0.002		0.017
Ductal	1 (reference)		1 (reference)		1 (reference)		1 (reference)	
Lobular	2.581		2.495		3.006		1.943	
0.1	(1.129–5.899)		(1.096–5.683)		(1.255–7.198)		(1.064–4.019)	
Others	2.046		1.987		2.948		2.357	
	(1.083–4.537)		(1.115–4.405)		(1.332–6.522)		(1.140–4.870)	
Nathological TNIM algorithm								
Pathological TNM classification		0.5.1.1		0.0		0 0		
Pathological N stage N0	1 (reference)	0.014	1 (reference)	<0.0001	1 (reference)	0.0002	1 (reference)	<0.0001

TABLE 3 | (Continued) Survival analyses based on univariate and multivariate Cox regression methods for predicting breast cancer patient DFS and OS.

Parameters		DFS				OS		p value
	Univariate analysis		Multivariate analysis		Univariate analysis		Multivariate analysis	
	Hazard ratio (95%Cl)	p value	Hazard ratio (95%Cl)	p value	Hazard ratio (95%Cl)	p value	Hazard ratio (95%Cl)	-
N1	2.901 (1.031–8.668)		1.518 (1.148–2.008)		2.001 (1.493–5.981)		1.330 (1.004–1.776)	
N2	3.928 (1.004–15.47)		(1.077–2.086) (1.077–2.086)		6.029 (1.702–21.35)		1.495 (1.061–2.105)	
N3	6.219		(1.077–2.000) 1.897 (1.420–2.535)		10.24 (2.861–36.69)		2.006	
Pathological TNM stage	(1.574–24.56)	0.255	(1.420-2.333)			0.006	(1.465–2.748)	0.012
Tis/TO I	1 (reference) 2.662				1 (reference) 2.600		1 (reference) 1.986	
II	(0.732–9.671) 3.251				(1.399–9.454) 3.626		(1.126–3.503) 2.236	
Ш	(0.862–12.26) 1.998				(1.043–13.70) 2.532		(1.098–4.844) 2.645	
Positive lymph nodes	(0.418–9.555)	0.306			(1.337–4.796)	0.725	(1.428–4.899)	
<1 ≥1	1 (reference) 0.509				1 (reference) 0.788			
Postoperative pathology (IHC)	(0.140–1.853)	0.010		0.000	(0.210–2.959)	0.007		
Molecular subtype Luminal A	1 (reference)	0.018	1 (reference)	0.029	1 (reference)	0.097		
Luminal B HER2+	0.395 (0.216–0.724)		0.391 (0.213–0.716)		0.259 (0.093–0.722)			
Luminal B HER2-	0.535 (0.330–0.868)		0.468 (0.287–0.763)		0.535 (0.307–0.933)			
HER2 enriched	0.357 (0.193–0.662)		0.429 (0.233–0.790)		0.287 (0.096–0.853)			
Triple negative	0.534 (0.309–0.924)	0.105	0.455 (0.262–0.790)		0.557 (0.271–1.145)	0 705		
ER status Negative	1 (reference)	0.105			1 (reference)	0.725		
Positive	0.658 (0.397–1.090)	0.057			0.913 (0.551–1.512)	0.455		
PR status Negative	1 (reference)	0.257			1 (reference)	0.155		
Positive	1.253 (0.847–1.854)				1.306 (0.903–1.887)			
HER2 status Negative (0++)	1 (reference)	0.101			1 (reference)	0.182		
Positive (+++)	2.115 (0.864–5.178)				1.826 (0.754–4.420)			
Ki-67 status Negative (≤14%)	1 (reference)	0.003	1 (reference)	0.005	1 (reference)	0.004	1 (reference)	0.010
Positive (>14%)	1.687 (1.190–2.391)		1.650 (1.167–2.333)		1.662 (1.172–2.356)		1.576 (1.116–2.225)	
CK5/6 status Negative	1 (reference)	0.011	1 (reference)	0.001	1 (reference)	0.017	1 (reference)	<0.0001
Positive	1.786 (1.142–2.792)		1.752 (1.265–2.426)		1.769 (1.107–2.825)		1.919 (1.386–2.659)	
E-cad status Negative	1 (reference)	0.279	х ,		1 (reference)	<0.0001	1 (reference)	<0.0001
Positive	1.212 (0.855–1.719)				2.379 (1.622–3.490)		2.320 (1.709–3.150)	
Lymph vessel invasion Negative	(0.855-1.719) 1 (reference)	0.040	1 (reference)	<0.0001	(1.022-3.490) 1 (reference)	0.012	1 (reference)	0.004
Positive	1.406		1.636		1.523		1.458	
Postoperative chemotherapy	(1.016–1.945)	<0.0001	(1.285–2.083)	<0.0001	(1.097–2.114)	<0.0001	(1.131–1.880)	0.004
No	1 (reference)		1 (reference)		1 (reference)		1 (reference) (Continued on follov	ving page)

TABLE 3 | (Continued) Survival analyses based on univariate and multivariate Cox regression methods for predicting breast cancer patient DFS and OS.

Parameters		DFS				OS		p value
	Univariate analysis		Multivariate analysis		Univariate analysis		Multivariate analysis	
	Hazard ratio (95%CI)	p value	Hazard ratio (95%Cl)	p value	Hazard ratio (95%CI)	p value	Hazard ratio (95%Cl)	-
Yes	2.182		1.636		2.000		1.458	
	(1.489-3.198)		(1.285-2.083)		(1.359-2.942)		(1.131–1.880)	
Postoperative radiotherapy		0.183				0.089		
No	1 (reference)				1 (reference)			
Yes	1.254				1.348			
	(0.898-1.751)				(0.955-1.901)			
Postoperative endocrine		0.015		0.032		0.080		
therapy								
No	1 (reference)		1 (reference)		1 (reference)			
Yes	1.544		1.388		1.301			
	(1.088–2.190)		(1.029–1.874)		(0.969-1.747)			
Postoperative targeted therapy		< 0.0001		< 0.0001		0.004		<0.0001
No	1 (reference)		1 (reference)		1 (reference)		1 (reference)	
Yes	2.608		2.105		1.709		1.791	
	(1.799-3.781)		(1.638-2.706)		(1.188-2.456)		(1.397-2.296)	

phosphatase (ALP) (64.00 U/L), γ -glutamyl transpeptidase (GGT) (17.00 U/L), lactate dehydrogenase (LDH) (167.00 U/L), alanine aminotransferase (ALT) (15.00 U/L), and aspartate aminotransferase (AST) (18.00 U/L).

The following are other parameters obtained with their respective median values shown in brackets: CRP (0.20 mg/dl), carbohydrate antigen 125 (CA125) (13.35 U/mL), carbohydrate antigen (CA15-3) (11.63 U/mL), carcinoembryonic antigen (CEA) (1.66 ng/ml), plasma D-dimer (D-D) (0.29 mg/L), fibrinogen (FIB) (2.85 g/L), international standardized ratio of prothrombin time (INR) (0.93), fibrinogen degradation products (FDP) (1.40 µg/mL), and W (6.01 × 10⁹/L), R (4.40 × 10¹²/L), Hb (132 g/L), N (3.68 × 10⁹/L), L (1.76 × 10⁹/L), M (0.35 × 10⁹/L), E (0.06 × 10⁹/L), B (0.02 × 109/L), and P (243 × 109/L).

- 1) In all breast cancer patients, the parameters of LDH ($\chi^2 = 4.337$, p = 0.037), CRP ($\chi^2 = 17.198$, p < 0.0001), CA125 ($\chi^2 = 5.051$, p = 0.025), FIB ($\chi^2 = 14.320$, p < 0.0001), p = 0.0002, INR ($\chi^2 = 4.218$, p = 0.040), FDP ($\chi^2 = 4.691$, p = 0.030), W ($\chi^2 = 75.436$, p < 0.0001), R ($\chi^2 = 7.107$, p = 0.008), Hb ($\chi^2 = 7.361$, p = 0.007), N ($\chi^2 = 142.491$, p < 0.0001), L ($\chi^2 = 7.843$, p = 0.005), M ($\chi^2 = 124.109$, p < 0.0001), B ($\chi^2 = 9.429$, p = 0.002), P ($\chi^2 = 13.231$, p < 0.0001), L ($\chi^2 = 7.843$, p < 0.0001), P ($\chi^2 = 13.231$, p < 0.0001), L ($\chi^2 = 7.843$, p < 0.0001), p = 0.0003 were statistically significant between high and low SIRI groups. The results are shown in **Table 2**.
- 2) In the NACT group (477 patients), FIB ($\chi^2 = 11.241$, p = 0.0008), W ($\chi^2 = 57.819$, p < 0.0001), R ($\chi^2 = 5.283$, p = 0.022), Hb ($\chi^2 = 4.887$, p = 0.027), N ($\chi^2 = 98.716$, p < 0.0001), M ($\chi^2 = 100.469$, p < 0.0001) and P ($\chi^2 = 8.329$, p = 0.004) were statistically significant.
- 3) In the non-NACT group (308 breast cancer patients), ALB (χ^2 = 9.576, *p* = 0.002), CRP (χ^2 = 11.798, *p* = 0.0006), D-D (χ^2 = 5.007, *p* = 0.025), W (χ^2 = 20.949, *p* < 0.0001), Hb (χ^2 = 4.100, *p* = 0.043), N (χ^2 = 42.839, *p* < 0.0001), L (χ^2 = 4.817, *p* = 0.028), M (χ^2 = 26.521, *p* < 0.0001), E (χ^2 = 6.697, *p* = 0.010) and B (χ^2 = 9.248, *p* = 0.002) were statistically significant.

Survival Analysis Based on Univariate and Multivariate Cox Regression Survival Analyses

Through univariate analysis, we found that menopausal status, GLU, CA125, M, E, SIRI, histological type, pathological N stage, molecular type, Ki-67, CK5/6, lymph vessel invasion (LVI), postoperative targeted therapy, postoperative endocrine therapy, and postoperative chemotherapy were independent factors for improving DFS and OS. After multivariate analysis, we found that menopausal status, blood glucose, CA125, CA153, M, E, SIRI, histological grade, clinical N stage, pathological N and TNM stages, Ki-67, CK5/6, E-cadherin (E-cad), LVI, postoperative chemotherapy, and postoperative targeted therapy were independent factors for improving DFS and OS. **Table 3** depicts all of the above results.

Disease-Free Survival and Overall Survival

SIRI was found to be an independent factor that improved DFS and OS on both univariate and multivariate analyses, and the optimal threshold value for SIRI was 0.80. Univariate analysis demonstrated that low SIRI significantly improved DFS and OS (HR: 1.461, 95% CI: 1.074–1.988, *p* = 0.016 and HR: 1.475, 95% CI: 1.085–2.005, p = 0.013). Multivariate analysis showed that a low SIRI significantly improved DFS and OS (HR: 1.970, 95% CI: 1.431–2.712, *p* < 0.0001 and HR: 1.637, 95% CI: 1.269–2.110, *p* < 0.0001). Patients with low SIRI scores had mean survival times of DFS and OS of 41.50 months (3.10-238.00 months) and 64.57 months (6.43-260.00 months), respectively. The average DFS and OS survival time of SIRI in the high group was 37.63 months (3.13–238.00 months) and 58.42 months (10.77-256.40 months), respectively. The log-rank analysis shown that the average DFS and OS survival time of SIRI in the low group were remarkably longer in contrast to that of SIRI in the high group ($\chi^2 = 14.290$, p = 0.0002, and $\chi^2 = 20.690$, p <0.0001), as shown in Figure 1.

The Association Between SIRI Scores and Tumor Node Metastasis (TNM) Stage

The N stage was an independent predictor of DFS and OS, as revealed by univariate and multivariate analyses. The pathological TNM stage is an independent factor of OS. The ability of SIRI to determine breast cancer prognosis was further assessed by examining the relationship between SIRI and the TNM stage. Early breast cancer was determined to be pathological stages Tis/ T0 and I, while advanced breast cancer was pathological stages II and III. Both early and advanced forms of breast cancer were subjected to log-rank analysis to determine their respective DFS and OS.

Early breast cancer patients and low SIRI scores had notably longer DFS and OS in contrast to those high SIRI score patients (χ^2 = 2.379, p = 0.123, and $\chi^2 = 5.153$, p = 0.023), as shown in **Figure 2A** and **Figure 2B**. 2). Similarly, patients with advanced breast cancer and low SIRI scores also had remarkably longer average DFS and OS in contrast to patients with elevated SIRI scores ($\chi^2 = 11.080$, p = 0.0009 and $\chi^2 = 15.900$, p < 0.0001), as shown in **Figure 2C** and **Figure 2D**. The DFS and OS of SIRI and TNM stage of the NACT and non-NACT cohorts are shown in **Figures 2E–L**, respectively.

The Association Between Systemic Inflammatory Response Index Scores and Breast Cancer Molecular Subtype

We found that the molecular subtype of breast cancer was an independent risk factor of DFS based on univariate and

multivariate analyses. Of the 785 patients with breast cancer, 171 cases were triple-negative type, 98 cases were Luminal B HER2-positive type, 325 cases were Luminal B HER2-negative type, 62 cases were Luminal A type, and 129 cases were HER2-overexpressing type. **Table 4** shows the detailed information of the molecular type of breast cancer.

- 1) In all breast cancer patients, HER2 ($\chi^2 = 8.077$, p = 0.005), E-cad ($\chi^2 = 21.406$, p < 0.0001), epidermal growth factor receptor (EGFR) ($\chi^2 = 6.339$, p = 0.012), topoisomerase (DNA) II alpha (TOP2A) ($\chi^2 = 5.595$, p = 0.018), and LVI ($\chi^2 = 4.403$, p = 0.036). were statistically significant.
- 2) In the NACT group (477 patients), there were no significant statistically between them.
- 3) In the non-NACT group (308 breast cancer patients), HER2 ($\chi^2 = 5.660, p = 0.017$), E-cad ($\chi^2 = 14.686, p = 0.0001$), EGFR

 $(\chi^2 = 6.983, p = 0.008)$, TOP2A $(\chi^2 = 8.526, p = 0.004)$ and LVI $(\chi^2 = 11.377, p = 0.007)$ were statistically significant.

The relationship between SIRI and molecular type of breast cancer was assessed to ascertain the prognostic value of SIRI (shown in **Figure 3**, **Figure 4**, **Figure 5**). The log-rank analysis demonstrated that the average DFS and OS in the low SIRI group was drastically longer in contrast to patients with high SIRI scores.

The Association Between Systemic Inflammatory Response Index Scores and Lymph Vessel Invasion

LVI was found to be an independent factor of DFS and OS based on univariate and multivariate analyses. Of the 785 cases of breast cancer, 227 cases were associated with LVI, and 558 cases were TABLE 4 | The relationship between SIRI scores and molecular breast cancer subtype.

Parameters	Ν		SIRI 785	i		Ν		SIRI 477			Ν		SIRI 308	3	
Cases (n)	785	Low SIRI 484	High SIRI 301	χ2	p value		Low SIRI 267	High SIRI 210	χ2	p value		Low SIRI 217	High SIRI 91	χ2	<i>p</i> value
Core needle biopsy (N	I = 477)														
Molecular									3.520	0.475					
subtype															
Luminal A						25 (5.24%)	15 (5.62%)	10 (4.76%)							
Luminal B HER2+						67 (14.05%)	31 (11.61%)	36 (17.14%)							
Luminal B HER2-						186 (38.99%)	105 (39.33%)	81 (38.57%)							
HER2 enriched						91	(39.33 <i>%</i>) 51 (19.10%)	40 (19.05%)							
-						(19.08%)		10 (00 100)							
Triple negative						108 (22.64%)	65 (24.34%)	43 (20.48%)							
ER status									0.042	0.838					
Negative						191 (40.04%)	108 (40.45%)	83 (39.52%)							
Positive						286	159	127							
						(59.96%)	(59.55%)	(60.48%)							
ER status						. ,	()	()	0.929	0.920					
0–25%						228 (47.80%)	129 (48.31%)	99 (47.14%)							
26–50%						42 (8.81%)	26 (9.74%)	16 (7.62%)							
51-75%						33 (6.92%)	18 (6.74%)	15 (7.14%)							
76–100%						174	94 (35.21%)	80 (38.10%)							
10 10070						(36.48%)	01 (00.2170)	00 (00.1070)							
PR status						(00.4070)			0.964	0.326					
Negative						189	111	78 (37.14%)	0.001	0.020					
riogaaro						(39.62%)	(41.57%)	10 (01111)0)							
Positive						288	156	132							
						(60.38%)	(58.43%)	(62.86%)							
PR status						(0010070)	(,,,,,,,,,	(0_000,00)	2.467	0.651					
0–25%						286	165	121							
						(59.96%)	(61.80%)	(57.62%)							
26–50%						67 (14.05%)	35 (13.11%)	32 (15.24%)							
51–75%						45 (9.43%)	21 (7.87%)	24 (11.43%)							
76–100%						40 (3.4070) 79	46 (17.23%)	33 (15.71%)							
10 100/0						(16.56%)	10 (11.2070)	00 (10.1170)							
HER2 status						(10.0070)			1.743	0.187					
Negative (0++)						313	182	131	1.7 10	5.107					
						(65.62%)	(68.16%)	(62.38%)							
Positive (+++)						164	85 (31.84%)	79 (37.62%)							
()						(34.38%)	(
Ki-67 status						()			1.455	0.118					
Negative (≤14%)						84	52 (19.48%)	32 (15.24%)							
_ 、 ,						(17.61%)	. ,	. ,							
Positive (>14%)						. /									
													(Continued of		

(Continued on following page)

Parameters	N		SIRI 785	i		N		SIRI 477			N		SIRI 30	8	
Cases (n)	785	Low SIRI 484	High SIRI 301	χ2	p value		Low SIRI 267	High SIRI 210	χ2	p value		Low SIRI 217	High SIRI 91	χ 2	p value
						393 (82.39%)	215 (80.52%)	178 (84.76%)							
Ki-67 status						(,	(,	(1.218	0.875					
0–25%						161 (33.75%)	92 (34.46%)	69 (32.86%)							
26–50%						189 (39.62%)	109 (40.82%)	80 (38.10%)							
51–75%						88 (18.45%)	45 (16.85%)	43 (20.48%)							
76–100%						39 (8.18%)	21 (7.87%)	18 (8.57%)							
Postoperative pathol	ogy (IHC)														
Molecular subtype				8.634	0.125				5.449	0.364				12.370	0.030
Luminal A	62 (7.90%)	41 (8.47%)	21 (6.98%)			41 (8.60%)	22 (8.24%)	19 (9.05%)			21 (6.82%)	19 (8.76%)	2 (2.20%)		
Luminal B HER2+	98 (12.48%)	52 (10.74%)	46 (15.28%)			61 (12.79%)	28 (10.49%)	33 (15.71%)			37 (12.01%)	24 (11.06%)	13 (14.29%)		
Luminal B HER2-	325 (41.40%)	211 (43.60%)	114 (37.87%)			166 (34.80%)	96 (35.96%)	70 (33.33%)			159 (51.62%)	115 (53.00%)	44 (48.35%)		
HER2 enriched	129 (16.43%)	70 (14.46%)	59 (19.60%)			96 (20.13%)	53 (19.85%)	43 (20.48%)			33 (10.71%)	17 (7.83%)	16 (17.58%)		
Triple negative	171 (21.78%)	110 (22.73%)	61 (20.27%)			113 (23.69%)	68 (25.47%)	45 (21.43%)			58 (18.83%)	42 (19.35%)	16 (17.58%)		
ER status	(21.7070)	(22.1070)		0.465	0.495	(20.0070)			0.286	0.593	(10.0070)		(17.0070)	1.884	0.170
Negative	296	178	118	0.100	0.100	195	112	83 (39.52%)	0.200	0.000	101	66 (30.41%)	35	1.001	0.170
Nogalivo	(37.71%)	(36.78%)	(39.20%)			(40.88%)	(41.95%)	00 (00.0270)			(32.79%)	00 (00.1170)	(38.46%)		
Positive	489	306	183			282	155	127			207	151	56		
	(62.29%)	(63.22%)	(60.80%)			(59.12%)	(58.05%)	(60.48%)			(67.21%)	(69.59%)	(61.54%)		
ER status	(0212070)	(0012270)	(00.0070)	3.061	0.548	(0011270)	(0010070)	(0011070)	0.530	0.971	(0112170)	(0010070)	(0110170)	6.402	0.171
0–25%	375	232	143	0.001	0.010	235	134	101	0.000	0.071	140	98 (45.16%)	42	0.102	0.11
	(47.77%)	(47.93%)	(47.51%)			(49.27%)	(50.19%)	(48.10%)			(45.45%)		(46.15%)		
26–50%	66 (8.41%)	41 (8.47%)	25 (8.31%)			31 (6.50%)	16 (5.99%)	15 (7.14%)			35	25 (11.52%)	10		
											(11.36%)		(10.99%)		
51–75%	48 (6.11%)	24 (4.96%)	24 (7.97%)			27 (5.66%)	14 (5.24%)	13 (6.19%)			21 (6.82%)	10 (4.61%)	11 (12.09%)		
76–100%	296 (37.71%)	187 (38.64%)	109 (36.21%)			184 (38.57%)	103 (38.58%)	81 (38.57%)			112 (36.36%)	84 (38.71%)	28 (30.77%)		
PR status				1.168	0.280				0.007	0.933				1.720	0.190
Negative	315	187	128			210	118	92 (43.81%)			105	69 (31.80%)	36		
	(40.13%)	(38.64%)	(42.52%)			(44.03%)	(44.19%)				(34.09%)		(39.56%)		
Positive	470	297	173			267	149	118			203	148	55		
	(59.87%)	(61.36%)	(57.48%)			(55.97%)	(55.81%)	(56.19%)			(65.91%)	(68.20%)	(60.44%)		
PR status				6.924	0.140				1.764	0.779				2.296	0.682
0–25%	502	301	201			335	187	148			167	114	53		
26–50%	(63.95%) 90	(62.19%) 57 (11.78%)	(66.78%) 33 (10.96%)			(70.23%) 48	(70.04%) 28 (10.49%)	(70.48%) 20 (9.52%)			(54.22%) 42	(52.53%) 29 (13.36%)	(58.24%) 13		
	(11.46%)					(10.06%)					(13.64%)		(14.29%)		

Parameters	N		SIRI 785			Ν		SIRI 477			Ν		SIRI 308	3	
Cases (n)	785	Low SIRI 484	High SIRI 301	χ2	p value		Low SIRI 267	High SIRI 210	χ2	p value		Low SIRI 217	High SIRI 91	χ2	p value
51–75%	55 (7.01%)	29 (5.99%)	26 (8.64%)			38 (7.97%)	18(6.74%)	20 (9.52%)			17 (5.52%)	11 (5.07%)	6 (6.59%)		
76–100%	138	97 (20.04%)	41 (13.62%)			56	34 (12.73%)	22 (10.48%)			82	63 (29.03%)	19		
	(17.58%)					(11.74%)					(26.62%)		(20.88%)		
HER2 status				8.077	0.005				1.824	0.177				5.660	0.01
Negative (0++)	557	361	196			320	186	134			237	175	62		
	(70.96%)	(74.59%)	(65.12%)			(67.09%)	(69.66%)	(63.81%)			(76.95%)	(80.65%)	(68.13%)		
Positive (+++)	228	123	105			157	81 (30.34%)	76 (36.19%)			71	42 (19.35%)	29		
	(29.04%)	(25.41%)	(34.88%)			(32.91%)					(23.05%)		(31.87%)		
Ki-67 status				0.423	0.516				0.072	0.788				2.802	0.094
Negative (≤14%)	219	139	80 (26.58%)			153	87 (32.58%)	66 (31.43%)			66	52 (23.96%)	14		
	(27.90%)	(28.72%)				(32.08%)					(21.43%)		(15.38%)		
Positive (>14%)	566	345	221			324	180	144			242	165	77		
	(72.10%)	(71.28%)	(73.42%)			(67.92%)	(67.42%)	(68.57%)			(78.57%)	(76.04%)	(84.62%)		
Ki-67 status				5.107	0.277				4.227	0.376				1.436	0.838
0–25%	342	215	127			233	134	99 (47.14%)			109	81 (37.33%)	28		
	(43.57%)	(44.42%)	(42.19%)			(48.85%)	(50.19%)				(35.39%)		(30.77%)		
26–50%	257	163	94 (31.23%)			139	81 (30.34%)	58 (27.62%)			118	82 (37.79%)	36		
	(32.74%)	(33.68%)				(29.14%)					(38.31%)		(39.56%)		
51–75%	137	83 (17.15%)	54 (17.94%)			70	38 (14.23%)	32 (15.24%)			67	45 (20.74%)	22		
	(17.45%)					(14.68%)					(21.75%)		(24.18%)		
76–100%	49 (6.24%)	23 (4.75%)	26 (8.64%)			35 (7.34%)	14 (5.24%)	21 (10.00%)			14 (4.55%)	9 (4.15%)	5 (5.49%)		
AR status				1.209	0.272				0.018	0.892				0.040	0.841
Negative	666	416	250			362	202	160			304	214	90		
	(84.84%)	(85.95%)	(83.06%)			(75.89%)	(75.66%)	(76.19%)			(98.70%)	(98.62%)	(98.90%)		
Positive	119	68 (14.05%)	51 (16.94%)			115	65 (24.34%)	50 (23.81%)			4 (1.30%)	3 (1.38%)	1 (1.10%)		
	(15.16%)					(24.11%)									
AR status				1.665	0.797				3.144	0.534				0.021	0.885
0–25%	688	424	264			383	209	174			305	215	90		
	(87.64%)	(87.60%)	(87.71%)			(80.29%)	(78.28%)	(82.86%)			(99.03%)	(99.08%)	(98.90%)		
26–50%	25 (3.18%)	13 (2.69%)	12 (3.99%)			25 (5.24%)	13 (4.87%)	12 (5.71%)			0 (0.00%)	0 (0.00%)	0 (0.00%)		
51-75%	29 (3.69%)	20 (4.13%)	9 (2.99%)			29 (6.08%)	20 (7.49%)	9 (4.29%)			0 (0.00%)	0 (0.00%)	0 (0.00%)		
76–100%	43 (5.48%)	27 (5.58%)	16 (5.32%)			40 (8.39%)	25 (9.36%)	15 (7.14%)			3 (0.97%)	2 (0.92%)	1 (1.10%)		
CK5/6 status				1.336	0.248				0.940	0.332				0.003	0.954
Negative	684	427	257			406	231	175			278	196	82		
	(87.13%)	(88.22%)	(85.38%)			(85.12%)	(86.52%)	(83.33%)			(90.26%)	(90.32%)	(90.11%)		
Positive	101	57 (11.78%)	44 (14.62%)			71	36 (13.48%)	35 (16.67%)			30 (9.74%)	21 (9.68%)	9 (9.89%)		
	(12.87%)					(14.88%)									
E-cad status				21.406	<0.0001				3.593	0.058				14.686	0.000
Negative	353	249	104			170	105	65 (30.95%)			183	144	39		
	(44.97%)	(51.45%)	(34.55%)			(35.64%)	(39.33%)				(59.42%)	(66.36%)	(42.86%)		
Positive	432	235	197			307	162	145			125	73 (33.64%)	52		
	(55.03%)	(48.55%)	(65.45%)	0.005		(64.36%)	(60.67%)	(69.05%)	o 40 -	0.405	(40.58%)		(57.14%)		
EGFR status		0		6.339	0.012	0.5 -			0.494	0.482			e –	6.983	0.008
Negative	589	378	211			335	191	144			254	187	67		
	(75.03%)	(78.10%)	(70.10%) 90 (29.90%)			(70.23%)	(71.54%) 76 (28.46%)	(68.57%) 66 (31.43%)			(82.47%)	(86.18%) 30 (13.82%)	(73.63%)		
Positive															

TABLE 4 (Continued) The relationship between SIRI scores and molecular breast car	ancer subtype.
---	----------------

Parameters	N		SIRI 785	5		Ν		SIRI 477			Ν		SIRI 308	3	
Cases (n)	785	Low SIRI 484	High SIRI 301	χ2	p value		Low SIRI 267	High SIRI 210	χ2	p value		Low SIRI 217	High SIRI 91	χ2	p valu
	196	106				142					54		24		
	(24.97%)	(21.90%)				(29.77%)					(17.53%)		(26.37%)		
P53 status				0.642	0.423				0.303	0.582				0.528	0.46
Negative	395	249	146			243	139	104			152	110	42		
	(50.32%)	(51.45%)	(48.50%)			(50.94%)	(52.06%)	(49.52%)			(49.35%)	(50.69%)	(46.15%)		
Positive	390	235	155			234	128	106			156	107	49		
	(49.68%)	(48.55%)	(51.50%)			(49.06%)	(47.94%)	(50.48%)			(50.65%)	(49.31%)	(53.85%)		
P53 status				1.755	0.781				3.412	0.491				0.082	0.96
0–25%	576	362	214			353	204	149			223	158	65		
	(73.38%)	(74.79%)	(71.10%)			(74.00%)	(76.40%)	(70.95%)			(72.40%)	(72.81%)	(71.43%)		
26-50%	80	49 (10.12%)	31 (10.30%)			45 (9.43%)	25 (9.36%)	20 (9.52%)			35	24 (11.06%)	11		
	(10.19%)										(11.36%)		(12.09%)		
51-75%	108	61 (12.60%)	47 (15.61%)			58	26 (9.74%)	32 (15.24%)			50	35 (16.13%)	15		
	(13.76%)	, ,	· · · · ·			(12.16%)	· · · ·	· · · · ·			(16.23%)	· · · ·	(16.48%)		
76–100%	21 (2.68%)	12 (2.48%)	9 (2.99%)			21 (4.40%)	12 (4.49%)	9 (4.29%)			0 (0.00%)	0 (0.00%)	0 (0.00%)		
TOP2A status	_ (,	-= (=,-,-,	- (,-)	5.595	0.018	(,,	(- (0.101	0.750	- (,-)	- (,-)	- (,-)	8.526	0.00
Negative	299	200	99 (32.89%)			165	94 (35.21%)	71 (33.81%)			134	106	28		
rogaaro	(38.09%)	(41.32%)	00 (0210070)			(34.59%)	0 1 (0012 1 /0)	(0010170)			(43.51%)	(48.85%)	(30.77%)		
Positive	486	284	202			312	173	139			174	111	63		
	(61.91%)	(58.68%)	(67.11%)			(65.41%)	(64.79%)	(66.19%)			(56.49%)	(51.15%)	(69.23%)		
TOP2A status	(01.0170)	(00.0070)	(07.1170)	4.005	0.405	(00.4170)	(04.1070)	(00.1070)	1.690	0.793	(00.4070)	(01.1070)	(00.2070)	15.817	0.00
0-25%	575	366	209	4.000	0.400	354	200	154	1.000	0.750	221	166	55	10.017	0.000
0 20/0	(73.25%)	(75.62%)	(69.44%)			(74.21%)	(74.91%)	(73.33%)			(71.75%)	(76.50%)	(60.44%)		
26–50%	158	90 (18.60%)	68 (22.59%)			88	45 (16.85%)	43 (20.48%)			70	45 (20.74%)	25		
20-3070	(20.13%)	30 (10.0070)	00 (22.0370)			(18.45%)	40 (10.0070)	40 (20.4070)			(22.73%)	40 (20.1470)	(27.47%)		
51–75%	49 (6.24%)	26 (5.37%)	23 (7.64%)			33 (6.92%)	21 (7.87%)	12 (5.71%)			16 (5.19%)	5 (2.30%)	(27.4770)		
01-7070	43 (0.2470)	20 (0.07 70)	20 (1.0470)			00 (0.0270)	21 (1.0170)	12 (0.7170)			10 (0.1970)	0 (2.0070)	(12.09%)		
76–100%	3 (0.38%)	2 (0.41%)	1 (0.33%)			2 (0.42%)	1 (0.37%)	1 (0.48%)			1 (0.32%)	1 (0.46%)	0 (0.00%)		
Lymph vessel	3 (0.30%)	2 (0.4170)	1 (0.33%)	4.403	0.036	2 (0.42%)	1 (0.37 %)	1 (0.46%)	0.048	0.826	1 (0.3270)	1 (0.40%)	0 (0.00%)	11.377	0.00
invasion				4.403	0.000				0.040	0.020				11.577	0.00
Negative	558	357	201			320	178	142			238	179	59		
Negalive	(71.08%)	(73.76%)	(66.78%)			(67.09%)	(66.67%)	(67.62%)			230 (77.27%)	(82.49%)			
Positive	(71.08%) 227	(73.76%) 127	(00.78%) 100			(67.09%) 157	(00.07%) 89 (33.33%)	(67.62%) 68 (32.38%)			(77.27%) 70	(82.49%) 38 (17.51%)	(64.84%) 32		
Positive							69 (33.33%)	66 (32.36%)				38 (17.51%)			
Nourol investor	(28.92%)	(26.24%)	(33.22%)	0.0004	0.004	(32.91%)			0.470	0 400	(22.73%)		(35.16%)	0.059	0.808
Neural invasion	070	410	057	0.0004	0.984	004	010	170	0.470	0.493	000	001	05	0.059	0.808
Negative	670	413	257			384	212	172			286	201	85		
D	(85.35%)	(85.33%)	(85.38%)			(80.50%)	(79.40%)	(81.90%)			(92.86%)	(92.63%)	(93.41%)		
Positive	115	71 (14.67%)	44 (14.62%)			93	55 (20.60%)	38 (18.10%)			22 (7.14%)	16 (7.37%)	6 (6.59%)		
	(14.65%)					(19.50%)									

FIGURE 3 | DFS and OS based on SIRI scores in patients with breast cancer of various molecular subtypes. DFS and OS based on SIRI scores in patients with breast cancer of various molecular subtypes. (A) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal A breast cancer. (B) Kaplan-Meier analysis of OS for the SIRI of patients with luminal A breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal B HER2-positive breast cancer. (D) Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-positive breast cancer. (F) Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-negative breast cancer. (F) Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-negative breast cancer. (F) Kaplan-Meier analysis of OS for the SIRI of patients with HER2-negative breast cancer. (G) Kaplan-Meier analysis of DFS for the SIRI of patients with HER2-negative breast cancer. (G) Kaplan-Meier analysis of DFS for the SIRI of patients with HER2-negative breast cancer. (G) Kaplan-Meier analysis of DFS for the SIRI of patients with HER2-negative breast cancer. (G) Kaplan-Meier analysis of DFS for the SIRI of patients with HER2-negative breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with HER2-negative breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with HER2-enriched breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with triple-negative breast cancer.

FIGURE 4 | DFS and OS based on SIRI scores in patients with breast cancer of various molecular subtypes (NACT group). DFS and OS based on SIRI scores in patients with breast cancer of various molecular subtypes (NACT group). (A) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal A breast cancer. (B) Kaplan-Meier analysis of OS for the SIRI of patients with luminal A breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal B HER2-positive breast cancer. (D) Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-positive breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal B HER2-positive breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal B HER2-negative breast cancer. (F) Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-negative breast cancer. (G) Kaplan-Meier analysis of DFS for the SIRI of patients with HER2-negative breast cancer. (G) Kaplan-Meier analysis of DFS for the SIRI of patients with HER2-negative breast cancer. (G) Kaplan-Meier analysis of DFS for the SIRI of patients with HER2-negative breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with triple-negative breast cancer. (J) Kaplan-Meier analysis of OS for the SIRI of patients with triple-negative breast cancer. (J) Kaplan-Meier analysis of OS for the SIRI of patients with triple-negative breast cancer.

not. The relationship between SIRI and LVI was analyzed to determine the prognostic value of SIRI. The average DFS and OS in patients who did not have LVI were 50.96 and 79.65 months, respectively. The average DFS and OS in patients who had LVI were 28.97 and 53.37 months, respectively. Patients without LVI had notably longer mean DFS and OS in comparison to patients who had LVI ($\chi^2 = 20.940$, p < 0.0001 and $\chi^2 = 26.540$, p < 0.0001),

as shown in **Figure 6A** and **Figure 6B**. Among the 558 patients without LVI, patients who had low SIRI scores had mean DFS and OS of 46.40 and 69.37 months, respectively; The average DFS and OS of high SIRI score patients were 30.00 and 54.43 months, respectively. Similarly, low SIRI group patients had notably longer mean DFS and OS in contrast to those with high SIRI scores, as evaluated using log-rank analysis ($\chi^2 = 16.020$, p < 0.0001

Meier analysis of OS for the SIRI of patients with luminal A breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal B HER2-positive breast cancer. (D) Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-positive breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with luminal B HER2-negative breast cancer. (F) Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-negative breast cancer. (F) Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-negative breast cancer. (F) Kaplan-Meier analysis of OS for the SIRI of patients with luminal B HER2-negative breast cancer. (G) Kaplan-Meier analysis of DFS for the SIRI of patients with HER2-overexpressing breast cancer. (I) Kaplan-Meier analysis of OS for the SIRI of patients with HER2-overexpressing breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with triple-negative breast cancer. (J) Kaplan-Meier analysis of DFS for the SIRI of patients with triple-negative breast cancer.

and $\chi^2 = 22.050$, p < 0.0001). Among the 227 patients with LVI, the mean DFS and OS were much longer in those with low SIRI scores in contrast to the high SIRI score group ($\chi^2 = 0.257$, p = 0.612, and $\chi^2 = 0.705$, p = 0.401), as shown in **Figures 6C–F**. The DFS and OS of SIRI and LVI of the NACT and non-NACT cohorts are shown in **Figure 7** and **Figure 8**, respectively.

The Association Between Systemic Inflammatory Response Index Scores and Neoadjuvant Chemotherapy/Postoperative Chemotherapy

In the NACT group, 141 patients underwent TP neoadjuvant chemotherapy, 28 patients received AC/ACF neoadjuvant chemotherapy, 223 patients received AT neoadjuvant chemotherapy, 27 patients received CT/ACT neoadjuvant chemotherapy, and 58 patients received other neoadjuvant chemotherapy regimens. All 477 patients received surgical treatment after neoadjuvant chemotherapy. 247 patients were not treated with postoperative chemotherapy, while 230 patients did. Of the 230 who received postoperative chemotherapy, 39 patients received TP chemotherapy, 37 patients received AT chemotherapy, 30 patients were treated with CT/ACT chemotherapy, 43 patients received AC/ACF chemotherapy, and 81 patients received other chemotherapy regimens. The clinical benefit rate (CR + PR + SD) was 98.53% (470/477), and the clinical objective response rate (CR + PR) was 66.88% (319/477). The MPG grade system was used to evaluate the pathological response of neoadjuvant chemotherapy. There were 22 MPG 1 cases (4.61%), 126 MPG 2 cases (26.42%), 177 MPG 3 cases (37.11%), 62 MPG 4 cases (13.00%), and 90 MPG 5 cases (18.87%). 72 cases (15.09%) achieved pCR, while 405 cases (84.90%) did not. The relationship between SIRI and MPG grade was analyzed to determine the prognostic value of SIRI. Log-rank analysis showed that mean DFS and OS were significantly different among various MPG grades ($\chi^2 = 18.290$, p < 0.0001 and $\chi^2 = 18.020$, p < 0.0001), as shown in **Figure 9**.

We further scrutinized how SIRI was related to response to neoadjuvant chemotherapy was scrutinized to determine the prognostic value of SIRI. Log-rank analysis demonstrated the average DFS and OS among different response groups were statistically significant ($\chi^2 = 12.540$, p = 0.006 and $\chi^2 = 10.820$, p = 0.013), as shown in **Figure 10**.

The Association Between Systemic Inflammatory Response Index Scores and Chemotherapy Toxicity and Adverse Effects

Toxicity and adverse effects experienced by patients who received two cycles of NACT were evaluated. In the NACT group, common chemotherapeutic side effects included anorexia, alopecia, oral ulcers, diarrhea, vomiting, nausea, other gastrointestinal reactions, hepatic dysfunction, myelosuppression, thrombocytopenia, neutropenia, leucopenia, anemia, and peripheral neurotoxicity. There were no chemotherapy-related deaths during treatment. The degree of liver dysfunction was statistically different between the two groups ($\chi^2 = 7.146$, p = 0.028) (**Table 5**).

DISCUSSION

Breast cancer is a very common female malignancy whose incidence has surpassed that of lung cancer (Siegel et al., 2020). According to the 2020 World Health Organization (WHO) and International Agency for Research on Cancer

Meier analysis of OS for the SIRI of breast cancer patients with lymph vessel invasion.

(IARC) research, 19.29 million additional breast cancer cases are diagnosed every year. There are currently 2.26 million breast cancer cases worldwide, exceeding the 2.2 million cases of lung cancer (Siegel et al., 2020). Similar proportions are reported by the China National Cancer Center, which shows that China diagnoses 420,000 new female breast cancer patients every year, with 120,000 women dying from the disease. Patients are being diagnosed at an increasingly younger age, with mortality also increasing every year in spite of the current comprehensive breast cancer management protocols that involve surgery, combination radiotherapy, supplemented by а of chemotherapy, targeted therapy, and endocrine therapy (Tufano et al., 2021). At present, individualized treatment

based on tumor characteristics, patient characteristics, and treatment response has emerged as the preferred means of treatment. These methods have greatly reduced patient mortality. Nevertheless, breast cancer is a heterogeneous disease with not all subtypes amenable to current therapies, cementing the position of this disease as the primary instigator of malignancy-associated mortalities in females around the world. NACT is an important part of systemic management of breast cancer, and is effective in reducing tumor size, clinical stage, improve surgical treatment outcomes while having an aesthetic effect (Colomer et al., 2019).

With the development of the field of tumor biology, several investigations have discovered that inflammation is involved in

FIGURE / [DFS and OS based on the presence of lymph vessel invasion in breast cancer patients (NAC1 group). DFS and OS based on the presence of lymph vessel invasion in breast cancer patients (NAC1 group). DFS and OS based on the presence of lymph vessel invasion in breast cancer patients (NAC1 group). (A) Kaplan-Meier analysis of DFS for the SIRI of all patients with breast cancer. (B) Kaplan-Meier analysis of OS for the SIRI of all patients with breast cancer patients without lymph vessel invasion. (D) Kaplan-Meier analysis of OS for the SIRI of breast cancer patients without lymph vessel invasion. (E) Kaplan-Meier analysis of DFS for the SIRI of breast cancer patients with lymph vessel invasion. (F) Kaplan-Meier analysis of OS for the SIRI of breast cancer patients with lymph vessel invasion.

the initiation, development, and metastasis of tumors. Peripheral platelets, monocytes, lymphocytes, and neutrophils, are associated with the initiation and degree of inflammation (Xie et al., 2018). Many inflammatory markers have been used to predict the occurrence, progression, stage, and prognosis of tumors (Zhu et al., 2018). The reason may be that tumor tissues stimulate the proliferation of inflammatory cells in peripheral blood by secreting a number of pro-inflammatory substances (Li et al., 2018). Studies have confirmed cancer progression and recurrence are more likely to occur when the numbers of inflammatory cells such as neutrophils and monocytes in peripheral blood are relatively increased, and the

numbers of immune cells such as lymphocytes and monocytes are relatively decreased (Qi et al., 2021). Inflammation directly brings about changes in the tumor microenvironment that directly promotes and augments malignant cellular transformation, invasion, and metastasis. A number of studies have shown that inflammatory markers in the tumor microenvironment can predict how breast cancer progresses along with its prognosis, with the inflammatory response representing an important marker of breast cancer outcomes. This carries significant implications regarding the role of inflammation in clinical disease assessment and treatment strategy formulation (Chen et al., 2020; Hua et al., 2020). Therefore, it is of great

FIGURE 8 | DFS and OS based on the presence of lymph vessel invasion in breast cancer patients (non-NAC1 group). DFS and OS based on the presence of lymph vessel invasion in breast cancer patients (non-NACT group). (A) Kaplan-Meier analysis of DFS for the SIRI of all patients with breast cancer. (B) Kaplan-Meier analysis of OS for the SIRI of all patients with breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of breast cancer patients without lymph vessel invasion. (D) Kaplan-Meier analysis of OS for the SIRI of breast cancer patients without lymph vessel invasion. (E) Kaplan-Meier analysis of DFS for the SIRI of breast cancer patients of DFS for the SIRI of breast cancer patients without lymph vessel invasion. (E) Kaplan-Meier analysis of OS for the SIRI of breast cancer patients with lymph vessel invasion.

research significance to actively dissect the relationship between common peripheral blood markers and breast cancer patient prognosis.

Several cancers have demonstrated evidence of a systemic inflammatory response, although the exact cause of this phenomenon has not been completely reported (Topkan et al., 2020). Various inflammatory cells comprising of lymphocytes, monocytes, and neutrophils correlate to the prognosis of many tumors (Galdiero et al., 2018). Neutrophils augment tumor progression primarily by promoting the production of interleukin-6 (IL-6), arginase-1 (Arginase-1), and vascular endothelial growth factor (VEGF) (Corbeau et al., 2020). Lymphocytes are critical in tumor immune surveillance and are able to inhibit tumor progression and metastasis and directly kill tumor cells by stimulating natural killer cells (NK cells) and macrophages (Morrow et al., 2019). On the other hand, neutrophils inhibit lymphocytes, thereby inhibiting the anti-tumor immune response (Oba et al., 2021). Monocytes can differentiate into TAMs, and tumors secrete chemokines to recruit TAMs in the microenvironment. Some TAMs secrete growth factors and cytokines, promote angiogenesis, and facilitate immune escape, thus accelerating tumor progression (Olingy et al., 2019).

FIGURE 9 | DFS and OS based on Miller and Payne grade (MPG) in breast cancer patients who received NACT. DFS and OS based on Miller and Payne grade (MPG) in breast cancer patients who received NACT. (A) Kaplan-Meier analysis of DFS based on MPG for the SIRI of patients with breast cancer. (D) Kaplan-Meier analysis of OS based on MPG1 for the SIRI of patients with breast cancer. (D) Kaplan-Meier analysis of DFS based on MPG1 for the SIRI of patients with breast cancer. (D) Kaplan-Meier analysis of DFS based on MPG1 for the SIRI of patients with breast cancer. (D) Kaplan-Meier analysis of OS based on MPG1 for the SIRI of patients with breast cancer. (D) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer (MPG2). (F) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG3). (H) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer (MPG3). (H) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG3). (H) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG3). (H) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG3). (H) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer (MPG3). (H) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG3). (H) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG3). (H) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer (MPG3). (H) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG3). (H) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG3). (H) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer (MPG3). (H) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer (MPG4). (K) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer (MPG5).

FIGURE 10 | DFS and OS derived from response to neoadjuvant chemotherapy in breast cancer patient who received NACT. DFS and OS derived from response to neoadjuvant chemotherapy in breast cancer patient who received NACT. (A) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (B) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer. (C) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (D) Kaplan-Meier analysis of OS for the SIRI of patients with breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (E) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer. (I) Kaplan-Meier analysis of DFS for the SIRI of patients with breast cancer.

SIRI is an effective indicator of the immune status of malignant tumors that is established on peripheral venous lymphocyte, monocyte, and neutrophil counts (Wang et al., 2021). Research has revealed SIRI as an independent prognostic factor in several malignancies (Wei et al., 2020; Zhang et al., 2020). Hua et al. (2020) reported that SIRI was prognostic for postmenopausal breast cancer patients who undergo surgery, with patients with higher SIRI scores experiencing worse OS. Wang et al. (2020) used SIRI, histological grading, TNM stage, and a number of other indicators to build models that were able to predict 5-years and 10-years breast cancer survival rates. They found that the changes in SIRI scores 4 weeks after breast cancer surgery were correlated to survival. Breast cancer patients with more varied SIRI scores had worse overall survival (Wang et al., 2020). However, research on SIRI in breast cancer patients who undergo NACT treatment are scarce. Therefore, this study retrospectively studied the impact of SIRI on the survival and prognosis of breast cancer patients undergoing NACT.

This investigation outlines the relationship between SIRI and clinical pathology in breast cancer patients. A low SIRI score significantly influenced clinicopathological characteristics of

TABLE 5 | Correlation between SIRI and toxicity assessment.

Parameters	Ν		SIRI 477		
Cases (n)		Low SIRI 267	High SIRI 210	χ2	p value
Decreased appetite				1.825	0.177
No	70 (14.68%)	34 (12.73%)	36 (17.14%)		
Yes	407 (85.32%)	233 (87.27%)	174 (82.86%)		
Nausea				1.982	0.159
No	59 (12.37%)	28 (10.49%)	31 (14.76%)		
Yes	418 (87.63%)	239 (89.51%)	179 (85.24%)		
Vomiting				3.391	0.066
No	234 (49.06%)	121 (45.32%)	113 (53.81%)		
Yes	243 (50.94%)	146 (54.68%)	97 (46.19%)		
Diarrhea				0.286	0.593
No	444 (93.08%)	250 (93.63%)	194 (92.38%)		
Yes	33 (6.92%)	17 (6.37%)	16 (7.62%)		
Mouth ulcers				1.398	0.237
No	463 (97.06%)	257 (96.25%)	206 (98.10%)		
Yes	14 (2.94%)	10 (3.75%)	4 (1.90%)		
Alopecia				0.767	0.381
No	222 (46.54%)	129 (48.31%)	93 (44.29%)		
Yes	255 (53.46%)	138 (51.69%)	117 (55.71%)		
Peripheral neurotoxicity				2.559	0.110
No	390 (81.76%)	225 (84.27%)	165 (78.57%)		
Yes	87 (18.24%)	42 (15.73%)	45 (21.43%)		
Anemia	01 (10.2170)	12 (1011070)	10 (2111070)	0.526	0.769
Grade 0	257 (53.88%)	144 (53.93%)	113 (53.81%)	0.020	0.100
Grade 1–2	215 (45.07%)	121 (45.32%)	94 (44.76%)		
Grade 3-4	5 (1.05%)	2 (0.75%)	3 (1.43%)		
Leukopenia	0 (1.0070)	2 (0.1 0 / 0)	0 (1110)0)	1.138	0.566
Grade 0	138 (28.93%)	72 (26.97%)	66 (31.43%)	1.100	0.000
Grade 1-2	233 (48.85%)	134 (50.19%)	99 (47.14%)		
Grade 3–4	106 (22.22%)	61 (22.85%)	45 (21.43%)		
Neutropenia	100 (22.2270)	01 (22.0070)	10 (2111070)	1.714	0.425
Grade 0	143 (29.98%)	76 (28.46%)	67 (31.90%)	1.7 14	0.420
Grade 1-2	179 (37.53%)	107 (40.07%)	72(34.29%)		
Grade 3-4	155 (32.49%)	84 (31.46%)	71 (33.81%)		
Thrombocytopenia	100 (02.4070)	04 (01.4070)	71 (00.0170)	0.553	0.758
Grade 0	372 (77.99%)	210 (78.65%)	162 (77.14%)	0.000	0.750
Grade 1-2	98 (20.55%)	54 (20.22%)	44 (20.95%)		
Grade 3-4	7 (1.47%)	3 (1.12%)	4 (1.90%)		
Gastrointestinal reaction	7 (1.4770)	0 (1.12/0)	4 (1.30%)	1.485	0.476
Grade 0	38 (7.97%)	18 (6.74%)	20 (9.52%)	1.400	0.470
Grade 1-2	433 (90.78%)	245 (91.76%)	188 (89.52%)		
Grade 3-4	6 (1.26%)	()	2 (0.95%)		
	0 (1.2078)	4 (1.50%)	2 (0.9376)	0.257	0.006
Myelosuppression	00 (19 970/)	50 (19 720/)	40 (10 05%)	0.357	0.836
Grade 0 Grade 1–2	90 (18.87%) 175 (26.60%)	50 (18.73%) 101 (27.82%)	40 (19.05%) 74 (35.24%)		
Grade 3-4	175 (36.69%)	101 (37.83%)	74 (35.24%)		
	212 (44.44%)	116 (43.45%)	96 (45.71%)	7.146	0.028
Hepatic dysfunction	971 (77 700/)	106 (72 410/)	175 (90 000/)	1.140	0.028
Grade 0	371 (77.78%)	196 (73.41%)	175 (83.33%)		
Grade 1-2	105 (22.01%)	70 (26.22%)	35 (16.67%)		
Grade 3–4	1 (0.21%)	1 (0.37%)	0 (0.00%)		

patients, such as clinical data (BMI, US tumor size, US-LNM, clinical N, T, and overall TNM stages, postoperative chemotherapy regimen, operative time, postoperative chemotherapy and the frequency of treatment, postoperative targeted therapy), as well as nutritional and hematological parameters (LDH, CRP, CA125, FIB, INR, FDP, W, R, HB, N, L, M, B, and P). Univariate and multivariate analyses revealed that menopausal status, GLU, CA125, M, E, SIRI, histological grade, pathological N stage, Ki-67, CK5/6, LVI, postoperative chemotherapy, and postoperative targeted

therapy were independent predictors of improved DFS and OS. The optimal threshold value for SIRI was 0.80, as determined using a ROC curve. The average DFS and OS survival times of those with low SIRI scores were notably prolonged (achieving statistical significance) compared to those with high SIRI scores.

We also scrutinized the association between SIRI scores and the pathological TNM stage. Data analyses revealed that the average DFS and OS in both early breast cancer and advanced breast cancer were longer in those in the low SIRI group in contrast to the high SIRI group, especially in advanced breast cancer. Similar findings were also seen in the NACT group, although the variability between the two cohorts was not significant. We also analyzed the relationship between SIRI and breast cancer molecular subtypes. There were differences in DFS and OS between high and low SIRI groups across all the analyzed molecular subtypes. While these differences were statistically significant in the three subtypes of Luminal B HER2-negative, HER2-overexpressed, and triple-negative breast cancer, no statistical significance was gained for the Luminal A type and Luminal B HER2-positive types.

Studies have pointed out that lymphatic vessel density and lymphatic infiltration are related to the prognosis of malignant tumors, with a higher degree of vascular infiltration conferring poorer patient prognosis (Wesch et al., 2014). Yamagata et al. (2021). reiterated that the presence of LVI was a crucial prognosticator in lymph node-positive breast cancer patients (Yamano et al., 2020). Our study also demonstrated that the DFS and OS of breast cancer patients with LVI were lower in contrast to those without LVI. Therefore, this study aimed to establish the association between SIRI and LVI. We found that the mean DFS and OS in breast cancer patients without LVI were longer in those with low SIRI scores compared to those with high SIRI scores. However, there was no significant variability between the two SIRI groups of breast cancer patients with LVI. For patients with LVI who received NACT, there was also no significant variability between in SIRI groups. We further assessed the relationship between SIRI, MPG, and response to chemotherapy. In different MPGs, the average DFS and OS survival times in patients with low SIRI scores were longer in contrast to those with high SIRI scores, although these differences failed to achieve statistical significance. In different responses, the average DFS and OS of the low SIRI group were longer compared to the high SIRI group (statistically significant). At the same time, we also analyzed the relationship between SIRI and the toxic side effects of NACT. Low SIRI scores correlated to improved liver function.

Many studies have described a robust inflammatory response to tumor occurrence and development. Quantifying the inflammatory response appears to be significant in clinical diagnosis as the degree of inflammation dictates the occurrence, progress, and outcomes of diseases. Neutrophils and monocytes both result from macrophage progenitor differentiation and possess similar roles in the inflammatory process. Both release a myriad of inflammatory mediators that includes the tumor necrosis factor, epidermal growth factor, and vascular endothelial growth factor; both promote tumor cell proliferation and blood vessel formation; both can inhibit the activity of T lymphocyte-mediated tumor escape from immune surveillance. Lymphocytes are also critical regulators of the tumor immune response and modulate the ability of tumors to hide from immune detection. The increase in the absolute value of neutrophils and monocytes and the decrease in the absolute value of lymphocytes in peripheral blood is associated with the occurrence, proliferation, and progression of tumors. SIRI takes into consideration peripheral blood neutrophils, lymphocytes, and monocytes

to reflect the body's inflammatory response. Therefore, SIRI can be used as a practical clinical indicator of tumor progression and prognosis. We previously noted that SIRI is not widely used as a prognostic indicator in breast cancer patients treated with neoadjuvant chemotherapy. China faces a problem of rising numbers of breast cancer patients. Coupled with the unequal distribution of healthcare resources in the country, the discovery of a commonly used, reproducible, and minimally invasive prognostic parameter that can also guide clinical management would greatly benefit breast cancer patients.

In conclusion, this investigation outlines the relationship between SIRI and breast cancer. Lower SIRI scores appear to confer a better prognosis in breast cancer. Nevertheless, our study is limited due to its small sample size and single-center origin. Future studies would benefit from multicenter patient data collection. The optimal threshold value of SIRI is related to the number of patients included and pathological conditions. Further studies are required to verify the SIRI threshold value of 0.80 that was obtained in this study.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding authors.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (reference NCC2018-034). The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

MZ: Data curation (Equal), Methodology (Equal), and Writingoriginal draft (Equal). LC: Investigation (Equal), Writing-original draft (Equal), and Writing-review and editing (Equal). XK: Formal analysis (Lead), and Methodology (Lead). XW: Data curation (Lead), and Software (Lead). YF: Funding acquisition (Equal), and Supervision (Equal). XL: Supervision (Equal), and Validation (Equal). JW: Funding acquisition (lead); Project administration (lead).

FUNDING

This work was supported by the Natural Science Foundation of China (No. 81872160), the Natural Science Foundation of China (No. 82072940), the China National Key R&D (or Research and Development) Program (Nos.

2020AAA0105000 and 2020AAA0105004), the Beijing Municipal Natural Science Foundation (Key Project) (No. 7191009), the Beijing Municipal Natural Science Foundation (No. 7204293), the Special Research Fund for Central Universities, Peking Union Medical College (No. 3332019053).

REFERENCES

- Al-Hattali, S., Vinnicombe, S. J., Gowdh, N. M., Evans, A., Armstrong, S., Adamson, D., et al. (2019). Breast MRI and Tumour Biology Predict Axillary Lymph Node Response to Neoadjuvant Chemotherapy for Breast Cancer. *Cancer Imaging* 19 (1), 91. doi:10.1186/s40644-019-0279-4
- Amat, S., Penault-Llorca, F., Cure, H., Le Bouedec, G., Achard, J.-L., Van Praagh, I., et al. (2002). Scarff-Bloom-Richardson (SBR) Grading: a Pleiotropic Marker of Chemosensitivity in Invasive Ductal Breast Carcinomas Treated by Neoadjuvant Chemotherapy. *Int. J. Oncol.* 20 (4), 791–796. doi:10.3892/ijo. 20.4.791
- Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2020). Erratum: Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 70 (4), 313. doi:10.3322/caac.21609
- Chen, W., Zheng, R., Zheng, R., Zhang, S., Zeng, H., Zuo, T., et al. (2017). Cancer Incidence and Mortality in China in 2013: an Analysis Based on Urbanization Level. *Chin. J. Cancer Res.* 29 (1), 1–10. doi:10.21147/j.issn.1000-9604.2017. 01.01
- Chen, L., Kong, X., Wang, Z., Wang, X., Fang, Y., and Wang, J. (2020). Pretreatment Systemic Inflammation Response Index in Patients with Breast Cancer Treated with Neoadjuvant Chemotherapy as a Useful Prognostic Indicator. *Cancer Manag. Res.* 12, 1543–1567. doi:10.2147/cmar.s235519
- Colomer, R., Saura, C., Sánchez-Rovira, P., Pascual, T., Rubio, I. T., Burgués, O., et al. (2019). Neoadjuvant Management of Early Breast Cancer: A Clinical and Investigational Position Statement. *Oncologist* 24 (5), 603–611. doi:10.1634/ theoncologist.2018-0228
- Corbeau, I., Jacot, W., and Guiu, S. (2020). Neutrophil to Lymphocyte Ratio as Prognostic and Predictive Factor in Breast Cancer Patients: A Systematic Review. Cancers (Basel) 12 (4), 958. doi:10.3390/cancers12040958
- Cserni, G., Chmielik, E., Cserni, B., and Tot, T. (2018). The New TNM-Based Staging of Breast Cancer. Virchows Arch. 472 (5), 697–703. doi:10.1007/s00428-018-2301-9
- Dagmura, H., Daldal, E., and Okan, I. (2021). The Efficacy of Hemoglobin, Albumin, Lymphocytes, and Platelets as a Prognostic Marker for Survival in Octogenarians and Nonagenarians Undergoing Colorectal Cancer Surgery. *Cancer Biother. Radiopharm.* doi:10.1089/cbr.2020.4725
- Dan, J., Tan, J., Huang, J., Zhang, X., Guo, Y., Huang, Y., et al. (2020). The Dynamic Change of Neutrophil to Lymphocyte Ratio Is Predictive of Pathological Complete Response after Neoadjuvant Chemotherapy in Breast Cancer Patients. *Breast Cancer* 27 (5), 982–988. doi:10.1007/ s12282-020-01096-x
- Diakos, C. I., Charles, K. A., McMillan, D. C., and Clarke, S. J. (2014). Cancerrelated Inflammation and Treatment Effectiveness. *Lancet Oncol.* 15 (11), E493–E503. doi:10.1016/S1470-2045(14)70263-3
- Dong, J., Sun, Q., Pan, Y., Lu, N., Han, X., and Zhou, Q. (2021). Pretreatment Systemic Inflammation Response index Is Predictive of Pathological Complete Response in Patients with Breast Cancer Receiving Neoadjuvant Chemotherapy. BMC Cancer 21 (1), 700. doi:10.1186/s12885-021-08458-4
- Galdiero, M. R., Marone, G., and Mantovani, A. (2018). Cancer Inflammation and Cytokines. Cold Spring Harb. Perspect. Biol. 10 (8), a028662. doi:10.1101/ cshperspect.a028662
- He, Q., Li, J.-Y., and Ren, Q.-L. (2021a). Efficacy of Neoadjuvant Single or Dual Anti-HER-2 Therapy Combined with Chemotherapy in Patients with HER-2-Positive Breast Cancer: A Single-Center Retrospective Study. *Asian Pac. J. Cancer Prev.* 22 (5), 1467–1475. doi:10.31557/apjcp.2021.22. 5.1467
- He, Q., Li, L., and Ren, Q. (2021b). The Prognostic Value of Preoperative Systemic Inflammatory Response Index (SIRI) in Patients with High-Grade Glioma and

ACKNOWLEDGMENTS

The authors thank the helpful comments of Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital.

the Establishment of a Nomogram. *Front. Oncol.* 11, 671811. doi:10.3389/fonc. 2021.671811

- Hua, X., Long, Z. Q., Huang, X., Deng, J. P., Wen, W., He, Z. Y., et al. (2020). The Preoperative Systemic Inflammation Response index (SIRI) Independently Predicts Survival in Postmenopausal Women with Breast Cancer. Curr. Probl. Cancer 44 (4), 100560. doi:10.1016/j.currproblcancer.2020.100560
- Kaba, H., Fukuda, H., Yamamoto, S., and Ohashi, Y. (2004). Reliability at the National Cancer Institute-Common Toxicity Criteria Version 2.0. Gan To Kagaku Ryoho 31 (8), 1187–1192.
- Li, B., Wang, Y., Dong, B., Pan, J., Zhu, Y., Sha, J., et al. (2018). Pretreatment Systemic Inflammation Response index as an Independent Prognostic Indicator for Prostate Cancer Patients Treated with Maximal Androgen Blockade. *Chin.* J. Urol. 39 (7), 527–531.
- Li, N., Deng, Y., Zhou, L., Tian, T., Yang, S., Wu, Y., et al. (2019). Global burden of Breast Cancer and Attributable Risk Factors in 195 Countries and Territories, from 1990 to 2017: Results from the Global Burden of Disease Study 2017. *J. Hematol. Oncol.* 12 (1), 140. doi:10.1186/s13045-019-0828-0
- Liu, Z., Ge, H., Miao, Z., Shao, S., Shi, H., and Dong, C. (2021). Dynamic Changes in the Systemic Inflammation Response Index Predict the Outcome of Resectable Gastric Cancer Patients. *Front. Oncol.* 11, 577043. doi:10.3389/ fonc.2021.577043
- Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related Inflammation. *Nature* 454 (7203), 436–444. doi:10.1038/nature07205
- Morrow, E. S., Roseweir, A., and Edwards, J. (2019). The Role of Gamma delta T Lymphocytes in Breast Cancer: a Review. *Transl. Res.* 203, 88–96. doi:10.1016/j. trsl.2018.08.005
- Oba, T., Maeno, K., Amitani, M., Shimizu, T., Ohno, K., Ono, M., et al. (2021). Prognostic Significance of Neutrophil-To-Lymphocyte Ratio for Long-Term Outcomes in Patients with Poorly Differentiated Thyroid Cancer. *Endocr. J.* 68, 1329. doi:10.1507/endocrj.ej21-0237
- Olingy, C. E., Dinh, H. Q., and Hedrick, C. C. (2019). Monocyte Heterogeneity and Functions in Cancer. J. Leukoc. Biol. 106 (2), 309–322. doi:10.1002/jlb.4ri0818-311r
- Qi, W.-X., Xiang, Y., Zhao, S., and Chen, J. (2021). Assessment of Systematic Inflammatory and Nutritional Indexes in Extensive-Stage Small-Cell Lung Cancer Treated with First-Line Chemotherapy and Atezolizumab. *Cancer Immunol. Immunother.* 70, 3199. doi:10.1007/s00262-021-02926-3
- Saroul, N., Puechmaille, M., Lambert, C., Hassan, A. S., Biau, J., Lapeyre, M., et al. (2021). Prognosis in Head and Neck Cancer: Importance of Nutritional and Biological Inflammatory Status. *Otolaryngol. Head Neck Surg.* 166, 118. doi:10. 1177/01945998211004592
- Siegel, R. L., Miller, K. D., and Jemal, A. (2020). Cancer Statistics, 2020. CA Cancer J. Clin. 70 (1), 7–30. doi:10.3322/caac.21590
- Singh, N., Baby, D., Rajguru, J., Patil, P., Thakkannavar, S., and Pujari, V. (2019). Inflammation and Cancer. Ann. Afr. Med. 18 (3), 121–126. doi:10.4103/aam. aam_56_18
- Therasse, P., Arbuck, S. G., Eisenhauer, E. A., Wanders, J., Kaplan, R. S., Rubinstein, L., et al. (2000). New Guidelines to Evaluate the Response to Treatment in Solid Tumors. J. Natl. Cancer Inst. 92 (3), 205–216. doi:10.1093/jnci/92.3.205
- Topkan, E., Mertsoylu, H., Kucuk, A., Besen, A. A., Sezer, A., Sezen, D., et al. (2020). Low Systemic Inflammation Response Index Predicts Good Prognosis in Locally Advanced Pancreatic Carcinoma Patients Treated with Concurrent Chemoradiotherapy. *Gastroenterol. Res. Pract.* 2020, 5701949. doi:10.1155/ 2020/5701949
- Tufano, A. M., Teplinsky, E., and Landry, C. A. (2021). Updates in Neoadjuvant Therapy for Triple Negative Breast Cancer. Clin. Breast Cancer 21 (1), 1–9. doi:10.1016/j.clbc.2020.07.001
- Wang, L., Zhou, Y., Xia, S., Lu, L., Dai, T., Li, A., et al. (2020). Prognostic Value of the Systemic Inflammation Response index (SIRI) before and after Surgery in Operable Breast Cancer Patients. *Cancer Biomark* 28 (4), 537–547. doi:10.3233/ cbm-201682

- Wang, T.-C., An, T.-Z., Li, J.-X., and Pang, P.-F. (2021). Systemic Inflammation Response Index Is a Prognostic Risk Factor in Patients with Hepatocellular Carcinoma Undergoing TACE. *Risk Manag. Healthc. Pol.* 14, 2589–2600. doi:10.2147/rmhp.s316740
- Wei, L., Xie, H., and Yan, P. (2020). Prognostic Value of the Systemic Inflammation Response index in Human Malignancy A Meta-Analysis. *Medicine* 99 (50), e23486. doi:10.1097/md.00000000023486
- Weigelt, B., and Reis-Filho, J. S. (2009). Histological and Molecular Types of Breast Cancer: Is There a Unifying Taxonomy? *Nat. Rev. Clin. Oncol.* 6 (12), 718–730. doi:10.1038/nrclinonc.2009.166
- Wesch, D., Peters, C., and Siegers, G. M. (2014). Human Gamma delta T Regulatory Cells in Cancer: Fact or Fiction? *Front. Immunol.* 5, 598. doi:10. 3389/fimmu.2014.00598
- Xie, H., Wei, B., Shen, H., Gao, Y., Wang, L., and Liu, H. (2018). BRAF Mutation in Papillary Thyroid Carcinoma (PTC) and its Association with Clinicopathological Features and Systemic Inflammation Response index (SIRI). Am. J. Transl. Res. 10 (8), 2726–2736.
- Yamagata, K., Fukuzawa, S., Ishibashi-Kanno, N., Uchida, F., and Bukawa, H. (2021). Association between the C-Reactive Protein/albumin Ratio and Prognosis in Patients with Oral Squamous Cell Carcinoma. *Scientific Rep.* 11 (1), 5446. doi:10.1038/s41598-021-83362-2
- Yamano, T., Yamauchi, S., Igeta, M., Takenaka, Y., Song, J., Kimura, K., et al. (2020). Combination of Preoperative Tumour Markers and Lymphovascular Invasion with TNM Staging as a Cost and Labour Efficient Subtyping of Colorectal Cancer. *Sci. Rep.* 10 (1), 10238. doi:10. 1038/s41598-020-66652-z

- Zhang, Y., Liu, F., and Wang, Y. (2020). Evidence of the Prognostic Value of Pretreatment Systemic Inflammation Response Index in Cancer Patients: A Pooled Analysis of 19 Cohort Studies. *Dis. Markers* 2020, 8854267. doi:10.1155/ 2020/8854267
- Zhu, Z., Xu, L., Zhuang, L., Ning, Z., Zhang, C., Yan, X., et al. (2018). Role of Monocyte-To-Lymphocyte Ratio in Predicting Sorafenib Response in Patients with Advanced Hepatocellular Carcinoma. *Onco. Targets Ther.* 11, 6731–6740. doi:10.2147/ott.s173275

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Zhu, Chen, Kong, Wang, Fang, Li and Wang. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.