
Identification of Zinc-Binding
Inhibitors of Matrix
Metalloproteinase-9 to Prevent
Cancer Through Deep Learning and
Molecular Dynamics Simulation
Approach
Shalini Mathpal1, Priyanka Sharma2, Tushar Joshi1, Veena Pande1, Shafi Mahmud3,4,
Mi-Kyung Jeong5, Ahmad J. Obaidullah6, Subhash Chandra7* and Bonglee Kim5,8*

1Department of Biotechnology, Kumaun University Uttarakhand, Bhimtal, India, 2Department of Botany, DSB, Campus, Kumaun
University, Nainital, India, 3Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh, 4Department of
Genome Science, John Curtin School of Medical Research, Australian National University, Canberra, Australia, 5KMConvergence
Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea, 6Drug Exploration and Development Chair (DEDC),
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, 7Computational
Biology and Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, India, 8Department of
Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea

The overexpression of matrix metalloproteinase-9 (MMP-9) is associated with tumor
development and angiogenesis, and hence, it has been considered an attractive drug
target for anticancer therapy. To assist in drug design endeavors for MMP-9 targets, an in
silico study was presented to investigate whether our compounds inhibit MMP-9 by
binding to the catalytic domain, similar to their inhibitor or not. For that, in the initial stage, a
deep-learning algorithm was used for the predictive modeling of the CHEMBL321 dataset
of MMP-9 inhibitors. Several regression models were built and evaluated based on R2,
MAE MSE, RMSE, and Loss. The best model was utilized to screen the drug bank
database containing 9,102 compounds to seek novel compounds as MMP-9 inhibitors.
Then top high score compounds were selected for molecular docking based on the
comparison between the score of the reference molecule. Furthermore, molecules having
the highest docking scores were selected, and interaction mechanisms with respect to S1
pocket and catalytic zinc ion of these compounds were also discussed. Those
compounds, involving binding to the catalytic zinc ion and the S1 pocket of MMP-9,
were considered preferentially for molecular dynamics studies (100 ns) and an MM-PBSA
(last 30 ns) analysis. Based on the results, we proposed several novel compounds as
potential candidates for MMP-9 inhibition and investigated their binding properties with
MMP-9. The findings suggested that these compounds may be useful in the design and
development of MMP-9 inhibitors in the future.
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INTRODUCTION

MMPs (matrix metalloproteinases) are zinc-dependent
endopeptidases with more than 20 different members (Klein
and Bischoff, 2011). MMPs can be divided into six main
groups, such as gelatinases, collagenases, matrilysins,
stromelysins, membrane-type MMPs, and others (Nagase
et al., 2006). In particular, MMP-9, a member of the gelatinase
family, is one of the most complex action-performingMMPs, as it
plays a key role in cancer cell invasion, tumor metastasis, and
triggering the “angiogenic switch” (Bronisz and Kurkowska-
Jastrzębska, 2016). During tissue remodeling, it degrades
gelatin and types IV, V, XI, and XVI collagen, which are
essential for tumor invasion and metastasis (Liu et al., 2015).
Additionally, MMP-9 also acts as a functional component of
angiogenesis switch during multistage carcinogenesis, where
MMP-9 triggers the release of a vascular epidermal growth
factor, which accelerates tumor growth (Engsig et al., 2000).
MMP-9 is commonly found in the hippocampus, cerebellum,
and cerebral cortex. It is secreted mainly from the endothelial
cells, leukocytes, fibroblasts, neutrophils, and macrophages as
zymogens or in an inactive form (Bronisz and Kurkowska-
Jastrzębska, 2016).

Human MMP-9 proteins generally consist of three domains:
the N-terminal propeptide domain, the catalytic domain, and the
C-terminal, the hemopexin-like domain. The catalytic domain of
human MMP-9 which is without the fibronectin repeats has the
same structure as other MMPs: a five-stranded beta-sheet and
three alpha-helices. It is composed of the active-site zinc ion,
coordinated by three histidine residues (401, 405, and 411) and
the essential glutamic acid residue (402). The catalytic zinc ion is
essential for proteolytic activity (Bode et al., 1999).

The hemopexin-like domain of MMP-9 interacts with
substrates like gelatin and collagen. This domain is crucial for
substrate recognition (Roderfeld et al., 2007). Some natural tissue
inhibitors of MMPs (TIMPs), such as TIMP-1, can bind to the
hemopexin-like domain of pro-MMP-9 to form a tight complex
that prevents MMP-9 from being activated (Nagase et al., 2006;
Roderfeld et al., 2007).

Finding the drugs which can control the activity of MMP-9 is
an important area of cancer research. MMP-9 overexpression has
been observed in a variety of malignant cancers and has been
extensively studied as a potential biomarker for several cancers.
MMP-9 is found to play a crucial role in gastric cancer, breast
cancer, colorectal cancer, non-small-cell lung cancer, ovarian
cancer, and many other cancers (Roy et al., 2009; Shao et al.,
2011; Hu et al., 2012; Li et al., 2013; Liang and Chang, 2018).
Because of the important role of MMP-9 in tumorigenesis, it has
been postulated to be a good prognostic marker and has been
considered an attractive target in cancer therapy (Duffy, 1996). As
a result, various MMP-9 synthetic inhibitors have been developed
and used in clinical trials to prevent tumor metastasis, but the
results have been unsatisfactory because of high toxicity and the
lack of specificity (Coussens, 2002). In recent years, various
natural and synthetic inhibitors of the enzyme MMP-9 have
been synthesized and reported to be beneficial in the treatment of
various cancerous conditions (Singh et al., 2017; Rathee et al.,

2018, Rathee et al., 2019; Bursal et al., 2019; Lou et al., 2019;
Phytochemical, 2020; Paramashivam and Narayanan, 2021).

It has been suggested that molecules with a high affinity for
Zn2+ effectively prevent the polypeptide from binding to MMPs,
and are therefore considered MMP inhibitors (Tu et al., 2008).
Zn2+ binding groups have been reported in several studies,
including hydroxamic acid, thiols, carboxylates, and
phosphonic acid, of which hydroxamic acid appears to be the
most potent one among them (Whittaker et al., 1999; Skiles et al.,
2001). Small MMP inhibitors with a broad spectrum of ZBG-
containing activity have also been tested in cancer clinical trials by
several pharmaceutical companies (Fisher and Mobashery, 2006;
Fingleton, 2007). These include hydroxamate-based MMP
inhibitors such as Marimastat, Batimastat, Solimastat, MMI-
270, Trocade, Periomastat, and Tanomastat (Figure 1).
However, almost all of the aforementioned MMPIs failed
clinical trials because of poor solubility, low oral
bioavailability, and numerous side effects (Jacobsen et al.,
2010; Winer et al., 2018).

Addressing these issues, the present study aimed to screen
novel MMP-9 inhibitors with which to target the zinc and
catalytic pockets of MMP-9 by using deep learning and other
computational techniques. Deep learning is a machine learning
technique that employs advanced algorithms based on artificial
neural networks inspired by biological brain operations. It has
multiple processing layers and artificial neurons to mimic the
function of the human brain (Rusk, 2016). Deep learning is
effective in a variety of areas, including image processing, self-
driving cars, natural language processing, medical diagnosis, and
drug development (Esteva et al., 2019).

Therefore, in this study, we combined deep learning,
molecular docking, and a molecular dynamics approach to
find key interactions between the protein and ligands that are
accountable for the inhibitory activity of MMP-9. We also
performed a post facto analysis of the MD trajectories of the
highest active molecule to determine the binding free energies
associated with protein–ligand complexation.

MATERIAL AND METHODS

Predictive Modeling by Deep Learning
In this study, a deep learning algorithm was used to develop a
predictive model for screening novel compounds against MMP-9.
The Deep Learning online server (http://deepscreening.xielab.
net) (Liu et al., 2019) was used to generate this model. The
predictive model was built using the CHEMBL321 dataset, which
provided the IC50 value for inhibiting the MMP-9 activity.

The preprocessing of this CHEMBL dataset for molecular
vectorization was performed by applying the PubChem
Fingerprint which generates 881 fingerprints using PaDEL
software (Yap, 2011).

The PubChem fingerprints were used to build regression
models by applying deep recurrent neural networks (RNNs).
To choose the best model, hyperparameters such as learning rate,
epochs, batch size, number of neurons, and hidden layers were
manually optimized. The ReLU (y = max (0,1)) activation
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function was used for the hidden layers, whereas the sigmoid
function was used for the output layer.

Model Evaluation and Virtual Screening
The deep learning models and the performance of the models
were evaluated by various statistical parameters such as
R-squared (R2), mean squared error (MSE), root MSE
(RMSE), and mean absolute error (MAE).

The best regression model was deployed in the drug bank
library (Library id-L00005) which contains 9,102 compounds for
virtual screening, and the model predicted 500 screened hits.

MSE � 1
N

∑N
i�1
(yi − ŷ)2, (1)

RMSE � �����
MSE

√ �
��
1
N

√ ∑N
i�1
(yi − ŷ)2, (2)

MAE � 1
N

∑N
i�1

∣∣∣∣yi − ŷ
∣∣∣∣, (3)

R2 � 1 − ⎡⎢⎣∑(yi − ŷ)2∑(yi − �y) ⎤⎥⎦, (4)

where yi = observed value, ŷ = predicted value, and �y =
mean value.

Protein and Ligand Preparation
The 3D crystal structure of MMP-9 in a complex with a reverse
hydroxamate inhibitor obtained from the protein data bank was
used for this study. The PDB ID: 1GKC was chosen from 14
crystal structures because it is the first reported structure for
MMP-9 with a reverse hydroxamate inhibitor. Reverse
hydroxamate inhibitors have better pharmacokinetic properties
than their hydroxamate counterparts, making them a better
starting point for drug development (Rowsell et al., 2002). The
binding site of MMP-9 (PDB ID: 1GKC) was then evaluated by
PDBsum. The structure was optimized by adding hydrogen using
the MGL Tools of AutoDockVina software. Water molecules,
chain B, reverse hydroxamate inhibitors, and calcium ions were
detached from the structure, and 3D protonation was conducted
to convert the state into the ionization level.

A co-crystalized ligand as a reference molecule N~2~-[(2R)-2-
{[formyl (hydroxy)amino]methyl}-4-methylpentanoyl]-N,3-
dimethyl-L-valinamide or NFH (CID: 5287851) was
downloaded from the PubChem server in the SDF format. All
the selected ligands screened by deep learning and the reference
molecule were converted to the PDB format by OpenBabel
(version 2.3.1) (O’Boyle et al., 2011).

For the preparation of the ligands, hydrogen molecules were
added to all hit compounds, and energy minimization was done
with a UFF force field using an algorithm conjugated by PyRx

FIGURE 1 | Structure of some potent MMP-9 inhibitors.
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software. All the compounds were later converted to the pdbqt
format.

Molecular Docking
The top hits shortlisted from the deep-learning screening were
docked against MMP-9 using AutodockVina (Trott and Olson,
2009) to find the selective ligands for MMP-9.

The protein’s active site was generated using the default
parameters of PyMOL software. The docking site on the
protein target was determined by establishing a grid box with
the dimensions of X: 25 Y: 25 Z: 25 Å, with a grid spacing of
0.375 Å, centered on X = 65.714, Y = 30.223, and Z = 117.65.
Throughout the molecular docking, the receptor was set as a rigid
body, whereas the ligands were kept flexible. To predict accurate
results, the exhaustiveness default value was set to 8. The accuracy
of the docking setup was validated by removing the reverse
hydroxamate inhibitor from the catalytic domain of MMP-9
and re-docking with MMP-9 using the same grid and docking
parameters as before. Finally, the ligands with the best
confirmation and lowest binding free energy (G) were
carefully chosen. The 2D and 3D interactions including
hydrophobic, hydrogen bonds were further analyzed for the
docked ligands by using Ligplotþv.1.4.5 (Wallace et al., 1995)
and PyMOL software, respectively.

Molecular Dynamics Simulation
MD simulations of 100 ns for all the systems were performed
using GROMACS 5.0 package (Pronk et al., 2013). Energy
optimization and calculations for protein and all the
complexes were carried out by using the CHARMm27 force
field. The structural topology files of all the complexes were
generated using SwissParam (Zoete et al., 2011) web server.
The initial complex was solvated in a pre-equilibrated
orthorhombic box of TIP3P water (Jorgensen et al., 1983)
containing box vectors of equal length, 9.81 nm, with
dodecahedral periodic boundary conditions.

To neutralize the system, water molecules were added with
sodium (Na+) and chloride (Cl−) ions, which directed periodic
boundary conditions. Energy minimization using the steepest
descent algorithm at 10 KJ/mol using the Verlet cutoff scheme
taking the particle mesh Ewald (PME) columbic interactions and
the total number of steps taken by all the systems during energy
minimization cycle was 50,000. In the next phase, NVT and NPT
equilibration was performed at a constant temperature of 300 K
and 1.0 atm pressure with a time step of 2 fs, using the Parrinello-
Rahman method for constant pressure simulation. According to
Duan et al. (2019), 300 K is the standard and most appropriate
temperature for MD simulations as it has the highest cluster
occupancy (cluster analysis), lowest free energy state (free energy
landscape analysis), and RMSD distribution. After the
completion of 100 ns MD simulations of all the complexes, the
post-processing and analyses of the MD trajectories were
performed using analysis tools.

The tools of GROMACS 5.0.7 software package such as g_rms,
g_rmsf, and g_gyrate, g_sasa, were used to analyze the root mean
square deviation (RMSD), fluctuation (RMSF), radius of gyration
(Rg), and solvent accessible surface area (SASA) of the MD

trajectories. The number of hydrogen bonds formed within the
complex and the protein during the MD simulation was
calculated by hydrogen bond analysis.

Molecular Mechanics Poisson–Boltzmann
Surface Area Calculation
The binding free energy of top hit protein–ligand complexes was
calculated using the MM-PBSA. This method directly estimates
the free energies of end states by eliminating the simulation of
intermediate states and then combines molecular mechanical
energies with continuum solvent strategies. To calculate the
total ΔGbind, the free solvation energy (polar and nonpolar
solvation energies) and potential energy (electrostatic and van
der Waals interactions) of each protein–ligand complex were
analyzed. The MM-PBSA of all protein–ligand complexes was
calculated for the last 30 ns time period. The average binding
energy was then calculated using the “python” script included in
g_mmpbsa.

RESULTS AND DISCUSSION

Predictive Modeling and Virtual Screening
In this study, we built ten models with various hyperparameters,
which were manually improved and examined by using statistical
parameters (Table 1), and among all of them, the best model
(number 5) was selected with a learning rate of 0.01, 30 epochs, 16
batch size, and two hidden layers. In this model, the neuron
numbers were 512 and 100, the activation function was ReLU, the
drop out was 0, and the output function was sigmoid.

The best model exhibited a reasonable range of statistical
parameters and displayed good results with a 0.78 loss value, a
0.67R2 value, 0.79 RMSE value, 0.78 MSE value, and a 0.68 MAE
value (Figure 2). The deep learning model was then used to
perform virtual screening on the dataset of the drug bank
chemicals, which has a library of 9,102 compounds. The best
predicted model screened 500 hits by virtual screening with deep-
learning scores ranging from 11.7 to 3.4.

Furthermore, to obtain hits with a better score value than the
reference inhibitor, the structure of the reference was submitted
to the deep screening server and the score was predicted using the
constructed model. The hits with the best scores were selected
based on a comparison between the scores of the binding
inhibitor of MMP-9 and all the 500 screened ligands. A total
of 38 hits were found to have a score higher than the reference
molecule (8.06) (Supplementary Figure S1). All the selected 38
compounds ranging from 11.7 to 8.06 were subjected to Lipinski’s
rule of five predictions before molecular docking.

Molecular Docking and Binding Mode
Analysis
To predict the binding interactions of the screened compounds
and the MMP-9 receptor, we used the molecular docking
approach using AutodockVinaPyRx open-source software
(GUI version 0.8). Before the screening, the docking protocol
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TABLE 1 | Manual optimization of hyperparameters to select the best deep learning model.

S. no Model ID Epoch Hidden layers No. of neurons R2 Loss MSE RMSE MAE

1 8RK310Z288WQJ5O4018J 80 3 1000,500,50 0.65 1.92 1.92 1.39 1.16
2 56002O1R7S0064Y9B4W0 60 3 1000,500,100 0.67 0.86 0.86 0.95 0.68
3 7A8NBRB65PRTM3U32822 80 3 50,200,100 0.62 0.84 0.84 0.91 0.69
4 1EUW57SF3HK089916UQ3 80 3 1500,1000,700 0.65 0.8 0.93 0.88 0.72
5 H2QD4W391MZ025E3390D 30 2 512,100 0.67 0.78 0.78 0.79 0.68
6 0RE2551MR14Q4V2593NO 30 3 1000,800,600 0.61 0.86 0.86 0.93 0.79
7 7OYBO5XRK1T5L3196TA2 30 2 128,512 0.6 0.89 0.89 0.94 0.72
8 LJM6WSWR3566O9Y4509X 30 2 1024,2048 0.65 0.9 0.9 0.96 0.69
9 7COSHT043Z10CE2J86S0 30 2 1024,512 0.66 1.03 1.03 1.01 0.8
10 X68C7XF4JQ533HR9XW10 30 2 1024,100 0.62 0.83 0.91 0.83 0.7

These bold values indicate the hyperparameters chosen for the deep learning model in this study.

FIGURE 2 | Performance of the best deep learning regression model for MMP-9 protein.
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was validated by re-docking the reference molecule into the
binding pocket of the active site of the MMP-9 protein. The
result showed that the docked reference was completely
superimposed with the co-crystallized reference molecule with
an RMSD value of 1.2. Furthermore, the potential inhibitors of
MMP-9 were identified by inspecting the docked poses of the
ligands with the key active sites of MMP-9, such as the catalytic
zinc ion, and amino acid residues of the S1_loop (pocket). The
binding site of MMP-9 (PDB ID:1GKC) was evaluated by
PDBsum (Laskowski et al., 2018), and Gly186, Leu187,
Leu188, Ala189, Leu222, Val223, His401, Glu227, His405,
Val398, His411, Leu243, Tyr423, Pro421, and Met422 were
considered as binding site residues (Figure 1). The catalytic
center is composed of the active-site zinc ion, coordinated by
three histidine residues (401, 405, and 411) and the essential
glutamic acid residue (402).

Molecular docking was performed for the 23 ligand molecules
at the S1-pocket of the catalytic domain of MMP-9. All
conformers of the ligands were ranked according to their
docking score. The top 15 best docked conformers (Figure 3)
with a higher affinity for the MMP-9 receptor than the reference
were selected and subjected to an analysis of the binding mode
and molecular interactions in the binding cavity of MMP-9.
Furthermore, those compounds, involving binding to the
catalytic zinc ion and the S1 pocket of MMP-9, were
considered preferential in the interaction analysis. It can be
seen from the interaction analysis results that the nine
compounds do not show interactions with zinc
(Supplementary Figure S2), so these compounds were not
considered for further analysis (Figure 3).

Six compounds have been proven to exhibit an interaction
with zinc and high activity against MMP-9. Therefore, these six
compounds were considered for further study.

The reference compound with binding energy −6.8 kcal/mol
had formed a predominant hydrogen bond interaction with

Leu188, Gly186, Tyr423, and Pro421 in addition to five
hydrophobic bonds in the catalytic domain of MMP-9 (Figure 4).

Compound DB12465 showed the lowest binding energy
−11.7 kcal/mol compared to all the compounds and exhibited
interactions with Tyr420, andMet422 in the active site residues of
the MMP-9 catalytic domain. We also found that it also
established hydrophobic contacts with Glu402, Val398,
Tyr423, Leu397, Pro421, Leu187, His190, and Ala189.

Compound DB07101 showed a good binding affinity
(−9.4 kcal/mol) and formed four hydrogen bonds with Phe110,
Ala191, Ala189, and Glu111 of the S1-pocket’s residues.
However, DB07927 with binding energy (−9.4 kcal/mol)
interacted via hydrogen bonding with Leu397, Arg424, Ala189,
Leu188, and Tyr 420 by binding in the S1-pocket of MMP-9.

Compound DB08490 has also shown good binding energy
(−9.4 kcal/mol) and formed two hydrogen bonds with Tyr423
and Gly186 in theMMP-9 catalytic domain. Ligand DB08223 was
hydrogen-bonded to Leu188, Tyr423, Pro421, and Gly186, and
established hydrophobic contacts with Leu397, Glu402, Tyr420,
Val398, His190, Leu187, Met422, and Ala189 residues of the
MMP-9 S1-pocket.

Compound DB07046 was hydrogen-bonded to Glu402 and
Ala191, and had hydrophobic contacts with residues Tyr423,
Pro421, Met422, Leu187, Gly186, Tyr423, His190, Val398, and
Phe110 of the MMP-9 S1-pocket.

Furthermore, it is to be noted that all six compounds form
H-bonds with Zn2+ and the coordination bond distances between
Zn2+, and three histidines His405, His401, and His411 (His triad
that holds Zn) are 2.23, 2.22, and 2.21, respectively, which is the
same for all the ligands and reference molecule (Figure 4).

The present docking and interaction studies showed that all six
compounds could inhibit the MMP-9 catalytic domain by
binding at the S1-pocket and Zn2+ ion significantly similar to
the reference with similar interactions at the same site. The result
indicated that these hits may act as potent inhibitors for MMP-9.

FIGURE 3 | Frequency distribution graph of docked compounds over the range of deep learning and docking scores.
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MD Simulation
The flexibility, structural behavior, and stability of the top six,
highly active docked compounds were assessed by 100 ns MD
simulation. It provides insights into the dynamic behavior of
compounds, and the information obtained is often used in drug
discovery. MD simulation was conducted for all the six
protein–ligand complexes. To compare the results, the MD
simulation was also performed on the MMP-9 protein without
the ligand. Furthermore, the root mean square deviation
(RMSD), root mean square fluctuations of the residues
(RMSF), the radius of gyration (Rg), and other parameters
were also examined for each system to ensure the
conformational stability of the protein. After the RMSD
analysis, out of six compounds, four compounds, with the IDs
(DB07101, DB07927, DB08490, and DB12465) showed
promising inhibitory activity against MMP-9 (3D structure of

these four compounds is shown in Supplementary Figure S3).
Therefore, only these four compounds were further analyzed and
described.

Root Mean Square Deviation and
Fluctuations in the Residual Components
RMSD is a measure of the average distance between the backbone
residues and atoms of a protein. The RMSD of MMP-9 was
calculated against the four complexes; a graph was plotted using
the three-dimensional Xmgrace plotting tool to compare the
stability of the protein backbone and Cα atoms. The protein
Cα and backbone residues showed minimal fluctuations before
equilibration of the system and were found to be stable
throughout the MD simulation study. As seen in Figure 5, all
complex systems reached a steady state very quickly and

FIGURE 4 | 2D interactions of the top protein–ligand complex obtained by molecular docking.
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remained stable until the end of the simulation time, whereas the
native protein MMP-9 stabilized later with an increasing RMSD
value (Figure 5A). One possible explanation is that the MMP-9
protein is not restricted, and can therefore modify its
conformation to achieve a more stable geometry.

The graph showed that the maximum RMSD value, which
belonged to the complex DB12465–MMP-9, was approximately
0.58 nm, and it was higher than those of other complex systems.
But the complex had a fluctuation of less than 0.2 nm, which is
completely acceptable. Other complexes DB07927–MMP-9 and
DB08490–MMP-9 showed good interaction with the protein
active site similar to the reference molecule (0.21 nm). In both
cases, the average RMSD values were calculated as 0.32 and
0.24 nm, respectively. It decreased because of the interactions
between the protein residues and the ligands which limited
conformational changes in the protein structure. Therefore,
from the RMSD profile, it can be seen that all the four
compounds, after reaching an equilibration state, fit in the
active site and stabilized during the MD simulation (Figure 5B).

The root mean square fluctuation (RMSF) of the backbone
residues of all the four complexes was plotted against the residue
numbers to undertake a deeper investigation into the variations in
protein flexibility during the simulation. As depicted in
Figure 5C, the residues of the active site such as Gly186,
Leu187, Leu188, Ala189, Leu222, Val223, His401, Glu227,
His405, His411, Leu243, Tyr423, Pro421, and Met422 had
small fluctuations in comparison with their adjacent residues
in both the complexes. However, in the case of all ligands, a tiny

peak was observed around the residue 170–178, which was
enriched in hydrophobic residues and not involved in ligand
interaction (Figure 5D). But the fluctuation was less than 0.2 nm,
which is completely acceptable.

Overall, protein residual fluctuations in all complexes were
found to be minimal (Table 2). From the result, we can depict
that all the four ligands interacted through the active site residues
of MMP-9 and that the protein residues involved in the active site
of all the complexes remained stable during the entire MDS run.
This result of both the RMSD and RMSF demonstrated that the
selected ligands were potential inhibitors of MMP-9.

The Radius of Gyration and Hydrogen Bond
Analysis
The Rg shows the compaction level in the protein structure
during the simulation. As seen in Table 3, the average Rg
values calculated for all the four complexes and native protein
are approximately the same as the reference molecule, and the
continuity of all complexes is retained. All interacting residues
show the Rg in the range of 0.12 nm, indicating minimal
fluctuations and greater stability throughout the MD
simulation study. Therefore, from the graph (Figures 6E, F) of
the Rg, we can demonstrate that the binding of ligands does not
change the folding behavior of the protein, and that it was
maintained during the MDS run.

The hydrogen bond formation/deformation indicates the
number of H-bonds formed or broken during the MD

FIGURE 5 | Graphs representing the RMSD plot of protein MMP-9 (A) and MMP-9–ligand complexes (B); RMSF plot of MMP-9 (C) and MMP-9–ligand
complexes (D).
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simulation. For the reference molecule, almost five hydrogen
bonds were found to be constant throughout the simulation. In
contrast, an extra two hydrogen bonds appeared from 40 to 75 ns
(Figure 6G). Complex DB08490–MMP-9 displayed five constant

hydrogen bonds, whereas complex DB07927–MMP-9 showed
three H-bonds during the MDS run, although an additional
H-bond was also observed during the 100 ns simulation
period. Similarly, around three hydrogen bonds were

TABLE 2 | Active site residues and their RMSF values (angstrom).

Protein–ligand complex Hydrogen bond interaction Hydrophobic bond interaction

No. of bonds Residues involved RMSF value No. of bonds Residues involved RMSF value

DB07101–MMP-9 7 Ala189 0.08 8 Tyr423 0.09
Val398 0.05

Ala191 0.08 Tyr420 0.09
Glu111 0.19 His190 0.08
Phe110 0.15 Pro421 0.10
His401 0.05 Met422 0.10
His405 0.07 Gly186 0.19
His411 0.10 Leu187 0.11

DB08490–MMP-9 5 Gly186 0.12 8 Val398 0.05
Tyr423 0.09 Ala189 0.08
His401 0.05 Val398 0.05
His405 0.07 Leu188 0.09
His411 0.15 Tyr420 0.09

Glu402 0.06
Leu187 0.11
Pro421 0.11

DB07927–MMP-9 8 Tyr420 0.07 6 Val398 0.04
Leu397 0.04 Pro421 0.09
Ala189 0.06 Tyr423 0.08
Arg424 0.08 Glu402 0.05
Leu188 0.07 Leu187 0.15
His401 0.04 Met422 0.09
His405 0.06
His411 0.10

DB12465–MMP-9 5 Tyr420 0.07 9 Leu187 0.09
Met422 0.09 Ala189 0.06
His401 0.04 His190 0.06
His405 0.07 Leu188 0.10
His411 0.09 Pro421 0.08

Glu402 0.05
Val398 0.04
Leu397 0.04
Tyr423 0.08

Reference–MMP-9 7 Leu188 0.05 5 Glu402 0.05
Gly186 0.10 Tyr420 0.07
Tyr423 0.08 Val398 0.04
Pro421 0.08 Met422 0.08
His401 0.05 Leu187 0.06
His405 0.07
His411 0.10

TABLE 3 | Average values of different parameters, RMSD, Rg, H-bonds, and interaction energy.

Complex Average RMSD (nm) Average Rg (nm) H-bonds Interaction energy (kJ/mol)

Native protein (MMP-9) 0.32 ± 0.03 1.2 ± 0.01 — —

DB07101–MMP-9 0.40 ± 0.04 1.2 ± 0.008 07 −131.352
DB07927–MMP-9 0.32 ± 0.04 1.2 ± 0.01 04 −147.098
DB08490–MMP-9 0.24 ± 0.03 1.2 ± 0.01 06 −110.611
DB12465–MMP-9 0.58 ± 0.06 1.2 ± 0.01 06 −171.081
Reference–MMP-9 0.21 ± 0.03 1.2 ± 0.009 07 −135.604
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calculated for complex DB07927–MMP-9 and seven for
DB07101–MMP-9. Only four H-bonds were found to be
constant in the case of complex DB07101–MMP-9 during
MDS run. However, during the period of 100 ns, most
hydrogen bond numbers remained constant, suggesting the
molecular or structural stability of all compounds with MMP-9.

Interaction Energy Analysis
A thorough study was performed to quantify the free energy of
interactions between protein–ligand complexes using the
Parrinello–Rahman parameter implemented in GROMACS to

confirm the binding score produced by molecular docking
experiments. The average interaction energy of all the complexes
was observed in the acceptable range of −100–200 kJ/mol. In the
100 ns simulation period, the highest interaction energy of complex
DB12465–MMP-9 was found to be −171.081 kJ/mol followed by
complexDB07927–MMP-9whichwas−147.098 kJ/mol. The energy
of both complexes was found to be significantly higher than that of
the reference molecule (−135.604 kJ/mol) (see Table 3). In addition,
all other complexes DB07101–MMP-9 and DB08490–MMP-9 also
showed good interaction energies of −131.352 kJ/mol and
−110.611 kJ/mol, respectively. Therefore, the average interaction
energy of all the complexes was observed to be in the acceptable
range over the 100 ns simulation period (Figure 7). It confirmed the
molecular docking results and suggested that these compounds had a
good affinity for MMP-9.

Principal Component Analysis and Gibbs
Free Energy Analysis
Typically, only the first few eigenvectors define the overall motion
of the protein subspace, where most of the protein dynamics
occur (Yang et al., 2014). Therefore, to identify important
eigenvectors responsible for the overall motion and dynamics,
PCA was used to investigate the overall motion and essential
dynamics of all protein–ligand complexes.

In the present study, the first 40 eigenvectors were used to
calculate the total motion in each case. The graph of the
eigenvalues (Figure 8A) was generated after plotting the
eigenvalues against the eigenvectors. From the calculation, the

FIGURE 6 | Graphs representing the Rg of (E) MMP-9 (F) MMP-9–ligand complexes (G) H-bonds during the 100 ns simulation period.

FIGURE 7 |Graphs representing the interaction energy of protein–ligand
complexes.
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motions for the first ten eigenvectors were accounted to be 78%
for DB07101–MMP-9, 79% for DB07927–MMP-9, 82% for
DB08490–MMP-9, and 81% for DB12465–MMP-9 complexes

during the 100 ns simulation period. Therefore, the result
indicates that all the complexes showed very few motions
similar to the reference compound (79%).

FIGURE 8 | Principal component analysis showing (A) plots of eigenvalues vs first 40 eigenvectors and (B) 2D projection plots during the 100 ns simulation period.

FIGURE 9 | Gibbs energy plot of (A) reference–MMP-9, (B) DB12465–MMP-9, (C) DB07101–MMP-9, (D) DB08490–MMP-9, and (E) DB07927–MMP-9
complex.
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Another way to achieve complex dynamics is to use PCA to
generate 2D projection plots. A 2D projection of the trajectories
of all the complexes in the phase space for the first two principal
components, PC1 and PC2, was developed, as is shown in
Figure 8B. The complex occupying less phase space has a
more stable cluster, whereas the complex occupying more
space shows a less stable cluster. From the figure, it can be
observed that all four complexes are highly stable as they
occupy less space in the phase space as the reference molecule.

Furthermore, the Gibbs free energy landscapes were obtained
from the PC1 and PC2 coordinates, and are shown in Figure 9. In
these plots, ΔG values ranged from 0 to 15.9 kJ/mol, 0 to 16.9 kJ/
mol, 0 to 13.5 kJ/mol, 0 to 14.5 kJ/mol, and 0 to 14.0 kJ/mol for
(reference-MMP-9) complexes DB07101–MMP-9,
DB07927–MMP-9, , DB08490–MMP-9, and DB12465–MMP-
9, respectively. All the complexes represent significantly
similar energy as the reference except the DB07927–MMP-9
complex, which was slightly low. The result indicates that
these compounds follow the energetically favorable transitions
during the dynamics simulation (Figure 9).

Binding Free Energy Calculations
The complex stability is further assessed by calculating the
binding free energy of top compounds (last 30 ns) using the
g_mmpbsa tool (Kumari et al., 2014). From the results obtained
from the MM-PBSA analysis, it was concluded that the ΔGBind of
the DB12465-MMP-9 complex depicted the highest binding
affinity or lowest binding free energy of −115.669 KJ/mol.

The resulting ΔGBind of other complexes DB08490–MMP-9 and
DB07101–MMP-9 were found to be −87.148 KJ/mol and
−77.342 KJ/mol, respectively, which were better than the
reference molecule (−73.082 KJ/mol). Complex DB07927–MMP-9
showed a significantly similar binding affinity with a ΔGBind value of
−62.234 KJ/mol. The details of MM-PBSA calculation for the top
four complexes are summarized in Table 4. From the table, it can be
seen that van der Waals interactions play an important role in the
simulation of all complexes, contributing significantly more to the
total interaction energy than the other energies. The result indicates
that all four compounds bind effectively to the active site of the
MMP-9 protein and could be used as a potential drug candidate.

DISCUSSION

MMP-9 has been linked to cancer pathophysiology as it plays an
important role in ECM remodeling and membrane protein

cleavage. MMP-9 degrades the basement membrane, as the
basement membrane contains collagen, including type IV
collagen, which can be degraded by MMP-9 (Hou et al.,
2014). During tumor development, the destruction of the
basement membrane is usually a critical step that supports
tumor invasion and metastasis. MMP-9 expression can be
unusually high in most cancers, and it is regulated in a
complicated way. Indeed, in cancer patients, a high MMP-9
level is linked to a poor prognosis. MMP inhibitors can lower
the invasiveness and migratory potential of tumor cells (Winer
et al., 2018). MMP inhibitors that are specifically intended to be
safe and effective are still a major topic in cancer research.
Targeting Zn2+ and catalytic active sites, which are essential
for protein activity, may block the enzymatic action of MMP-
9. The computational technique evaluates the binding affinity and
inhibitory potential of compounds against proteins, and therefore
helps in the development of novel drug candidates.

In the present study, in silico techniques have been used to
investigate potential MMP-9 inhibitors. The screening of drug
bank compounds was started with a deep learning model.
Furthermore, the best model with good R2, RMSE, MSE, and
MAE values was selected for screening. Prescreening by deep
learning resulted in 500 compounds which were narrowed down
to 23 drugs. The output was used as the input for molecular
docking, resulting in a more reliable prediction. The docking
result demonstrated that six compounds showed strong binding
potential with MMP-9 and also had promising interactions with
active site residues and Zn2+. All the compounds had a higher
binding affinity toward MMP-9 than the reference molecule.
Furthermore, during the MD simulation of 100 ns, only four
hits showed good RMSD and RMSF values that reflect very tightly
withMMP-9. The frequency estimation of the functional group of
all four compounds was also calculated by R (version 3.4.3)
software using ChemmineR “library.” Hit compounds were
examined for eight functional groups: carbonyl group (RCoR),
nitrile (RCN), primary amine (RNH2), carboxyl group
(RCOOH), hydroxyl group (ROH), ether group (ROR),
secondary amines (R2NH), and tertiary amines (R3N), as well
as aromatic groups and rings. All of these were then compared
with the inhibitors of MMP-9 (Figure 10). We observed that the
rings and all other groups are present in both the MMP-9
inhibitors and screened compounds. Thus, these compounds
are significantly similar and may have similar biological activities.

The first screened hit compound was Ketanserin (ID-
DB12465). Ketanserin is a member of the class quinazolines
and is an antagonist of the 5-HT receptor, which is used

TABLE 4 | Table representing the van der Waal, electrostatic, polar salvation, SASA, and binding energy for protein–ligand complexes.

Protein–ligand
complex

van der Waal energy
(KJ/mol)

Electrostatic energy
(KJ/mol)

Polar solvation energy
(KJ/mol)

SASA energy
(KJ/mol)

Binding energy
(KJ/mol)

DB07101–MMP-9 −157.240±15.654 −60.629±11.409 158.076±22.426 −17.550±1.576 −77.342±15.435
DB08490–MMP-9 −123.624±30.165 −26.038±19.213 65.191±19.076 −13.913±2.193 −87.148±22.175
DB07927–MMP-9 −153.550±13.097 −61.694±28.570 167.770±26.449 −14.760±0.999 −62.234±14.980
DB12465–MMP-9 −184.774±11.790 −16.571±8.639 102.641±15.507 −16.965±0.997 −115.669±14.466
Reference–MMP-9 −155.490±11.506 −62.844±10.331 162.839±9.967 −17.588±0.799 −73.082±10.629
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clinically for conditions including high blood pressure,
anxiety, depression, and psychosis (Brogden and Sorkin,
1990). It has been reported that the inhibition of 5HT2B
receptors leads to the death of HCC cells in vitro and
reduces tumor growth in mice (Mansfield,). The compound
also has a binding potential with MMP-9 and was found to

have hydrogen bonds with the catalytic residue Glu-402 and
His triad that holds Zn2+.

Mirdametinib (PD-0325901) (ID DB07101), the second
screened hit compound, is an orally delivered, highly selective
inhibitor of both MEK isoforms, MEK1 and MEK2, which
prevents the activation and phosphorylation of mitogen-

FIGURE 10 | Average frequency of functional groups of MMP-9 inhibitors and top four compounds.

FIGURE 11 | Snapshots of selected four ligands over the course of 100 ns MD simulation.
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activated protein kinase (MAPK). Mirdametinib (PD-0325901)
has already been shown to suppress pERK (Haura et al., 2010). In
previous studies, Mirdametinib showed growth-inhibitory and
antiangiogenic effects on glioblastoma, non-small-cell lung
cancer (NSCLC), and melanoma tumor progression by
inhibiting mitogen-activated protein kinases (MAPKs)
(Henderson et al., 2010). The compound was found to have
hydrogen bonds with S1-pocket’s residues of MMP-9, and it also
regulates the catalytic activity by binding with Zn2+.

The third investigated compound CTS-1027 (ID-DB08490)
has already been reported against MMP as a potential hepato-
protective agent. It is a diphenyl ether, which is a type of organic
compound. These are aromatic compounds that include two
benzene rings connected by an ether group. It is a particularly
potent inhibitor of human MMPs 2, 3, 8, 9, 12, 13, and 14 but not
1 or 7 (Kahraman et al., 2009). In our docking study, also showed
binding with the S1-pocket and Zn2+ by forming H-bonds and
hydrophobic interactions.

The fourth hit compound 3-{[(4-CARBOXY-2-
HYDROXYANILINE]SULFONYL}THIOPHENE-2-
CARBOXYLIC ACID ( ID-DB07927) belongs to the class of
organic compounds known as sulfanilides. The compound also
showed H-bonds with Tyr423, Gly186, and Zn2+ in the MMP-9
catalytic domain, which is critical for inhibiting the catalytic
activity of the enzyme.

The MD simulation result suggests that all these four
ligands interacted through the active site residues of MMP-
9 and were stabilized in the active site region with very little
fluctuation. The Rg result indicates the compactness of
proteins and constant stability of all protein–ligand
complexes throughout the MD simulation study.
Furthermore, the continuous contribution of hydrogen
bonding interactions to the binding pose analysis indicates
that all compounds have stable interactions with MMP-9
proteins. The calculation of the interaction energy indicates
the strength of protein–ligand complex systems. This study
showed that all compounds have higher and significantly
better interaction energy with proteins than reference
compounds, and show an acceptable range of interaction
energies. Finally, to more accurately estimate the binding
preference of the selected ligand for MMP-9, we have
examined the calculated binding free energies of all four
complexes using the MM-PBSA method. All four
compounds were high potential binders according to the
calculated binding free energy. Furthermore, in Figure 11,
we displayed the snapshots extracted from the trajectory of the
MD simulations. It can be seen that all the four ligands are well
accommodated with the MMP-9 pocket and ZN2+, which
means that the protein–ligand complexes were associated
during the 100 ns simulation period, and all of them have
good binding with MMP-9.

We may conclude that our drug screening pipeline performed
well due to the high efficiency of the deep learning approach and
the relative accuracy of MD simulations.

The present study proved valuable in cancer prevention.
Additionally, all four compounds have been reported to be
active against cancer and other diseases, indicating strong

possibilities that they could be potential hit inhibitors against
MMP-9. The results of this study are useful for drug development.

CONCLUSION

To obtain potent MMP-9 inhibitors, we used the deep
learning-based method followed by docking to do
preliminary screening to identify compounds that
simultaneously target Zn2+ and the binding region of MMP-
9 enzymes. Deep learning and molecular docking resulted in
six hits that could inhibit MMP-9. Hence, using MD
simulations, we explored the stability and binding process
of the most interesting four ligands by analyzing RMSD,
RMSF, H-bonds, ROG, interaction profile, and PCA. The
results confirmed the high stability of these four hits in the
active site of MMP-9. Interestingly, these four compounds are
already being used for diseases and one compound is known to
be an MMP-9 inhibitor. The overall results suggest that these
hits may also be useful as lead molecules for designing more
potent drugs to treat cancer or to act as suitable drug
candidates against MMP-9.
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