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Post-stroke depression (PSD) is a common cerebrovascular complication

characterized by complex pathogenesis and poor treatment effects. Here,

we tested the influence of differentially expressed genes (DEGs), non-

targeted metabolites, and intestinal microbes on the occurrence and

development of PSD. We acquired gene expression profiles for stroke

patients, depression patients, and healthy controls from the Gene Expression

Omnibus database. After screening for DEGs using differential expression

analysis, we identified common DEGs in stroke and depression patients that

were considered to form the molecular basis of PSD. Functional enrichment

analysis of DEGs also revealed that the majority of biological functions were

closely related to metabolism, immunity, the nervous system, and

microorganisms, and we also collected blood and stool samples from

healthy controls, stroke patients, and PSD patients and performed 16S rDNA

sequencing and untargeted metabolomics. After evaluating the quality of the

sequencing data, we compared the diversity of the metabolites and intestinal

flora within and between groups. Metabolic pathway enrichment analysis was

used to identify metabolic pathways that were significantly involved in stroke

and PSD, and a global metabolic network was constructed to explore the

pathogenesis of PSD. Additionally, we constructed a global regulatory network

based on 16S rDNA sequencing, non-targeted metabolomics, and

transcriptomics to explore the pathogenesis of PSD through correlation

analysis. Our results suggest that intestinal flora associates the dysregulation

of cerebral cortex gene expression and could potentially promote the

occurrence of depression by affecting the metabolism of stroke patients.
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Our findings may be helpful in identifying new targets for the prevention and

treatment of PSD.
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1 Introduction

Stroke is one of the major causes of death in China and is

characterized by high morbidity, disability, recurrence, and

mortality (Boursin et al., 2018). Stroke is classified into two

types, including ischemic and hemorrhagic stroke, that occur as a

result of reduced blood flow to the brain that ultimately causes

cell and tissue necrosis. Post-stroke depression (PSD) is a

common complication of stroke and has been reported in

20–50% of stroke patients worldwide (Das and Rajanikant,

2018). Although the pathogenesis of PSD remains unclear, it

has been associated with monoamine neurotransmitters,

immune imbalance, and neurogenetic pathways (Fang and

Cheng, 2009). PSD is considered to be a consequence of

multiple interactions among biological, psychosocial, and

multifactorial factors, and based on this, deepening our

understanding of how PSD occurs is critical for treatment and

prevention.

Previous studies have demonstrated that disordered intestinal

flora can cause a range of diseases (Pascale et al., 2018; Fan and

Pedersen, 2021), including neurological diseases. These microbiota

regulate the brain-gut axis via neural-, endocrine-, metabolism-, and

immunity-related mechanisms to modulate brain function (Junges

et al., 2018). Changes in intestinal microbiota have been reported to

play a role in the occurrence and development of neurological

diseases such as dementia, Alzheimer’s Disease (Alkasir et al.,

2017; Tsunoda, 2017), autism (Strati et al., 2017), and depression

(Slyepchenko et al., 2017). An imbalance in intestinal flora can also

affect the outcome of stroke via changes in bacterial populations and

their translocation and alterations in intestinal cell metabolites and

immune regulation (Wen and Wong, 2017). Furthermore, gut

microbes can induce depression by causing inflammatory

responses and imbalances in monoamine neurotransmitters and

neurotrophic factors and by activating the hypothalamic-pituitary-

adrenal axis (Dinan and Cryan, 2019; Links between gut microbes

and, 2019). However, there is no clear understanding of the exact

mechanism by which intestinal flora can influence the occurrence

and development of PSD.

Another factor that increases susceptibility to diseases is the

existence of metabolic abnormalities. Systemic diseases affecting

the brain are often associated with severe metabolic disorders

(Heindel et al., 2017). When the blood-brain barrier is

compromised, the brain tissue is affected by the internal

biochemical environment, thus resulting in metabolic changes

that in turn lead to brain dysfunction (Gonzalez et al., 2016).

Previous studies have demonstrated that there is a significant

association between abnormalities in the metabolism of glucose

and lipids and the occurrence and prognosis of stroke (Zhai et al.,

2006) and that changes in lipid and iron metabolism are

significantly associated with the occurrence of depressive

events (Oliveira et al., 2017).

This study aimed to gain a better understanding of the

pathogenesis of PSD by examining the role played by

intestinal flora, metabolites, and differentially expressed genes

(DEGs) in the occurrence and development of PSD. These

findings can help guide the clinical treatment of PSD.

2 Materials and methods

2.1 Sample collection

We collected blood and stool samples from all patients who were

admitted to Youjiang Medical University for Nationalities between

August 2019 and November 2020. Patients with hemiplegia, speech

disorder, hemianesthesia, distortion of commissure and stroke

history, with CT/MRI evidence (while the other

neuroinflammation diseases such as encephalitis, tumor etc. Were

excluded) were diagnosed and recruited into stroke group; stroke

patients with depression, frustration and/or interest loss persistent

over 1 week were diagnosed and recruited into PSD group. The

HDRS score was employed to evaluate the severity of depression, to

minimize the system error, only those patients scored between 7 and

17 (mild depression) was recruited. Patients ranged in age from 44 to

73 years (no significant difference was found in the HDRS score

between PSD patents <59 years old and ≥59 years old, data not

shown). This study was approved by the ethics committee of

Youjiang Medical University for Nationalities. Written informed

consent was obtained from the patients to allow for their

anonymized data to be collected and analyzed for research

purposes. Prior to conducting further genetic analyses, patients

were stratified into three groups that included healthy controls

(n = 30, group A), stroke patients (n = 34, group B), and PSD

patients (n = 26, group C).

2.2 16S rDNA

2.2.1 16S rDNA sequencing
2.2.1.1 Extraction of genome DNA

The total genomic DNA from the samples was extracted

using the CTAB/SDS method. DNA concentration and purity
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were monitored using a 1% agarose gel. DNAwas diluted to 1 ng/

μl using sterile water at volumes that were dependent upon the

initial DNA concentration.

2.2.1.2 Amplicon generation

Primers: 16S V3-V4: 341F-806R; 18S V9: 1380F-1510R,

ITS1: ITS1F- ITS2R.

Specific primers possessing barcodes were used to amplify the

16S/18S rRNA gene. The PCR reactions were performed using

30 µl reactions with 15 µl of Phusion® High Fidelity PCR Master

Mix (New England Biolabs) and 0.2 µl of forward and reverse

primers.

2.2.1.3 PCR products quantification and qualification

An equal volume of 1X loading buffer (containing SYB

green) was mixed with the PCR products and then

electrophoresed on a 2% agarose gel for detection. Samples

exhibiting bright main bars between 400 and 450 bp were

selected for further experiments.

2.2.1.4 Mixing and purification of PCR products

The PCR products were mixed at equal density ratios. Then,

an AxyPrepDNA Gel Extraction Kit (AXYGEN) was used to

purify the mixed PCR products.

2.2.1.5 Library preparation and sequencing

Sequencing libraries were generated using the NEB

Next®Ultra™ DNA Library Prep Kit from Illumina (NEB,

USA), and indexing codes were added according to the

manufacturer’s instructions. A Qubit™ 2.0 Fluorometer

(Thermo Scientific) and an Agilent Bioanalyzer 2,100 system

were used to assess the library quality. Finally, using the Illumina

Miseq/HiSeq2500 platform, the libraries were sequenced, and

250bp/300bp paired-end reads were generated.

2.2.2 16S rDNA data analysis
2.2.2.1 Paired-end reads assemblies

The paired-end reads from the original DNA fragments were

merged using FLASH that was designed to combine fragments

into pairs when at least part of the readings overlapped with those

generated at the other end of the same DNA fragment. Paired

reads were assigned to each sample based on a unique barcode.

2.3 OTU cluster and species annotation

The UPARSE-OTU and UPARSE-OTUref algorithms of the

UPARSE package were used for the sequence analysis. The alpha

(within-sample) and beta (between-sample) diversities were

analyzed using internal Perl scripts in which sequences

with ≥97% similarity were assigned to the same OTU. We

selected a representative sequence for each OTU and

annotated the taxonomic information for each representative

sequence using the RDP classifier. To calculate alpha diversity,

we sparsed the OTU table and computed three metrics that

included Chao1 that estimates species abundance, Observed

Species that estimates the number of unique OTUs for each

sample, and the Shannon index. The three metrics provided the

basis for the rarity curves. For quality control, we observed the

sequencing results with cluster density of 76 ± 8.5 K/mm2, and

only those >85% of the clusters were used for down-streaming

analysis, besides, a quality score of Q > 31 was assigned to 94.5%

of all bases from both reads. Only the reads passed filtering were

used for down-streaming analysis.

2.4 Phylogenics distance and community
distribution

The relative abundance of bacterial diversity was displayed

using a Krona plot. Prior to cluster analysis, principal component

analysis (PCA) was utilized to reduce the dimensionality of the

original variables using the QIIME package. We used unweighted

UniFrac distances for principal coordinate analysis (PCoA) and

unweighted arithmetic mean pair group method (UPGMA)

clustering. The principal coordinates from complex

multidimensional data were visualized using PCoA. UPGMA

clustering is a hierarchical clustering method that can be used to

interpret the distance matrix.

2.5 Statistical analysis

The 16S rDNA analysis was performed to identify and

quantify microbes in the blood samples collected from the

patients (Supplementary Table S1). We used the Statistical

Analysis of Metagenomic Profiles software to examine

differences across the three groups in regard to the

abundances of individual microbial taxa found in the samples.

A quantitative analysis of biomarkers within each group was

conducted based on linear discriminant analysis effect size

(LEfSe). This method was designed to analyze datasets where

the number of species is much higher than is the number of

samples, and this method can be used to determine the features

that are most likely to explain the differences between biological

classes by testing for statistical significance and biological

consistency and also by estimating the effect sizes of predicted

biomarkers.

2.6 Untargeted metabolomics

2.6.1 Sample collection and preparation
Fasting blood samples were collected in 5 ml Vacutainer

tubes containing the chelating agent ethylene diamine

tetraacetic acid (EDTA), and the samples were centrifuged for
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15 min (1,500 g at 4°C). Each aliquot (150 μl) of the plasma

sample was stored at -80°C until UPLC-Q-TOF/MS analysis. The

plasma samples were thawed at 4°C, and 100 μl aliquots were

mixed with 400 μl of cold methanol/acetonitrile (1:1, v/v) to

remove the protein. The mixture was centrifuged for 15 min

(14,000 g at 4°C). The supernatant was then dried using a vacuum

centrifuge. For LC-MS analysis, the samples were re-dissolved

into 100 μl of acetonitrile/water (1:1, v/v) solvent.

2.6.2 LC-MS/MS analysis
The analysis was performed using an ultra-high-performance

liquid chromatograph (1290 Infinity LC, Agilent Technologies)

combined with a quadrupole time-of-flight instrument (AB Sciex

TripleTOF 6,600) from Shanghai Applied Protein Technology

Co., Ltd. Samples were analyzed using a 2.1 mm × 100 mm

ACQUIY UPLC BEH 1.7 µm column (Waters, Ireland) for

HILIC separation. In the ESI positive and negative modes, the

mobile phase consisted of A = 25 mM ammonium acetate and

25 mM ammonium hydroxide aqueous solution and B =

acetonitrile. The gradient was 85% B at 1 min, linearly

decreased to 65% at 11 min, subsequently decreased to 40% at

6s, and then held for 4 min. It was then increased to 85% at 6s

using a 5 min re-equilibration period.

A 2.1 mm× 100 mmACQUIYUPLCHSS T3 1.8 µm column

(Waters, Ireland) was used for RPLC separation. In ESI positive

mode, the mobile phase was A = water plus 0.1% formic acid and

B = acetonitrile plus 0.1% formic acid, and in ESI negative mode,

the mobile phase was A = 0.5 mM ammonium fluoride in water

and B = acetonitrile. The gradient was 1% B for 1.5 min and then

increased linearly to 99% in 11.5 min and held for 3.5 min. It was

then decreased to 1% over a 6s time period, and a re-equilibration

period of 3.4 min was subsequently applied. The flow rate of the

gradient was 0.3 ml/min, and the column temperature was

maintained at 25°C. Each sample was injected with a 2 µl aliquot.

The instrument of MS-only acquisition was set to acquire

within the m/z range of 60–1000 Da, and for the TOF MS scan,

the accumulation time was set to 0.20 s/spectrum. The

instrument for automated MS/MS acquisition was set to

acquire within the m/z range of 25–1000 Da, and the

accumulation time for the product ion scan was set to 0.05 s/

spectrum. The product ion scan was acquired using information-

dependent acquisition (IDA), and the high-sensitivity mode was

selected for acquisition. The parameters were set as follows: the

collision energy (CE) was fixed at 35 V with ±15 eV; declustering

potential (DP) was 60 V (+) and −60 V (−); excluding isotopes

within 4 Da; candidate ions to monitor per cycle set to 10.

2.6.3 Data processing
Prior to import into the XCMS software, the raw mass

spectrometry data (wiff.scan files) were converted to MzXML

files using ProteoWizard MSConvert. For peak extraction, the

following parameters were used: centWave m/z = 25 ppm, peak

width = c (10, 60), and prefilter = c (10, 100). For peak grouping,

bw = 5, mzwid = 0.025, and minfrac = 0.5. The annotation of

isotopes and adducts was completed using the Collection of

Algorithms of MEtabolite pRofile Annotation (CAMERA).

Among the extracted ion signatures, variables exhibiting

greater than 50% of non-zero measurements in at least one

group were retained. Metabolite identification was performed

by comparing accurate m/z values (<25 ppm) and MS/MS

spectra with available authentic standards established in an in-

house database.

2.6.4 Statistical analysis
Untargeted metabolomics was conducted using stool

samples collected from the patients (Supplementary Table

S2). After normalization to total peak intensity, we used the

‘muma’ package in R to perform univariate statistical analyses

to identify differential metabolites. The metabolites identified

were considered to be differentially expressed if log2 (fold

change [FC]) > 1.5 or log2(FC) < 0.67 and p < 0.05. Metabolic

pathway enrichment analysis was performed using

MetaboAnalyst (https://www.metaboanalyst.ca/) to explore

the biological functions associated with the differential

metabolites.

2.7 Transcriptomics

2.7.1 Data quality and preprocessing of data from
stroke patients and controls

The GSE56267 dataset (Huttner et al., 2014) that is based on

the GPL11154 platform includes data from seven cortical

ischemic stroke tissues and six control cortex samples. This

dataset was used to screen for DEGs in stroke patients

compared to gene levels in controls. Paired-end RNA-seq data

(SRP040622) were acquired from the National Center for

Biotechnology Information-Sequence Read Archive (NCBI-

SRA; http://www.ncbi.nlm.nih.gov/sra), and the data were

collected using the ‘prefetch’ function in the SRA Toolkit

(https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/) and saved

as 13 files (SRR1206035, SRR1206036, SRR1206037,

SRR1206038, SRR1206039, SRR1206040, SRR1206041,

SRR1206042, SRR1206043, SRR1206044, SRR1206045,

SRR1206046, and SRR1206047). The 13 paired SRA files (two

groups) were converted into fastq files (13 files) using the ‘fastq-

dump’ and’ split-files’ functions.

At this stage, the quality of all datasets was assessed before

and after trimming the adaptors and initiating the preprocessing

steps using the FastQC tool (https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) (Saddala et al., 2019). Finally,

we removed any low-quality reads by trimming the bases from

the 3′ and 5’ ends and maintaining a Phred score ≤30 according
to the Trimmomatic-0.36 tool (Léránth and Hámori, 1970). After

cleaning and trimming the low-quality reads and removing the

adaptors, we were able to retain more than 96% of good-quality

Frontiers in Molecular Biosciences frontiersin.org04

Li et al. 10.3389/fmolb.2022.865788

https://www.metaboanalyst.ca/
http://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.865788


reads in each stage. The cleaned reads were used for

transcriptome assembly analysis.

2.7.2 Reference-based assembly of stroke
patients and controls

All datasets were assembled separately with reference to the

Homo sapiens genome using Bowtie 1.2.2 (Langmead et al.,

2009). First, this software created an index of genome files

and aligned short reads to the reference genome. Then, RNA-

seq analysis based on Expectation-Maximization (Wu et al.,

2011) was used to estimate the number of RNA-seq fragments

that mapped to each contig with gene annotations in a gene

transfer format file. As the abundance of individual transcripts

can vary greatly between samples, reads from each sample were

examined individually to derive sample-specific abundance

values.

2.7.3 Processing of data from patients and
controls

The expression profile data from depression patients and

control samples in our study were derived from a published

dataset (Hagenauer et al., 2018) available in the Gene Expression

Omnibus database (GEO: GSE92538). The GSE92538 dataset

that is based on the GPL10526 platform contains data from

29 patients with depression and 56 control samples. The source

of the sample tissue in this dataset was the dorsolateral prefrontal

cortex. The ‘justRMA’ methods in the ‘affy’ package (Gautier

et al., 2004) in R were applied to normalize the raw data. If one

FIGURE 1
Molecular characteristics of stroke and PSD patients. (A). Manhattan diagram depicting dysregulated genes in stroke and PSD patients.
(B). Quadrant chart presenting the expression pattern of genes in stroke and PSD patients. (C). Heatmap indicating consistent upregulation
of gene expression in stroke and PSD patients. (D). Heatmap indicating genes that are dysregulated in opposite directions in stroke and PSD
patients. (E). Heatmap revealing the expression of depression-specific genes in PSD patients and stroke. (F). Paired scatterplot depicting the
expression of genes in stroke and PSD patients.
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gene corresponded to multiple probes, the average expression

value of these probes was considered to be the expression value of

the gene.

2.8 DEGs and enrichment analysis

The ‘limma’ package (Yu et al., 2019) in R was used to analyze

DEGs between the case (atheroma plaque) samples and control

samples. Statistical significance was set at p < 0.05. The

‘clusterProfiler’ package (Yu et al., 2012) in R was used to

functionally analyze the enriched pathways in which the

DEGs were involved based on Gene Ontology (GO) terms

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways. Statistical significance was set at p < 0.05.

Gene set enrichment analysis (GSEA) was performed using

GSEA software (Subramanian et al., 2005) with reference to the

gene sets c2. cp.kegg.v6.2., symbols. gmt, and c5. bp.v7.0.

FIGURE 1
(Continued)
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entrez.gmt, all of which were downloaded from the Molecular

Signature Database (http://software.broadinstitute.org/gsea/

index.jsp) (Liberzon et al., 2015). Statistical significance was

defined as a nominal p-value < 0.05 and a false discovery

ratio <0.25.

3 Results

3.1 Common molecular characteristics of
stroke and depression are the basis of
molecular dysregulation of PSD

For the control group, we identified 1,492 DEGs in stroke

patients and 4,376 DEGs in patients with depression (Figure 1A).

Messenger RNA (mRNA) expression pattern analysis revealed

that 29 DEGs were upregulated and 4 DEGs were downregulated

in both stroke and PSD patients (Figure 1B). These genes were

used to define the molecular signature for PSD. In contrast, the

DEGs that were upregulated in stroke patients but

downregulated in PSD patients (or vice versa) were defined as

the molecular signature of recovery from PSD. We observed that

the expression pattern of these two types of DEGs exhibited the

ability to distinguish stroke or PSD patients from control samples

(Figures 1C,D). DEGs that were expressed only in PSD patients

(not in stroke patients) were defined as depression-specific genes,

and their expression pattern could be used to distinguish PSD

patients from healthy controls (Figure 1E).

We identified various gene expression profiles that may

contribute to depression. Genes exhibiting |log FC|st> 0 and |

log2FC|De > 0 maintained high expression in stroke patients but

low expression during recovery (Figure 1Fa). Genes with |

logFC|St < 0 and |logFC|De < 0 maintained low expression

during stroke and recovery (Figure 1Fb). Genes |logFC|St >
0 and |logFC|De < 0 “over-recovered” during stroke recovery

based on the observation that their levels during recovery

exceeded their levels in controls (Figure 1Fc). Genes exhibiting

|logFC|St < 0 and |logFC|De > 0 also “over-recovered” during

stroke recovery based on the observation that their levels during

recovery fell below the levels in controls (Figure 1Fd).

3.2 Metabolic abnormalities and immune
disorders are important drivers of PSD

To explore the driving factors that may induce depression

after stroke, enrichment analysis was performed on three types of

DEGs, including those common to stroke and depression, those

whose expression differed substantially between stroke and

recovery, and those whose expression was altered only in

depression. The GO enrichment results revealed that these

three types of DEGs were involved in biological processes

(BPs) associated with metabolism, immunity, microbes, and

nerves (Figure 2A). Depression-specific genes play a

significant role in the activation of T cells and xenogenesis.

GSEA indicated that the BPs associated with the genes

common to stroke and depression and also depression-specific

genes were significantly associated with immunity and neuronal

differentiation. Additionally, BPs associated with depression-

specific genes were associated with neuroinflammation,

immune inflammation, and apoptosis (Figure 2B). KEGG

enrichment analysis revealed that these three types of DEGs

were involved in pathways related to intestinal flora, metabolism,

brain disease, and immunity (Figure 2C). GSEA also

demonstrated that the KEGG pathways related to metabolism,

brain disease, immunity, and intestinal flora were enriched in

patients with stroke and depression (Figure 2D).

3.3 Non-targeted metabolomics can
identify key metabolic pathways in blood
samples from stroke patients

Weobserved overlaps in the intensity and retention time of each

chromatographic peak in the quality control (QC) samples

(Supplementary Figures S1A,B). The correlation coefficients

between the QC samples were >0.9, thus indicating good

repeatability (Supplementary Figure S1C). More than 80% of the

peaks in the QC sample possessed a relative standard deviation

of ≤30%, thus indicating the high stability of the instrument analysis

system (Supplementary Figure S1D). Based onHotelling’s T2 test, all

QC samples were within the 99% confidence interval, thus

indicating that the experiment was reproducible (Supplementary

Figure S1E). Fluctuations in the QC samples were

within ±3 standard deviations and were reflective of the normal

fluctuation of the instrument (Supplementary Figure S1F).

Among the metabolites with chemical classifications, organic

acids and derivatives were found in large concentrations, while

organosulfur compounds were found in small concentrations

(Figure 3A). Compared to the controls, we identified

3,443 dysregulated metabolites in stroke patients (p < 0.05)

(Figure 3B). We also determined that these dysregulated

metabolites could be used to distinguish between stroke

patients and controls (Figure 3C).

Compared to the controls, there were several metabolic

pathways that were significantly enriched by differential

metabolites in stroke patients, including ascorbate and aldarate

metabolism and also valine, leucine, and isoleucine biosynthesis

(Figure 3D).Metabolic pathway enrichment analysis was performed

based on DEGs and differential metabolites (Figure 3E).

Furthermore, we observed extensive interactions between the

differential metabolites and DEGs (Figure 3F). The KEGG global

metabolic network analysis also revealed that the purinemetabolism

pathway possessed the most significant enrichment score

(Figure 3G) and that DEGs and differential metabolites play an

important role in purine metabolism (Figure 3H).
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FIGURE 2
Enrichment analysis of differentially expressed genes (DEGs) in
stroke and PSD patients. (A). Biological processes: F2C represents the
genes common to stroke and PSD; F2D represents genes that
potentiallymediatePSDbasedonexcessive changes in expression
during stroke recovery; F2E represents depression-specific genes. (B).
GSEA. Panels (a,b) use common and specific genes associated with
stroke andPSDpatients as thepreset gene set forGSEA. Panels (c,d)use
depression-specific genes as the preset gene set for GSEA. (C). KEGG
pathway: F2C represents the genes common to stroke and PSD; F2D
represents genes that potentially mediate depression based on
excessive changes in expression during stroke recovery; F2E represents

(Continued )

FIGURE 2 (Continued)
depression-specific genes. (D). GSEA-KEGG pathway: the
KEGG pathways were divided into four types according to the
classification of intestinal flora, signaling pathways, brain disease,
and metabolism (from left to right).

FIGURE 2
(Continued)
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3.4 Atlas of abnormal blood metabolism in
patients with PSD

To identify the metabolic abnormalities in patients with PSD,

differential expression analysis was performed using non-

targeted metabolomics sequencing data. Patients with PSD

exhibited 5,408 differential metabolites when compared to

control samples and 1,749 differential metabolites when

compared to stroke patients (Supplementary Figure S2A).

There were 53 abnormal metabolites common to PSD and

stroke patients, and these metabolites could represent the

metabolic basis of stroke as a precondition for depression

(Figure 4A).

Among the common abnormal metabolites, we observed a

decrease in 21 differential metabolites and an increase in seven

differential metabolites during the development of stroke into

PSD (Figure 4B). We also examined the abundance of these

metabolites in all three patient groups (Supplementary Figure

S2B and Supplementary Figure S4C). For example,

MI80T35_Acamprosate decreased in stroke patients but

increased significantly during the process of excessive recovery

during the development of PSD (Figure 4D). Furthermore, we

determined that these different metabolites in PSD patients can

FIGURE 3
Identification of differential metabolites and dysregulated
metabolic pathways in stroke patients. (A). Proportion of the
identified metabolites in each chemical classification. (B). Volcano
plot depicting differences in metabolites between stroke
patients and controls. (C). Heatmap depicting the abundance of
differential metabolites in stroke patients and controls. (D).
Bubble-bar graph depicting the metabolic pathways associated
with different metabolites. (E). KEGG metabolic network diagram.
(F). Interaction network of differential metabolites (squares) and
differentially expressed genes (circles). (G). KEGG global metabolic
network highlighting the pathways possessing significant
enrichment scores. (H). Pathway map diagram depicting
depression-specific dysregulated genes (in green), genes
common to stroke and depression (in red), depression-specific
abnormal metabolites (in blue), and abnormal metabolites
common to stroke and depression (in yellow).

FIGURE 3
(Continued)
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help distinguish between PSD and stroke patients (Figure 4E). As

these metabolites represent the occurrence of metabolic changes

complicated by depression during stroke recovery, further

analysis of specific metabolites observed in PSD patients may

help to distinguish PSD patients from controls and stroke

patients (Supplementary Figure S2C).

Metabolic pathway enrichment analysis was performed using

common genes, genes linked to excessive recovery, and specific

metabolites. Valine, leucine, and isoleucine biosynthesis

pathways were significantly enriched (Figure 4F). A detailed

examination of the pathways associated with DEGs, the

KEGG/metabolic-related pathways, and the three types of

metabolites are listed above (Figure 3B, Supplementary Figure

S2D). Additionally, we mapped significantly enriched disease-

related metabolic pathways (Supplementary Figures S2E–H,

Supplementary Figure S3 and Supplementary Figure S4).

We observed extensive interactions between the DEGs and

metabolites (Figure 4G). Our analysis of the influence of

differential metabolites and DEGs on the KEGG global

metabolite network revealed that four metabolic pathways

were significantly enriched, including the “metabolic

pathway,” inositol phosphate metabolism, purine metabolism,

and glycolysis/gluconeogenesis (Figure 4H). We were able to

identify specific metabolites and DEGs that were extensively

involved in long-term depression, the MAPK signaling

pathway, the PI3K-Akt signaling pathway, and pathogenicity/

E. coli infection in patients with PSD (Supplementary Figure S5).

Our observations of differential metabolites in patients with PSD

may reflect metabolic abnormalities which could be influenced

by the intestinal flora.

3.5 Ecological landscape of gut microbes
in patients with stroke and PSD

We performed α-diversity analysis to measure the diversity of

themicrobial communities within the samples. Reasonable amounts

of sequencing data were acquired from the three groups, and species

abundance was relatively high (Supplementary Figure S6).

Therefore, we examined the biodiversity index of the sequencing

volume of each sample at different sequencing depths, and we

observed that the sequencing data volume of the three groups was

large enough to reflect most microbial information in the samples

(Supplementary Figure S6B). Our analysis also revealed high species

abundance and species uniformity across the three groups

(Supplementary Figure S6C). Additionally, we determined that

this study possessed an appropriate sample size and high species

richness (Supplementary Figure S6D).

In regard to the species composition of gut microbes in the

samples, we observed that the abundances of each group were

different at each classification level (phylum, class, order, family,

genus, and species; Figure 5A). The abundance of each sample

was different at each taxonomic level (phylum, class, order,

family, genus, and species; Figure 5B). Additionally, we

observed that the abundance and diversity of intestinal flora

were highest in controls, and this was followed by stroke patients

and then PSD patients (Figure 5C).

To test for significant differences in the microbial

communities among samples (groups), a β-diversity analysis

was performed. Species diversity was highest in the samples

collected from stroke patients, lower in controls, and lowest in

PSD patients (Figure 5D). Based on the linear discriminant

analysis effect size (LDASe) analysis, we determined that

communities differing significantly between controls and

stroke patients could be classified into six categories, while

those differing between controls and PSD patients could be

classified into five categories (Figure 5E). Based on the linear

discriminant analysis, we identified the microbial population that

played an important role in each group (Figure 5F). Species with

an LDA value >2 were considered to be statistically significant

biomarkers among the groups (Figure 5G).

Additionally, STAMP difference analysis was performed to

identify species that differed significantly in terms of abundance

among the groups. We observed that the abundance of

g_Erysipelotrichaceae UCG-003 in the control samples was

significantly different from that in the stroke patients, while

g_pseudomonas abundance was significantly different between

controls and patients with PSD (Figure 5H).

3.6 Intestinal microbes associate PSD with
metabolic pathway disorders

When we compared the intestinal microbes between stroke

patients and PSD patients using the LEfSe analysis, we observed

that the communities exhibiting significant differences could be

classified into two categories (Figure 6A). Based on LDA, we

identified microbial groups that played an important role in each

group of patients (Supplementary Figure S7A). Additionally, we

identified biomarkers that were able to differentiate between the

control and stroke patients or between the stroke and PSD

patients (Supplementary Figure S7B). Based on the STAMP

difference analysis, we determined that g_Erysipelotrichaceae

UCG-014 abundance was significantly different between

stroke and PSD patients (Supplementary Figure S7C).

Compared to the control group, we observed 65 common

dysregulated intestinal microbes in patients with stroke and PSD

(Figure 6B). During the development of stroke into PSD,

22 common dysregulated intestinal microbes underwent an

initial upregulation (Figure 6Ca) that was followed by

downregulation (Figure 6Cb). Of these, 12 common

dysregulated microbes recovered after being upregulated and

then returned to normal levels (Figure 6Cc). In contrast, nine

other common dysregulated microbes recovered after

downregulation but could not return to normal levels

(Figure 6Cd). Furthermore, we identified a total of
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474 depression-specific disordered microbes in PSD patients, and

these microbes were able to distinguish among controls, stroke,

and PSD patients (Supplementary Figure S7D). Additionally, a

correlation analysis was performed to test the relationship

between differential metabolites and differential microbes.

There were 3,038 significant metabolite-microbe interactions,

including 59 differential metabolites and 518 differential

operational taxonomic units (Figure 6D). We also constructed

a global regulatory network to explore the changes in microbes

that affect phenotypic function (Figure 6E).

4 Discussion

The aim of this study was to gain a better understanding of

the biological pathogenesis of PSD by examining the effects of

intestinal flora, DEGs, and metabolites on the occurrence of

depression in stroke patients. We determined that there were

common DEGs in stroke and PSD patients, and we speculate

that these DEGs may represent the basis of molecular

disorders in PSD. Furthermore, various comorbidities, such

as dementia, oxidative stress and obesity, and

neuroinflammation have been frequently observed from

stroke patients (Hermann et al., 2019; Popa-Wagner et al.,

2020). It is reported that these syndromes highly related to

altered metabolism (Chen et al., 2021; Noori et al., 2021; Riaz

Rajoka et al., 2021; Chen et al., 2022). Delineating the

correlation between intestinal flora and metabolism could

help explain the role of intestinal flora in the development

of the above comorbidities in stroke patients.

Our results indicate that intestinal flora could potentially

mediate the dysregulation of gene expression in the cerebral

FIGURE 4
Atlas of abnormal blood metabolism in patients with PSD. (A). Heatmap depicting abnormal metabolites common to stroke and PSD patients.
(B). Paired scatterplot depicting continuous changes in total abnormal metabolites. (C). Box plot depicting abnormal metabolites that continue to
increase during the process from control-stroke-PSD. (D). Box plot depicting abnormal metabolites associated with excessive recovery during the
process from control-stroke-PSD. (E). Heatmap depicting differences in metabolites between stroke and post-stroke depression patients. (F).
Metabolic pathway enrichment analysis. (G). Network diagram depicting genes (circles) and metabolites (squares). The size of the dot represents the
degree value. (H). KEGG global metabolic network depicting differentially expressed genes and differential metabolites between PSD and stroke
patients. Significant pathways are highlighted with a specific color. (I). Pathway map of “long-term depression”.
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cortex by altering metabolism in ways that increase the risk of

depression. These findings provide new targets for the prevention

and treatment of PSD.

The results of the enrichment analysis revealed that the DEGs

were primarily involved in biological functions related tometabolism,

immunity, microbes, and the nervous system. Consistent with these

results, Salmonella infection was reported to be one of the causes of

meningitis (Byer et al., 2017). Fatty acidmetabolism and biosynthesis

were determined to be closely related to neurological behavior and

metabolic disorders (Augustin et al., 2018), and the Hippo signaling

pathway has been reported to be essential for brain development

(Ouyang et al., 2020). Additionally, the PI3K-Akt and NF-kb

signaling pathways have been demonstrated to be involved in the

occurrence of autism spectrum disorders, as they regulate

inflammation-related biological functions (Zhang et al., 2020).

These findings provide further support for our results that

indicate that immune disorders and metabolic abnormalities are

closely related to PSD.

Based on the findings of previous studies examining the

disease-causing effects of metabolic abnormalities, we speculated

that patients with PSD would experience changes in their

metabolism. Indeed, we observed that these patients exhibited

a high abundance of organic acids and derivatives, lipids and

lipid-like molecules, and organic heterocyclic compounds.

Previous studies have demonstrated that organic acids and

their derivatives can regulate intestinal microflora, and this in

turn affects the metabolism and immunity of the organism

(Eyduran et al., 2015; Zhang et al., 2018). Lipids play an

important role in regulating synaptic plasticity, brain

metabolism, energy supply, and receptor phenotypes (Hussain

et al., 2020), while heterocyclic compounds can improve brain

function (Potkin et al., 2014). Therefore, we conducted further

FIGURE 4
(Continued)
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analyses to understand the effects of abnormal metabolites on

brain function.

Tyrosine (Carvalho-Silva et al., 2019) and steroid metabolism

(Qaiser et al., 2017) are closely related to brain function, while the

tricarboxylic acid (TCA) cycle plays a key role in brain energy

regulation and metabolism (Voss et al., 2020). Therefore, we

speculated that abnormal metabolism may induce stroke. Our

findings revealed that the purine metabolic pathway was

significantly enriched in patients with stroke. Adenosine

deaminase is an enzyme involved in purine metabolism and is

important for the maintenance of the immune system and for the

development and functioning of the central nervous system

(Potkin et al., 2014). As normal purine metabolism is

particularly important for normal brain function (Garcia-

Esparcia et al., 2015), the observation in this study that purine

metabolism is significantly enriched in stroke patients is of

critical importance in regard to our understanding of the

pathogenesis of depression.

Furthermore, we identified common abnormal metabolites in

stroke and PSD patients, thus indicating that these metabolites

could increase the risk of depression after stroke. In the present

study, the levels of the N-methyl-D-aspirate receptor antagonist

acamprosate were lower in stroke patients than they were in

controls, and they were significantly higher in PSD patients

compared to levels in controls. Acamprosate exerts a

neuroprotective effect against brain damage caused by neural

FIGURE 5
Ecological landscape of gut microbes in Control, stroke and PSD patients. (A). Histogram of relative abundances of species in each group and
classification level. (B). Histogram of relative abundances of species in each grouping and classification level arranged as class, family, genus, order,
phylum, and species from left to right and top to bottom. (C). Box plots of differences in α diversity index between groups (from left to right: alpha
diversity, ace index, chao1, good_coverage, observed_species, PD_whole_tree, Shannon, and Simpson index). (D). Analysis of differences in β-
diversity between groups based on weighted Unifrac distance. (E). Evolutionary clade diagram. (F). LDA core. (G). Relative abundances of biomarkers
in each group of samples. (H). Results of STAMP analysis.
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ischemia (Choi et al., 2019). Additionally, abnormal metabolites

andDEGs in our analysis were observed to be significantly involved

in pathways related to intestinal flora, metabolism, and the nervous

system. The “metabolic pathway” purine metabolism, inositol

phosphate metabolism, and glycolysis/gluconeogenesis pathway

all exhibited significant enrichment. In the nervous system,

different types of cells respond to external stimuli through the

inositol lipid signaling pathway (Hanley et al., 1988), and

glycolysis/gluconeogenesis is essential for maintaining normal

energy metabolism. Studies have demonstrated that the

glycolysis/gluconeogenesis pathway is closely related to

Alzheimer’s disease (Foltynie, 2019). Therefore, our findings and

the literature support the idea that intestinal flora can alter

metabolism and thereby influence the risk of PSD.

Based on the 16S rDNA sequencing data, we determined

that the abundance and diversity of intestinal flora were both

higher in PSD patients than they were in controls and patients

with stroke. This is an important finding, as the intestinal flora

can influence the brain and the behavior of organisms through

the brain-gut axis (Cryan et al., 2019). Additionally,

correlation analysis revealed numerous connections between

dysregulated metabolites and DEGs. Previous studies have

demonstrated that inosine can repair damaged brain tissues

(Levitsky et al., 2019), that guanosine has a neuroprotective

effect on acute ischemic stroke (Connell et al., 2013), and that

α-tocopherol can protect against brain damage and neuronal

mitochondrial dysfunction (Murad et al., 2014). Adenine

nucleoside has also been recognized as an endogenous

neuroprotective agent that plays an important role in

ischemic stroke (Levy et al., 2020). Furthermore, GNAO1 is

closely related to epileptic encephalopathy and neurological

dysfunction (Feng et al., 2017), PRKCB exerts a regulatory

effect on neuronal function (Antonell et al., 2016), and

GRIA2 is closely related to status epilepticus and depression

(Gasparini et al., 2014). Therefore, we speculate that intestinal

flora can contribute to depression in stroke patients by

dysregulating gene expression in the cerebral cortex to

thereby alter metabolism.

Our results must be considered in light of certain

limitations. First, as the bioinformatics analyses were

conducted based on retrospective data, our conclusions

must to be validated using data from a prospective cohort.

Second, different data sets were used for the transcriptomics

analysis, 16S rDNA analysis, and non-targeted metabolomics,

FIGURE 5
(Continued)
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FIGURE 6
Intestinal microbes contribute to PSD depression with metabolic pathways. (A). Evolutionary clade diagram. Group B indicates stroke patients;
group C indicates PSD patients. (B). Heatmap depicting the expression of common dysregulated microbes in healthy controls, stroke, and post-
stroke depression patients. (C). Paired scatterplot depicting changes in the abundance of common dysregulated microbes in stroke and post-stroke
depression patients. (D). Correlation between dysregulated microorganisms and dysregulated metabolites. (E). Global control network
depicting differentially expressed genes (hexagons), metabolites (circles), microorganisms (squares), and pathways (diamonds). Note: Group B
consists of stroke patients, and group C consists of PSD patients.
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and this may increase heterogeneity and confounding.

Finally, all patients in our study were obtained from a

single site, and based on this, our results may not be

applicable to different patient populations. Further studies

must be conducted to gain a better understanding of the

pathogenesis and treatment of PSD.
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