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Analysis of metabolic models using constraint-based optimization has emerged as an
important computational technique to elucidate and eventually predict cellular metabolism
and growth. In this work, we introduce time-optimal adaptation (TOA), a new constraint-
based modeling approach that allows us to evaluate the fastest possible adaptation to a
pre-defined cellular state while fulfilling a given set of dynamic and static constraints. TOA
falls into the mathematical problem class of time-optimal control problems, and, in its
general form, can be broadly applied and thereby extends most existing constraint-based
modeling frameworks. Specifically, we introduce a general mathematical framework that
captures many existing constraint-based methods and define TOA within this framework.
We then exemplify TOA using a coarse-grained self-replicator model and demonstrate that
TOA allows us to explain several well-known experimental phenomena that are difficult to
explore using existing constraint-based analysis methods. We show that TOA predicts
accumulation of storage compounds in constant environments, as well as overshoot
uptake metabolism after periods of nutrient scarcity. TOA shows that organisms with
internal temporal degrees of freedom, such as storage, can in most environments
outperform organisms with a static intracellular composition. Furthermore, TOA reveals
that organisms adapted to better growth conditions than present in the environment
(“optimists”) typically outperform organisms adapted to poorer growth conditions
(“pessimists”).

Keywords: constraint-based modeling, cellular metabolism, flux balance analysis, resource balance analysis,
dynamic enzyme-cost flux balance analysis, optimal control, overshoot metabolism, luxury uptake

1 INTRODUCTION

Over the past decades, various modeling frameworks have been proposed to understand the
organization and functioning of cellular metabolism and growth. Among the most popular
approaches are constraint-based methods, in particular flux balance analysis (FBA) (Orth et al.,
2010). Constraint-based methods typically make use of optimality principles that are motivated by
evolutionary arguments. That is, instead of requiring a detailed mechanistic understanding of the
underlying regulatory machinery, properties of cellular metabolism, such as exchange fluxes or
biomass accumulation, are predicted based on the assumption that metabolism has evolved
according to certain evolutionary optimality principles.

More recently, constraint-based methods have been extended to quantitatively account for the
synthesis costs of the biological macromolecules that are required for cellular metabolism and
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growth, giving rise to resource balance analysis (RBA) (Goelzer
et al., 2011) and integrated reconstructions of Metabolism and
macromolecular Expression (ME) (Lerman et al., 2012). While
the initial approaches were restricted to time-invariant
environments and subject to steady-state conditions, various
dynamic extensions have also been proposed, such as dynamic
FBA (dFBA)Mahadevan et al. (2002), dynamic enzyme-cost FBA
(deFBA) (Waldherr et al., 2015), conditional FBA (cFBA) (Rügen
et al., 2015; Reimers et al., 2017), dynamic RBA (dRBA) (Jeanne
et al., 2018), dynamic ME (Yang et al., 2019), and regulatory
dynamic enzyme-cost FBA (r-deFBA) (Liu and Bockmayr, 2020).
These dynamic frameworks are computationally more expensive
and allow predicting time courses over a given time interval, such
that the variables fulfil a given (linear) optimality principle.
Typically, within these frameworks, the time intervals over
which the solutions are considered are predefined.

In this work, we extend these existing approaches and propose
time-adaptation (TOA) as a new constraint-based modeling
framework that allows us to evaluate the fastest possible
adaptation to a pre-defined cellular state while fulfilling a given
set of dynamic and static constraints. If the underlying dynamics of
the biological system are governed by ordinary differential equations
(ODEs) subject to algebraic constraints such as positivity, that is, so-
called differential-algebraic equations (DAEs), time-optimal
adaptation falls into the mathematical problem class of time-
optimal control problems, which are optimal control problems
where the time-interval is part of the objective (Hermes and
Lasalle, 1969). In its general form, TOA can be applied in a very
broad sense and thereby extends most of the existing constraint-
based modeling frameworks.

Our approach allows us to compute feasible time courses to
simulate or predict adaptations of cellular metabolism to
environmental shifts. Potential applications include an analysis
of cellular doubling, i.e., to analyze the optimal metabolic
trajectory that results in a doubling of all cellular components
in the shortest time, as well as an analysis of the temporal
adaptation to changing nutrient availability.

We exemplify TOA using a coarse-grained self-replicator model
(Molenaar et al., 2009;Giordano et al., 2016; Yegorov et al., 2018; Yabo
et al., 2022) and demonstrate that TOA allows us to explain several
known experimental phenomena that are difficult to investigate using
existing static or dynamic constraint-based analysis methods. In
particular, we demonstrate that TOA can explain the
accumulation of storage compounds also in time-invariant
environments–a counterintuitive fact that cannot be predicted
using RBA and related methods. Likewise, we demonstrate that
“luxury uptake” of nutrients, i.e., the fact that microorganisms may
take up more of a limiting resource than strictly required for steady-
state growth, can be explained by TOA and does not necessarily
require competition within amicrobial community. Furthermore, our
analysis shows that organisms with internal temporal degrees of
freedom, such as storage, can in most environments outperform
organisms with a static intracellular composition. Finally, TOA shows
that in constant (or slowly changing) environments, organisms
adapted to better growth conditions (“optimists”) outperfom
organisms adapted to poorer growth conditions (“pessimists”)
when placed in the same environment.

The manuscript is organized as follows: Within Sections 2.1 and
2.2 we introduce notation and define a general constraint-based
framework to describe cellular metabolism and growth. This
framework captures most current examples of dynamic
constraint-based modeling, in particular dynamic FBA
(Mahadevan et al., 2002), dynamic enzyme-cost FBA (Waldherr
et al., 2015) and conditional FBA (Reimers et al., 2017). In Section
2.3, we formally introduce time-optimal adaptation (TOA) and
discuss two relevant applications in Section 2.4: cell doubling in
minimal time, as well as transition after a nutrient shift. The latter is
formulated as a two-objective optimization problem (in the sense of
Pareto) that considers a minimal time for the transition versus a total
increase in biomass. In Sections 2.5–2.7, we discuss numerical
aspects, variability analysis, and implementation, respectively.

Readers not interested in the mathematical details may skip most
ofMaterials and Methods and focus on Results. In Sections 3.1 and
3.2, we describe the coarse-grained self-replicator model and its
properties using RBA. In Section 3.3, we then apply TOA to describe
cell doubling in minimal time in a constant environment. In Section
3.4, we discuss the role of “expectation”, i.e., the consequences of
being mis-adapted to a given environment. In Section 3.5, we apply
TOA to simulate the metabolic response after a nutrient shift. In the
final Sections 4 and 5, we discuss the biological implications of our
results, and provide conclusions.

2 MATERIALS AND METHODS

2.1 Introduction and Notation
The dynamic simulation of metabolic networks by means of a
fully parameterized ODE/DAE model is an ideal scenario that, in
most cases, cannot be met due to the inherent incompleteness and
uncertainty of the description and the involved parameters.
Constraint-based modeling (Bordbar et al., 2014) has therefore
become an important paradigm for the computational
description of cellular metabolism and growth. The general
idea can be framed as follows: instead of making use of a fully
mechanistic description of biochemical dependencies by means
of reaction rate equations, the system is characterized by a set of
constraints/inclusions, typically defined by (in-)equalities that
constrain the dynamics over a time interval [t0, tend] of interest.

Before capturing our approach in mathematical terms in
Section 2.2, we introduce some notation, see also
Supplementary Appendix S1. The function y: [t0, tend] → Rny

is used to describe the cellular dynamics by the total amounts y(t)
of intracellular compounds at time t (typically measured in
number of molecules, mol), with _y(t) � d

dt y(t) denoting the
time-derivative. For simplicity, we focus on the dynamics of
intracellular compounds only, extracellular compounds (e.g.,
nutrient or waste product concentrations) are not included in
y. Our framework, however, can be readily adapted to include the
dynamics of extracellular compounds (see the Supplementary
Appendix S2.3 for details). Furthermore, our description is based
on the assumption of a well-stirred metabolism, i.e., the spatial
distribution of compounds is not considered.

We distinguish the total amounts of molecules y(t) from their
concentrations c(t), defined by
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c t( ) � y t( )
bio t( ), (2.1)

where the term bio(t)≔w⊤·y(t) denotes the total biomass of the
system (measured in Gram cellular dry mass). The vectorw ∈ Rny

denoting the molar masses of the entities of y (measured in gram
cellular dry mass per mol).

The time evolution of the state vector y(t) can be described by
means of ordinary differential equations.

_y t( ) � S · v t( ), (2.2a)
where S ∈ Rny×nv denotes the stoichiometric matrix and
v: [t0, tend] → Rnv the flux rates of the reactions. The flux
rates v(t) may in general also depend on the environment the
cells are exposed to. Typically, and specifically for large networks,

the stoichiometric matrix S � Sy
Sx

( ) is split up such that “fast”

and “slow” intracellular compounds, usually metabolites resp.
macromolecules, are described separately and (2.2a) is
replaced by.

_y t( ) � Sy · v t( ),
0 � Sx · v t( ), (2.2b)

where the fast compounds, corresponding to the rows of Sx, are
subject to a quasi steady-state approximation (QSSA) (Segel and
Slemrod, 1989). In this case, for simplicity of notation, the fast
components will be removed from the vector y(t). We note that
the splitting into “slow” and “fast” compounds is not a necessary
step and its validity has to be verified in any particular
application.

2.2 Constraint-Based Modeling
To capture the broad range of simulation frameworks that time-
optimal adaptation is able to cover, we abstractly denote the
constraints defining the specific constraint-based description of a
cell via.

for almost( ) all t: _y t( ), y t( ), u t( )( ) ∈ A t( ), (2.3a)
where the set A(t) ⊆ Rny × Rny × Rnu is typically defined
through (in-)equalities such as steady-state assumptions and/
or positivity requirements. The particular form of the set A(t)
usually depends on the chosen modeling framework and its
granularity. For the present work, we model the influence of
the external conditions via the explicit time-dependence of A(t).
The vector-valued function u � u(t): [t0, tend] → Rnu signifies
the degrees-of-freedom of the cell, i.e., quantities that are not
uniquely determined from the current state of the cell and its
environment. In the context of control theory, u(t) defines the
controls; on the biochemical level, it can for example stand for
flux rates v(t) but also for parameters within the model.

The formal statement (2.3a) is usually not enough to
sufficiently constrain the solutions, because the feasible region
is too large to obtain biochemical insight. To get biochemically
meaningful results, (2.3a) is therefore often accompanied by
boundary conditions and an optimality principle, i.e., a global
objective function f to be optimized:

ϕbndry y t0( ), y tend( ), u t0( ), u tend( )( )≤ 0, (2.3b)
min
y ·( ),u ·( )

f y, u( ) (2.3c)

The boundary conditions (2.3b) are defined by means of
inequalities to allow for more generality of this description.
Usually, the boundary conditions will only contain initial
values, provided by equality constraints, i.e., two
inequalities. In some cases, optimality principles are already
incorporated into the constraint set A(t), see the following
examples.

In the context of optimal control-based methods with ODE/
DAE constraints, the flux rates at any fixed point in time cannot
(mathematically) be determined as they enter the problem as
control variables (Gerdts, 2011). This is why (2.3a) technically
can only be enforced for almost all times. Numerically or with
respect to the biochemical reasoning, however, this has no further
implications. In the following, we illustrate how (2.3) provides an
abstract framework to describe established examples of
constraint-based modeling.

EXAMPLE 2.1. (Dynamic FBA, dFBA). Dynamic (or iterative) flux
balance analysis (Varma and Palsson, 1994; Mahadevan et al.,
2002), although one of the most commonly used dynamic
frameworks within constraint-based modeling, is not
consistently defined in the literature. Here, we refer to the
formulation in (Höffner et al., 2016), see also (Höffner et al.,
2012), for the characterization of dynamic FBA as a “dynamical
system with a linear program embedded.”

The control quantities u(t) can in this case be directly
identified with the flux rates in the metabolic network model,
i.e., v(t) = u(t). The overall dynamics are governed by (2.2a),
positivity requirements on y(t) and flux bounds lb, ub ∈ Rnv ,
which might be dependent on the time t:

_y t( ) � Sy · v t( ), dynamics, often just biomass( )
0 � Sx · v t( ), quasi steady − state( )
0 ≤ y t( ), positivity( )

lb t( ) ≤ v t( )≤ ub t( ), flux bounds, dependent on environment( )
with given initial conditions

y t0( ) � y0 ∈ Rny .

The flux rates are determined through optimization of a linear
functional (often the flux through the biomass reaction,
assembled in a vector wobj ∈ Rnv )

v t( ) ∈ argmin
v

w⊤
obj · v.

The quantities in (2.3) can be identified as:

A t( ) � _y, y, u( ):
_y � Sy · u,
0 � Sx · u,
0 ≤ y,

lb t( ) ≤ u≤ ub t( ),
u ∈ argminv w

⊤
obj · v

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

ϕbndry � y t0( ) − y0
y0 − y t0( )( ),
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while typically no additional (global) objective function is
present. Note that the defining condition on the fluxes
u ∈ argmin

v
w⊤

obj · v is an inclusion, such that the solutions to

dynamic FBA problems are, in general, not unique. To remedy
this, flux variability analysis (FVA) (Mahadevan and Schilling,
2003) was introduced as a computational tool to explore the range
of possible solutions of the static sub-problems.

EXAMPLE 2.2. (Dynamic enzyme-cost FBA, deFBA). Dynamic
enzyme-cost FBA (Waldherr et al., 2015) is a dynamic
extension of FBA that takes into account the temporal
development and function of the enzymes. This is modeled by
a system of linear inequalities

Hy t( ) · y t( ) +Hv t( ) · v t( )≤ h t( ), (2.4)
with

Hy ∈ Rnh×ny , Hv ∈ Rnh×nv . (2.5)
The model is usually formulated as an initial-value problem

y t0( ) � y0 ∈ Rny .

Similar to FBA, deFBA assumes that a certain objective function
is to be optimized. Since the framework entails a fully dynamic
model over the whole time range of interest, the objective
function contains “global” information, expressed as an
optimal control objective of Boltza-type (Gerdts, 2011),

min
y,u

∫tend

t0

ϕ⊤
y t( ) · y t( )dt + ϕ⊤

end · y tend( ), withϕy,ϕend ∈ Rny .

Like in dFBA, the control variables in deFBA can be identified
with the flux rates and the description in terms of (2.3) is given by

u t( ) � v t( ),

A t( ) � _y, y, u( ):
_y � Sy · u,
0 � Sx · u,
0 ≤ y

lb t( ) ≤ u≤ ub t( ),
h t( ) ≥ Hy t( ) · y +Hu t( ) · u

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
ϕbndry � y t0( ) − y0

y0 − y t0( )( ),
f y ·( ), u ·( )( ) � ∫tend

t0

ϕ⊤
y t( ) · y t( )dt + ϕ⊤

end · y tend( ).

EXAMPLE 2.3. (Conditional FBA, cFBA). This framework (Rügen
et al., 2015; Reimers et al., 2017) is again a dynamic extension of
resource balance analysis (RBA) (Goelzer et al., 2011). Like in
deFBA, enzymatic constraints (potentially alongside further
constraints, e.g., on the cell’s density) are included via (2.4).
The boundary values in cFBA, however, are defined through a
periodicity condition that accounts for the growth of the cell:

c t0( ) � 1
bio t0( ) · y t0( ) � 1

bio tend( ) · y tend( ) � c tend( ). (2.6)

Instead of using the biomass production on all time points, the
objective in cFBA is the total growth of the cell until tend. In terms
of (2.3), cFBA can be summarized as

u t( ) � u1

u2:
( ) � α

v t( )( ), α ∈ R,

A t( ) � _y, y, u( ):
_y � Sy · u2: ,
0 � Sx · u2: ,
0 ≤ y,

lb t( ) ≤ u2: ≤ ub t( ),
h t( ) ≥ Hy t( ) · y +Hv t( ) · u2:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

ϕbndry � u1 · y t0( ) − y tend( )
y tend( ) − u1 · y t0( )( ),

f y ·( ), u ·( )( ) � −u1,

where u1 refers to the first component of the vector u and u2: to the
vector of the remaining entries. If no constraints on the cell density
are included in (2.4), the inequalities defining cFBA are often scale-
invariant in the sense that for each solution y(t) and each number β≥
0, the function β ·y(t) is also a solution. To exclude trivial solutions,
the boundary conditions are therefore often extended such that the
biomass at t0 is equal to one. Note that cFBA is inherently nonlinear
as the products u1·y in the boundary value constraints contribute
quadratically in the unknowns y and u. Like in RBA, the numerical
solution of cFBA problems therefore comprises a series of linear
programs that have to be solved after a discretization of the dynamics
by means of, for example, a collocation scheme.

EXAMPLE 2.4. (Iterative RBA, (Liu, 2020), see also dynamic ME
(Yang et al., 2019)). Just as dynamic FBA can be seen as a dynamic
extension of classical FBA by iteratively applying the algorithm
with constraints following the external conditions, resource
balance analysis (RBA, see Goelzer et al. (2011)) can also be
applied consecutively. In doing that, the limit case of
infinitesimally short sub-intervals leads to a fully dynamic
framework. Numerically, this limiting process is skipped and
one only solves RBA problems on a series of short—but
finite—time intervals. Note that, as cFBA, RBA uses
periodicity conditions like (2.6) which implies that, in
constant external conditions, only one RBA problem needs to
be solved. The full solution in this case is given by an exponential
curve for y(t). Note that there are fewer degrees-of-freedom for
the cell when compared to deFBA or cFBA, as the fixed
concentration values for the metabolites in the case of iterative
RBA also block internal dynamics of the metabolic network.

In the notation of the constraint-based framework (2.3),
iterative RBA can be written as

u t( ) � α
v0

( ) � u1

u2:
( ),

A t( ) � _y, y, u( ):
_y � Sy · v
0 � Sx · v
0 ≤ y

lb t( ) ≤ v ≤ ub t( )
h t( ) ≥ Hy t( ) · y +Hv t( ) · v

v � u2: · exp λ · t − t0( )( )
λ � ln u1( )/ tend − t0( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

ϕbndry � y t0( ) − y0
y0 − y t0( )( ),

f y t( ), u( ) � −u1.
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Note that the control variables u are not time-dependent, i.e., they
enter the model as control parameters rather than functions that
need to be optimized in the sense of optimal control.

2.3 Time-Optimal Adaptation: Definition and
Forms
Previous frameworks for constraint-based optimization did not
explicitly include the time interval as part of the optimization
objective. In the following, we introduce Time-Optimal
Adaptation (TOA) as a framework to analyze transition
between different cellular states in the shortest possible time.
TOA is motivated by the assumption that under certain
environmental conditions, cells may have evolved to reach
target amounts ygoal in the shortest possible time, starting
from initial amounts yinit. This transition might either take
place in a variable environment, encoded by a time-dependent
set A(t), or in a constant environment. Likewise, the target and
initial amounts may either have to fulfill additional optimality
criteria, or may correspond to pre-defined or experimentally
measured states. Mathematically, we capture such a strategy in
the following way.

Time-Optimal Adaptation
Given an initial/current amount of molecules yinit ∈ Rny and a
target amount ygoal ∈ Rny , the optimization objective is to
transition from the former to the latter as quickly as possible.

min
y ·( ),u ·( ),T>t0

T (2.7a)

s. t.
y t0( ) � yinit,
y T( ) � ygoal

(2.7b)
and _y t( ), y t( ), u t( )( ) ∈ A t( ) for almost( ) all t ∈ t0, T[ ], see(2.3a)

(2.7c)
The constraints (2.7c) and (2.7b) can be framed within the

abstract constraint-based framework (2.3) by including yinit and
ygoal using

ϕbndry y t0( ), y tend( ), u t0( ), u tend( )( ) �
y t0( ) − yinit

yinit − y t0( )
y tend( ) − ygoal

ygoal − y tend( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

whereas the global objective function, cf. f in (2.3), does not
explicitly contain any of the variables y or u. Instead, the general
framework of constraint-based modeling (2.3) is extended
through time-optimal adaptation by using the end point of the
time interval of interest itself as the optimization objective
function. In contrast to the frameworks with non-time-
dependent objective function as defined in (2.3c), TOA
provides solutions (y(t), u(t)) only on the time interval [t0, T]
instead of (arbitrary) [t0, tend].

Remark 2.5. Within this work, we assume that the target
amounts ygoal are accessible. Specifically, we assume that a
time tend ≥ T exists such that all values within the
optimization problem defining TOA are well-defined. We note
that the accessibility of the target state is a classical problem in

time-optimal control, and accessibility is a prerequisite for
applying TOA. In practice, the target state will often be
defined by means of an RBA solution and we conjecture that
these target states will be accessible.

Remark 2.6. Within this work, we use the term “adaptation” in
a control-theoretic sense. That is, the term refers to changes in the
intracellular amounts or concentrations in response to the
environmental conditions, respecting the given constraints. In
an evolutionary context, such changes are typically considered as
“acclimation”.

Remark 2.7. We do not require the constraint set A(t) in
(2.3a) to have any specific form. This means that time-optimal
adaptation can be defined irrespective of the concrete modeling
paradigm underneath the simulation. Practically, even discrete
time/state systems fit well within TOA. To be concise, however,
we concentrate in the following on frameworks closely related to
deFBA and cFBA. In Example 2.8, we therefore introduce TOA
also in a simplified setting that directly builds upon d(e)FBA, cf.
(Waldherr et al., 2015; Höffner et al., 2016). From the viewpoint
of the general framework (2.3), this is a special case of deFBAwith
a modified objective function.

EXAMPLE 2.8. (TOA as an extension of deFBA). Assume that there
is no distinction between “fast” and “slow” components within
the metabolic network. In this case, the dynamics of its molecular
amounts can be described purely by ordinary differential
equations _y(t) � S · v(t). As for classical flux balance analysis,
the fluxes are constrained by upper and lower bounds lb, ub that
might depend on the possibly changing environment, i.e., ub(t) ≤
v(t) ≤ ub(t). If y contains compounds with enzymatic function,
the flux rates (or weighted sums thereof) may additionally be
constrained by (weighted sums of) components of y. Such bounds
can be collected into a single set of linear inequalities by
introducing suitable matrices/vectors Hy(t), Hv(t), h(t), i.e.,

Hy t( ) · y t( ) +Hv t( ) · v t( )≤ h t( ),
see (Waldherr et al., 2015, Section 2.3) for a detailed description.
To account for y being total amounts, y is constrained to positive
values, i.e., y(t) ≥0. As outlined above, TOA requires fixed initial
and terminal values for the molecular amounts, mathematically
captured by

y t0( ) � yinit, y T( ) � ygoal.

In summary, TOA can be aggregated in this simplified case to the
following constrained optimization problem

min
y ·( ),v ·( ),T>t0

T

s.t.

_y t( ) � S · v t( )
lb t( ) ≤ v t( )≤ ub t( )
h t( ) ≥Hy t( ) · y t( ) +Hv t( ) · v t( )
y t( ) ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
_y t0( ) � yinit

_y T( ) � ygoal
}

The notation “miny(·),v(·),T>t0” can be understood in the sense of
optimal control, i.e., one is searching for the optimal objective
value among all (differentiable) functions y(t), t ∈ [t0, T], and
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(measurable) functions v(t), t ∈ [t0, T]. The framework identifies
possible time courses for the fluxes v(t) and amounts y(t) such
that (i) stoichiometry, (ii) flux bounds, and (iii) enzyme activities
are included in the model and such that the transition from one
given amount to another is as fast as possible.

2.4 Applications and Case Studies
Next we introduce two particularly relevant applications of TOA.

APPLICATION 2.1. (Cell Doubling). A first natural application of
TOA is cell doubling, where the objective is to double all cellular
components in minimal time, such that

ygoal � 2 · yinit.
The resulting trajectory thus can be interpreted as one cell cycle.
Neither the initial, nor the target amount have to be optimal with
regard to other objectives. Within the TOA framework, cell
doubling can be considered either in a constant environment,
or with time-dependent external conditions. We note that
applications of constraint-based optimization of metabolism
typically do not distinguish between solutions for a single cell
vs. solutions for a homogeneous population of cells. Similarly, the
time courses for cell doubling predicted by TOA can either be
interpreted for a single cell or a homogeneous, synchronized
population of cells. If cells are not synchronized, that is each cell
within the population is at a different time point with respect to
its cell cycle, we have to average over the population or,
equivalently, over a full cell cycle, to obtain in silico
measurements of a population.

APPLICATION 2.2. (Transitions after a nutrient shift). A second
important application of TOA is to consider a sudden change
in the external conditions, i.e., from a given constant nutrient
availability for t < 0 to a different one for t ≥ 0. In this scenario,
TOA can be utilized to predict the transition of the
intracellular amounts yinit to new target amounts ygoal. The
new target amounts might either be optimal with respect to the
new environmental conditions (as defined by RBA), or be
provided otherwise (for example by experimental
observations). In both scenarios, the target amounts are
typically defined in terms of concentrations instead of
absolute amounts. Hence, we must also formulate the
boundary conditions in terms of c(t),

y t0( ) � yinit,

c T( ) � 1
bio T( ) · y T( ) � 1

w⊤ · ygoal · y
goal � cgoal. (2.8)

As shown in Supplementary Appendix S3, it is possible to
rearrange conditions (2.8) such that a linear equality system in
the unknowns (y(t0), y(T)) is obtained. Therefore, the
concentration-based definition has no immediate drawbacks
regarding the numerical solution.

We must further consider that an as-quick-as-possible
transition from one intracellular concentration to another

does not incorporate the overall (i.e., biomass-) growth of
the cell and thus might not represent an evolutionarily
plausible strategy. Rather, the transition to new external
conditions involves a balance between fast transition to a
(better adapted) novel state and the requirement to increase
(or not decrease) the total biomass of the cell. To obtain a
general framework, we therefore propose a two-objective
optimization problem:

min
y ·( ),u ·( ),T>0

T
−α( )

s.t. y 0( ) � yinit

y T( ) � α · ygoal
and _y t( ), y t( ), u t( )( ) ∈ A t( ) for almost( ) all t ∈ 0, T[ ],

(2.9)

where yinit denotes a normalized vector of intracellular amounts
which describe the cells for the environment t < 0. The
“normalization” here can, for example, be understood as w⊤·yinit
= 1. Accordingly, ygoal denotes a normalized vector for the
environmental conditions after the nutrient shift. “Minimality” in
(2.9) is to be understood in the sense of Pareto: a triple (y(t), u(t), T)
is optimal if T cannot be decreased without decreasing α such that
y(T) = α ·ygoal, and vice-versa if α cannot be increased without also
increasing the end time T. The set of all optimal solutions of (2.9)
describes the different compromises between fast adaptation and
continued growth.

Remark 2.9. Note that the boundary conditions (2.8) do
not entail any direct condition concerning bio(tend) =
w⊤·y(tend). If the metabolic network allows for a quick
degradation of compounds, it might be optimal (in the
sense of TOA) to shrink (in terms of absolute biomass)
before actually adapting to the new concentrations, or even
to completely disintegrate all metabolic compounds to zero.
Such a behavior would be in line with the description of time-
optimal time courses as induced by (2.8). To remedy this, a
linear inequality

bio tend( ) ≥ bio t0( )
or w⊤ · y tend( ) ≥w⊤ · y t0( )

can be added, illustrating again the power of constraint-based
modeling. Whenever necessary, this was done for the in silico
experiments in Section 3.

2.5 Numerical Solution
The optimization problem (2.7) of TOA contains a general
condition on the dynamics of y in the form of (2.7c). To
design an algorithm able to cope with this generality, we
assume that a numerical method is available that can simulate
this dynamic behavior subject to boundary conditions on a
given fixed time interval [t1, t2] ⊆ [t0, T] and/or to determine
whether such a solution exists. Provided this condition (and
tacitly assuming that the relevant feasible end time points T
lie in a connected set), the minimal value for T can be found
using any one-dimensional root finding algorithm. For its
simplicity and guaranteed convergence, we propose to use the
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following bisection method for the determination of T
in TOA:

For the initial time interval [tmin, tmax], one needs to assume
that (2.7b) and (2.7c) define an infeasible problem on [t0, tmin],
while the corresponding problem on [t0, tmax] is feasible. The
quick convergence of the bisection method entails that an already
very good initial guess is not crucial for an efficient
implementation, as long as the simulation task is not too
computationally expensive.

If there is legitimate doubt about the result, the algorithm can be
re-started with another initial interval or one can change to a more
fine-grained sampling for the evaluation of feasible and infeasible
points. The numerical results in Section 3 were preceded by an
exhaustive scan of end time points, which indicated that the set of
feasible end time points do indeed form a single interval (i.e., a
connected set) in all shown examples.

Remark 2.10. The bisection method was chosen here for several
reasons overmore “classical”methods in time-optimal control: firstly,
the “simplicity” aspect of the bisection method does not only refer to
it being easily applicable for various extensions of the framework (like
time- and/or state-discrete systems, or a framework that incorporates
heterogeneity within a community or in space) but also to the
implementation. Many existing toolboxes include interfaces to
(MI-)LP solvers. Algorithms for dynamic simulations are
moreover often highly optimized, such that checking for feasibility
over a given time range can be more efficient than implementing a
new interface to an optimal control library.

Secondly, the inherently linear structure of problems like deFBA
should be preserved. For time-dependent constraint setsA(t) this
is only possible if the time variable t is treated as the independent
variable in the optimal control algorithm. In existing optimal
control libraries like BOCOP (Bonnans et al., 2017), time-
optimal control problems are often transferred to optimal
control problems on a unit interval by introducing an artificial
independent variable. If the time-dependency of some of the
constraints is non-linear, this translates to the optimization
problems that need to be solved within the optimal control routine.

We note, however, that in the non-linear case the application
of “classical algorithms” for time-optimal control problems like
shooting-methods, or those based on the Pontryagin principle
might generally outperform the bisection approach taken here.

Remark 2.11. For the solution of the Pareto problem (2.9) it is
not necessary to implement algorithms for maximizing α,

i.e., optimizing the second objective. Instead, one can continue
using the algorithm for time-optimal adaptation while
simultaneously fixing feasible values of α. With respect to the
definition of Pareto-optimality, this means that for any feasible
value of one objective, the other one is optimized, corresponding
to the so-called ϵ-constraint method in multi-objective
optimization, cf. (Ehrgott, 2000).

2.6 Time-Optimal Adaptation Variability
Analysis
Minimizing T need not suffice to uniquely determine the time
courses in y. If this is the case, the variability over time can be
captured by enumerating possible time series once the optimal
end time point was found. We will refer to this procedure as
TOA-Variability Analysis (TOA-VA). In contrast to static flux
variability analysis (FVA), there are several ways to define
what such an enumeration means. One way would be to
determine the maximum and minimum possible value for
all components of y and separately at each time point. This,
however, would not only lead to time-consuming
computations, but would also be difficult to interpret: a
numerical solution that is constructed via putting together
maxima or minima y(~t) for all time instances ~t does not have to
fulfill the dynamics defined by the original model. Here, we
understand TOA-VA as the minimization and maximization
of the integral over all components of y, i.e., for all
i = 1, 2, . . ., ny:

min
u ·( ),y ·( )

± ∫T

t0

yi t( )dt (2.10)

subject to the dynamic and/or boundary constraints in the
original problem. Note that the overall time courses might still
not be uniquely defined from (2.10).

To explore the variability of the time courses for the
concentrations c(t), we use the following variant of TOA-VA,
which is called relative TOA-VA:

(i) Compute the optimal end time point T of time-optimal
adaptation.

(ii) For all i = 1, 2, . . . , ny: Use TOA-VA as in (2.10) to obtain a
minimal value Imin,i and a maximal value Imax,i for the
integral of yi over [t0, T].

(iii) Calculate for all i = 1, 2, . . . , ny the (maximal and minimal)
concentrations ci(t) as given by (2.1) where y(t) is
calculated from

max
y ·( ),u ·( )

∫T

t0

bio t( )dt s.t. ∫T

t0

yi t( )dt≤ Imin,i,

min
y ·( ),u ·( )

∫T

t0

bio t( )dt s.t. ∫T

t0

yi t( )dt≥ Imax,i

(again subject to the original constraints of the problem).
There is still no guarantee that the solutions to these problems

are unique. However, since the concentrations are defined as the
ratio of total amounts to the biomass, the above definition is
reasonable as one is maximized whilst minimizing the other.
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Note, that this definition implies that the weighted sum of all
(maximal or minimal) concentrations no longer needs to add to
the total biomass.

2.7 Implementation
The calculations for all experiments in Section 3 were done in
Python 3.8.1 on a laptop computer. Scripts that reproduce the
numerical experiments below are available on GitHub, https://
github.com/MarkusKoebis/StaticTOA_py The numerical
solutions were determined from a complete parameterization
(using the trapezoidal rule) of the compounds and fluxes over the
entire time range of interest using n = 100 steps on an equidistant
grid. This leads to a sparse LP problem which was solved using
gurobipy on Gurobi 9.0.1 solver (Gurobi, 2021) with standard
settings (concerning problem formulation and tolerances). Most
experiments were repeated (for verification) with tight error
tolerances without notable differences. For time-optimal
adaptation, no objective vector for the LPs is necessary, so we
used the null vector 0. For (relative) TOA-VA, the integrals in the
objective or constraints were approximated using the same time
grid and also the trapezoidal rule.

3 RESULTS

3.1 ACoarse-Grained Self-ReplicatorModel
We illustrate TOA by means of a coarse-grained self-replicator
model (Molenaar et al., 2009; Giordano et al., 2016; Yabo et al.,
2022). The model, cf. Figure 1, consists of three compounds: M
(intracellular metabolic precursor), Tr (transporter), and R
(ribosome), as well as five biochemical reactions, and the

external nutrient N. The uptake of the external nutrient N is
catalyzed by the transporter Tr and depends on the availability of
N via a Michaelis-Menten rate equation. Depending on the
application, the concentration of the external nutrient N may
either be constant or vary over time. The synthesis of the catalytic
macromolecules Tr and R is limited by the ribosome amount.
Within the model, macromolecules can be disassembled into the
precursor M. For energetic consistency, however, disassembly
results in fewer precursor molecules than required for synthesis,
reflecting the energy expenditure of protein synthesis and thereby
avoiding futile cycles. We note that within the model, no
compound is subject to the quasi steady-state assumption, and
the metabolic precursor M can accumulate over time. Hence M
also serves as a storage compound. All constraints of the model
can be formulated in terms of linear inequalities. A detailed
definition is provided in Supplementary Appendix S2.1.

3.2 Constant Environments and RBA
Before the dynamic behavior of the model is studied by means of
TOA, we summarize the steady-state properties of the model in a
constant environment using Resource Balance Analysis (RBA).
RBA provides a method to calculate the steady-state amounts of
the cell that maximize the growth rate under constant external
conditions, i.e., for a constant external nutrient concentration. In
the following, extracellular nutrient is measured relative to the
Michaelis constant KM of the uptake reaction, with N/KM as a
dimensionless parameter.

Figure 2A shows the maximal growth rate λ as a function of
the relative nutrient availability. The growth rate follows aMonod
equation with a maximum λmax ≈ 0.435 h−1 and an effective
(dimensionless) affinity constant KA ≈ 0.347, corresponding to
the value of the relative nutrient availability N/KM at which the
cell grows at half the maximal growth rate λmax.

Figure 2B shows the total amounts of the three intracellular
components M, Tr, and R as a function of the (relative) nutrient
availability. The amounts were scaled such that the total biomass
always equals one unit (e.g., 1 g cellular dry mass). As expected,
when maximizing the growth rate, the level of the precursor/
storage componentM is always zero. This reflects the fact that the
precursor M has no catalytic activity, and any non-zero amount
of M would consume resources that otherwise could be allocated
to transport or protein translation.

The amounts of the other intracellular components Tr and R
follow the well-known growth laws of microbiology (Scott and
Hwa, 2011). The concentrations are a function of the growth rate,
and hence the external nutrient availability, the well-known linear
relationship is shown in Supplementary Appendix S4. With
increasing nutrient availability, the relative amount of transporter
decreases, whereas the relative amount of ribosome increases.

3.3 TOA in Constant Environments
Our first case study using TOA is to consider the doubling of a
microbial cell in minimal time. We assume that the self-replicator
model in Figure 1 has pre-described initial amounts y(t0) = y0
which simultaneously identify the pre-defined initial state yinit.
The objective is to double all cellular components as fast as
possible, cf. Application 2.1. The environment is assumed to be

FIGURE 1 | A schematic illustration of the coarse-grained self-replicator
model; solid lines represent biochemical reactions between the nodes
(biochemical compounds), dashed dark-blue lines indicate that a reaction is
catalyzed by the respective compound. Abbreviations: N, external
nutrient; M, metabolic precursor/storage; Tr, transporter; R: ribosome; vN,
nutrient uptake reaction; vR, ribosome production reaction; vdR, ribosome
degradation reaction; vTr, transporter production reactions; vdTr, transporter
degradation reaction.
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constant with a relative (external) nutrient availability N/KM = 1.
The initial (and final) amounts are not assumed to be optimal for
the given environment. Instead, y(t0) is obtained by solving an
RBA problem corresponding to N/KM = 2.0. In other words, the
cell is assumed to be adapted to a higher nutrient level than is
present in the current environment. In the following, we will refer
to such cells as “optimists”.

Figure 3 shows the time course of intracellular
components for one cell doubling. The predicted time-
optimal amounts of metabolic compounds are shown as
solid lines (red, blue, and yellow), the total biomass is
shown in green. The dashed lines correspond to a solution
obtained by iterative RBA (cf. Example 2.4), which
corresponds to exponential growth of all cellular

components with no further internal degrees of freedom.
Figure 3B shows the respective flux rates over the simulated
time range. Solid lines again indicate the solution of TOA,
while dashed lines (exponential curves) correspond to the
solution found with iterative RBA.

Using TOA, the time for one cellular doubling is T = 2.17 h. In
contrast, the solution based on iterative RBA results in a slightly
longer doubling time of T = 2.34 h, showing that internal degrees
of freedom shorten the calculated division time. The time course
of y(t) over one cell doubling can be subdivided into four time
intervals (marked as I-IV in Figure 3A). At the beginning
(marked as interval “I”), cell growth is limited by the lack of
transporter Tr due to the “optimistic” initial configuration of the
cell. Hence, ribosome R is actively disassembled into precursorM
to increase the synthesis of Tr. In interval “II”, the cell is perfectly
adapted to the given nutrient environment and grows
exponentially, before the re-adaptation to the target
composition ygoal = 2 yinit begins in interval “III”. Within
interval “III”, the cell still has an overabundance of Tr, which
allows it to accumulate the precursorM. In the final interval “IV”,
synthesis of transporter Tr ceases and all resources are devoted to
the synthesis of the ribosome R, until the target amounts ygoal are
reached.

The biological plausibility of these time courses is discussed in
Section 4. Here we only summarize the following results: Given
the initial amounts yinit, cell doubling using TOA in time-
invariant environments gives rise to complex intracellular
dynamics different from solutions obtained by iterative RBA.
Importantly, these solutions involve a transient accumulation of
the precursor M as a storage compound–a phenomenon not
observed with iterative RBA. Theminimal division time predicted
by time-optimal adaptation is shorter than division times
obtained by iterative RBA.

So far, we considered a particular initial amount yinit such that
the cell was adapted to a higher nutrient availability than actually
present in the environment (“optimist”). To obtain a broader
view, we evaluated cell doubling using TOA in different time-
invariant environments with initial (and final) amounts adapted
to different external nutrient availability. The results are shown in
Figure 4. Solid lines correspond to intracellular amounts using
TOA, dashed lines correspond to a solution obtained with
iterative RBA (exponential growth without internal degrees of

FIGURE 2 | (A) Maximal growth rate λ as a function of the (relative) extracellular nutrient availability as predicted by RBA. (B) Cellular amounts of intracellular
compounds as functions of relative nutrient availability. Extracellular nutrient is measured relative to the Michaelis constant KM of the uptake reaction.

FIGURE 3 | Cell cycle of an “optimistic” cell; (A) amounts and biomass
as a function of time, (B) flux rates as a function of time; solid lines indicate the
solution of TOA, dashed lines indicate iterative RBA (exponential growth) with
the same “optimistic” initial values.
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freedom). Shaded areas correspond to variability in the sense of
TOA-VA (cf. Section 2.6), i.e., possible solutions that equally
satisfy all constraints and the optimality criterion. In this case, the
solid lines display a “nominal” solution, i.e., one that was
provided by the algorithm before an additional variability
analysis (we note that since the numerical solution is based on
a feasibility problem, the LP solver has no incentive to favor a
smooth solution to any other).

Columns in Figure 4 correspond to different relative
nutrient availability levels: the first column to a nutrient
availability N(t)/KM ≡ 0.5; the second column to N(t)/KM ≡
1.0, and the third to N(t)/KM ≡ 5.0. The rows in Figure 4
correspond to different “expectations” of the cells, that is,
which external nutrient availability the initial (and final)
amounts are adapted to. Specifically, the first row
corresponds to “pessimists”. That is, cells adapted to a
nutrient availability below the one present in the
environment, while retaining the objective to double all
cellular components in minimal time. The second row

corresponds to cells perfectly adapted to the environmental
nutrient availability. The final row corresponds to “optimists”,
i.e., cells adapted to a higher nutrient availability than present
in the environment.

The latter scenario corresponds to the example already
shown in Figure 3. We again observe an initial increase in the
transporter synthesis, followed by a delayed onset of
ribosome synthesis. Importantly, in each case, we can see a
transient accumulation of storage M(t) that is absent in
solutions obtained by iterative RBA. In the case of
perfectly adapted cells (middle row), solutions obtained by
TOA are equivalent to solutions obtained by iterative RBA.
For “pessimistic” cells (top row), we again observe complex
time courses. In particular, cells adapted to lower nutrient
levels than present in the environment exhibit an
overabundance of transporter. Hence, we observe an initial
rapid uptake of nutrient and transient accumulation of the
precursor M. In the initial interval, resources are primarily
allocated to the synthesis of ribosomes. Only in the later

FIGURE 4 | Time course solutions of time-optimal adaptation and a cell doubling experiment under different constant external nutrient conditions; solid lines: TOA,
shaded areas: TOA-VA, dashed lines: iterative RBA (simulated until cell doubling was achieved); upper row: pessimistically adapted, middle row: perfectly adapted
(recovery of iterative RBA), bottom row: optimistically adapted for constant relative nutrient availability of N/KM = 0.5 (left column), N/KM = 1.0 (middle column), and N/KM

= 5.0 (right column).
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interval, the transporter is synthesized to the required
amounts (even at the expense of ribosomes that may be
disassembled into precursors). The transient accumulation
of precursor M exhibits considerable variability and the
solutions of TOA are no longer unique.

A detailed discussion about the biological plausibility of these
time courses is again relegated to Section 4. Here we only note
that, despite the simplicity of the model, the solutions exhibit a
wide variety of qualitatively different complex temporal
behaviors, including the transient accumulation of the
precursor M.

3.4 The Role of Expectation: Optimists vs.
Pessimists
We further investigate two key observations obtained in the
previous experiments: the transient accumulation of precursor
M as a storage compound, as well as the impact of the initial
cellular state on the predicted doubling time.

Firstly, Figure 5 shows the average storage concentration
predicted for a population of cells adapted to different
nutrient availabilities (N/KM ∈ (0.2, 2.0), x-axis) in an
environment with an actual relative nutrient availability N/KM

≡ 1.0. To calculate the average storage concentration predicted by
TOA for a population of cells, we assume that the (in silico)
measurements are taken from a heterogeneous population of
unsynchronized cells that are (equidistributed) at various stages
of their cell cycle. To take this non-uniform age distribution into
account, the population average was computed, cf. (Powell,
1956), as

mean M( ) � 1
T
ċ∫T

0

M t( )
w⊤ · y t( ) dt, (3.1)

where y(t) is a solution obtained by relative TOA-VA, cf.
Section 2.6.

As shown in Figure 5, we observe (the possibility of) a nonzero
average storage concentration for all cellular states that are not
perfectly adapted to the respective environment. For optimistic
cells adapted to a higher nutrient availability than present in the
environment, the average storage concentration increases slightly

FIGURE 5 | Influence of optimistic and pessimistic goal states in cell doubling: Main plot: mean relative storage accumulation, see (3.1), as a function of nutrient
adaptation level. Bottom row: Three selected time courses, cf. Figure 4, for nutrient adaptation levelsN/KM of 0.2, 1.1, and 2.0. ForN/KM < 1, the quantitymean(M) is no
longer unique such that a shaded area indicates the possible range, as TOA-VA also predicts a range of possible solutions (shaded area in the bottom left plot).

FIGURE 6 | Growth rate of differently adapted cells as predicted by cell-
doubling experiments using TOA and iterative RBA in an environment with
relative nutrient availability N/KM = 1.0; λenv ≈ 0.32 h−1 denotes the maximal
growth rate as predicted by RBA.
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with the distance to the perfectly adapted state. The effect is more
pronounced for pessimistic cells adapted to a lower nutrient
availability than present in the environment. In this case, the
solutions of TOA are not unique and the range of average storage
is indicated as a shaded area. For “pessimist” cells, the large
average storage is due to a high abundance of transporter
molecules, which implies that uptake and accumulation of
precursor is not restricted.

Secondly, Figure 6 shows the predicted growth rate for cells
adapted to a different relative nutrient availability (N/KM ∈ (0.2,
2.0)) than present in the environment (N/KM ≡ 1.0). The straight
line indicates the growth rate of cells that are perfectly adapted,
resulting in a maximal growth rate λ = λenv ≈ 0.32 h−1. The
maximal growth rates for cells adapted to a different environment
(misadaptation) are shown as a solid green line for solutions
obtained with TOA and as a purple line for solutions obtained
with iterative RBA.

We observe that misadaptation always results in a reduced
growth rate, as compared to a perfectly adapted cell. However,
solutions obtained by TOA always outperform solutions obtained
by iterative RBA, demonstrating that internal degrees of freedom
and transient accumulation of storage shorten the predicted
doubling time. Furthermore, the decrease in growth rate is
more pronounced for “pessimistic” adaptation, that is, for cells
that are adapted to a lower nutrient level than present in the
environment. In contrast, “optimistic” adaptation, that is, cells are

adapted to a higher levels than present in the environment,
together with TOA results in growth rates close to perfectly
adapted cells–indicating that “optimistic” adaptation carries a
lower evolutionary cost than “pessimistic” adaptation.

3.5 Time-Optimal Adaptation at a Nutrient
Shift
As our second application, we consider a nutrient shift, i.e., a
sudden change in the external conditions from a given constant
nutrient availability for t < 0 to a different one for t ≥ 0. TOA is
utilized to predict the time-optimal transition of a cell perfectly
adapted to the initial state at t < 0 to a state perfectly adapted to
maximize growth in the new environment for t ≥ 0. As noted in
Section 2.4, the target state for the new environment is typically
defined in terms of concentrations rather than absolute amounts,
because it is unknown whether or how much the cells are able to
grow during adaptation.

Figure 7 shows the resulting time courses for the coarse-
grained self-replicator model used in the previous sections.
Shown are time-optimal shifts from a low nutrient availability
to a higher nutrient availability (left column in Figure 7), as well
as time-optimal shifts from a high nutrient availability to a lower
nutrient availability (right column in Figure 7). Non-unique
solutions are again displayed as shaded areas indicating the
maximum and minimum range in which solutions can be

FIGURE 7 | Adaptation to a single nutrient jump (shown as a dashed green line), left column: adaptations from poorer to richer medium, right column: adaptation to
scarcer environment; shaded areas: solutions in the sense of TOA-VA. We note that for t < 0, TOA makes no assumptions about y(t).
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found (TOA-FVA, see Section 2.6). We observe that the time-
optimal transition from lower to higher nutrient availability again
entails a transient accumulation of storage.

As detailed in Section 2.4, time-optimal adaptation alone is
not sufficient as an evolutionary principle to explain cellular
adaptation after a nutrient shift. Rather, we consider a two-
objective optimization (in the sense of Pareto) with the
conflicting objectives of a fastest possible adaptation to the
new state vs. a maximal increase in total cellular biomass.

Figure 8 (main panel) shows the resulting Pareto fronts for
different transitions in terms of the minimal time T* for
adaptation vs. the maximal increase in cellular biomass given
by the factor α, cf. (2.9). Panels A–D in Figure 8 show selected
time courses of intracellular amounts at different positions of the
Pareto front. In the subplots A and B, the shaded areas indicate
that the cell is perfectly adapted to the environment in the sense of
RBA, i.e., from the start of the shaded areas, the cell exhibits
balanced exponential growth at the maximal growth rate and no
further internal dynamics take place. The absence of internal
dynamics explains that, for larger values of α or T*, the lines in the
main plot become asymptotically parallel.

In the absence of a nutrient shift (i.e., the transitionN/KM: 1→
1, blue line in Figure 8), the minimal time for adaptation is T* = 0

with a growth factor α = 1, in this case the relationship between
transition times T* > 0 and increase in biomass is consistent with
exponential growth (note the logarithmic scale on the y-axis).

For a nutrient shift from high to low nutrient availability (N/
KM: 10→ 1, black line) the minimal transition time is T* � T1* ≈
0.44 h. Figures 8A–C show two representative transitions on the
Pareto front with panel A corresponding to a scenario that
prioritizes an increase in biomass (factor α) over the transition
time T*, and panel C corresponding to a scenario that prioritizes a
minimal transition time over the accumulation of biomass.

For a nutrient shift from low to higher nutrient availability (N/
KM: 0.2→ 1, green line) the minimal transition time is T* � T2* ≈
1.14 h. Figures 8B,D show two representative transitions on the
Pareto front with panel B corresponding to a scenario that
prioritizes an increase in biomass (factor α) over the transition
time T*, and panel D corresponding to a scenario that prioritizes a
minimal transition time over the accumulation of biomass. In
either case, the optimal transition involves a transient
accumulation of the storage compound M.

Consistent with results in the previous section, Figure 8 also
shows that “optimistic” adaptation carries a lower evolutionary
cost than “pessimistic” adaptation. A cell adapted to high nutrient
availability exhibits only a slightly reduced biomass increase when
transitioning into a low nutrient environment, as compared to a
cell already adapted to this environment. In contrast, a cell
adapted to a lower nutrient environment exhibits a more
pronounced reduction in accumulated biomass when
transitioning into higher nutrient availability, as compared to
either a cell that is already adapted to the higher nutrient
availability, or likewise as compared to a cell that was
previously adapted to even higher nutrient availability.

4 DISCUSSION

In this work we introduced TOA, a novel approach to
simulate and predict time-optimal adaptation of microbial
metabolism and growth. While time-optimal modeling has
been considered before, see, among others, (Klipp et al.,
2002) (temporal gene expression), (Pavlov and Ehrenberg,
2013) (fast proteome adaptation to environmental change),
(Waldherr et al., 2015) (maximize survival time under
nutrient depletion), (Basan et al., 2020) (minimization of
lag/response-time), and (Djema et al., 2020) (bio-reactor
applications), our work builds upon the recent advances in
dynamic constraint-based modeling, such as dFBA, deFBA
and cFBA, cf. Section 2.2. TOA is versatile and extends most
approaches currently employed in constraint-based
modeling of microbial metabolism and growth.

In particular, while the analysis of balanced steady-state
growth dominates current experimental and computational
studies, in most natural environments microbes have to
continuously adapt to perturbations and changes in nutrient
availability. TOA allows us to study such transitions in the
context of established constraint-based models of microbial
metabolism. Similar to other constraint-based methods, the
solutions obtained from TOA are not based on mechanistic

FIGURE 8 | Two-objective optimization of adaption time T* and total
biomass growth factor α for time-optimal adaptation at a nutrient shift. Main
plot: Pareto fronts for three different initial adaptations (measured in N/KM) of
0.2, 1.0 and 10. Subplots (A–D): Time courses at different points on the
Pareto fronts, cf. Figure 7. The shaded areas in subplots A and B indicate time
intervals where the cell is perfectly adapted (exponential growth).
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understanding of the regulatory system that governs the
respective transition, but are derived from the assumption
that, under certain conditions, a time-optimal transition may
be evolutionary beneficial. We emphasize that an application of
TOA does not necessarily imply that a time-optimal transition is
the only or most important evolutionary objective. Rather, and
again similar to other optimality-based methods, the solutions of
TOA provide a computational “gold standard”, (Giordano et al.,
2016), to which experimentally observed behavior can be
compared.

Within this work, we exemplified the use of TOA by
considering two prototypical applications: the doubling of a
cell in a constant environment (cf. Application 2.1), as well as
the time-optimal adaptation to a nutrient shift (cf. Application
2.2). Following previous works (Molenaar et al., 2009; Giordano
et al., 2016; Yabo et al., 2022), the application of TOA was
illustrated using a coarse-grained self-replicator model. The
results illustrate the utility of TOA to generate and explore
biological hypotheses.

The premise underlying the in silico experiments of our first
application, cell doubling in a constant environment, was that
microbial cells are not necessarily precisely adapted to the given
environment, but may nonetheless have evolved a regulatory
scheme that allows them to double their intracellular
composition in minimal time. Based on this premise, the
application of TOA gives rise to several predictions, we
observe 1) complex intracellular dynamics different from
solutions obtained by iterative RBA, 2) that transient
accumulation of storage compounds reduces the predicted
doubling time, and 3) that (mis-)adaptation to a higher
nutrient availability than actually present in the environment
carries a lower evolutionary cost than (mis-)adaptation to a
lower nutrient availability.

Due to the simplicity of the coarse-grained model, we do
not necessarily expect the specific time courses obtained for
the model to be exact predictions of biological reality. In
particular, we acknowledge that the coarse-grained model
lacks further intracellular constraints that affect progress
through the cell cycle (for example, checkpoints and a
detailed representation of DNA replication and
segregation) that also impact metabolic processes.
Nonetheless, we are confident that the results reveal
several insights that reflect biological reality. Specifically,
the role of storage compounds in cellular metabolism is
difficult to explore using existing constraint-based models.
Here, the application of TOA demonstrates that, beyond the
role of storage in diurnal oscillations, cf. (Rügen et al., 2015;
Reimers et al., 2017) and as a safeguard for periods of
nutrient scarcity, storage may play an important role even
under constant environmental conditions. As shown with
TOA, intracellular dynamics and transient accumulation of
nutrients may contribute to a reduction of doubling time.
Indeed, and different from typical steady-state solutions of
current constraint-based methods, cells do exhibit
coordinated metabolic dynamics over a cell cycle
(Papagiannakis et al., 2017).

The application of TOA was further exemplified by
simulations of time-optimal cellular adaptation to a nutrient
shift. Similar to the results obtained for constant
environments, TOA demonstrates that transient accumulation
of storage can reduce the time required for adaptation–a finding
supported by experimental evidence that storage compounds,
such as glycogen, indeed provide short-term benefits in changing
environments (Sekar et al., 2020).

In particular, the rapid uptake and storage of nutrients
following an upshift in nutrient supply (as shown in Figure 7,
left column) is reminiscent of “luxury uptake” or “over-
compensation”. The latter phenomenon is well known (Powell
et al., 2009) and occurs when cells are starved and re-exposed to a
limiting nutrient, such as phosphate. “Luxury uptake” and “over-
compensation” after starvation can be exploited, for example, for
nutrient removal from wastewater (Powell et al., 2009). Our
analysis shows that such “over-compensation” or “overshoot”
phenomena are readily explained using principles of (optimal)
cellular resource allocation, and do not necessarily require
explanations that invoke competition between individuals to
rationalize rapid nutrient uptake after starvation.

We conjecture that, while the specific trajectories of the
cellular response to environmental shifts might be different
under specific conditions, for example, due to additional
constraints not present in the model, many of the principles
revealed by TOA remain valid in more elaborate models of
cellular growth transitions–and thereby provide an important
reference to identify optimal vs. suboptimal behavior. Indeed, it
was previously shown that growth transition kinetics of E. coli are
indeed suboptimal under the studied conditions (Erickson et al.,
2017)–a finding that could only be obtained by comparison to an
optimal reference solution. As shown in this work, TOA can also
be readily incorporated into a multi-objective framework (in the
sense of Pareto) that allows us to incorporate additional
objectives.

Finally, the results of TOA demonstrate that the costs of
mis-adaptation to an environment are not symmetric,
neither for cell doubling in a constant environment
(Figure 6), nor for adaptation after a nutrient shift
(Figure 8). In either case, a cell that is adapted to a higher
level of (extracellular) nutrient than available in the
environment (“optimist”) has only a minor disadvantage
compared to an already perfectly adapted cell. Vice versa,
however, cells that are adapted to a lower level of
(extracellular) nutrient than available in the environment
(“pessimist”) have a pronounced disadvantage compared to a
perfectly adapted cell. This asymmetry indicates that
adaptation to a low nutrient environment is only
advantageous if the low nutrient state persists for an
extended period of time. This asymmetry is supported by
experimental evidence. For example, it has been suggested
that some microorganisms, such as Lactococcus lactis,
preserve a large overcapacity of ribosomes and glycolytic
enzymes to be ready to rapidly respond and grow when
conditions improve (Goel et al., 2015), and thereby
implement an “optimistic strategy”.
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5 CONCLUSIONS AND OUTLOOK

Constraint-based optimization plays an important role to
elucidate and eventually predict cellular behavior. As an
extension of previous modeling frameworks, we introduced
time-optimal adaptation. TOA is motivated by the assumption
that under certain conditions it is evolutionary favorable to adapt
to a new cellular state in minimal time. In its general form, TOA
can be applied in a very broad sense and thereby extends most of
the existing constraint-based modeling frameworks.

As shown in this work, TOA allowed us to obtain insight into
several biological phenomena, such as the accumulation of
storage in constant environments and “overshoot”
accumulation of nutrients after starvation, which cannot be
readily explained using existing methods–thereby
demonstrating the utility of TOA for future analysis.

While the examples discussedwithin thiswork focused on constant
environments and simple nutrient shifts, TOA can also be applied in
time-dependent environments and can be readily extended to include
further constraints. Likewise, as shown in this work, TOA can be
included within multi-objective optimization in the sense of Pareto.

Possible further extensions include “t-max adaptation”, i.e., to
maximize, for example, survival time under nutrient starvation,
as well as more general constraints on the target state (for
example, to attain a minimal amount of a specific intermediate
in minimal time, while the amounts other cellular components
are not specified).

We are therefore confident that TOA and its possible
extensions are a valuable contribution in the context of
constraint-based modeling with manifold applications beyond
the examples discussed in this work.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

All authors contributed equally to the conceptualization of the
method, the writing and editing of the manuscript. MK
conducted the numerical experiments. RS provided
interpretations and discussion.

FUNDING

The work of MK was carried out during the tenure of an ERCIM
“Alain Bensoussan” Fellowship of the author at the Norwegian
University of Science and Technology. The work of RS is funded
by the grant STE 2062/2-1 of the German Research Foundation
(DFG). We acknowledge support by the German Research
Foundation (DFG) and the Open Access Publication Fund of
Humboldt-Universität zu Berlin.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2022.866676/
full#supplementary-material

REFERENCES

Basan, M., Honda, T., Christodoulou, D., Hörl, M., Chang, Y.-F., Leoncini, E.,
et al. (2020). A Universal Trade-Off between Growth and Lag in
Fluctuating Environments. Nature 584, 470–474. doi:10.1038/s41586-
020-2505-4

Bonnans, F., Martinon, P., and Grélard, V. (2017). BOCOP: An Open Source
Toolbox for Optimal Control.

Bordbar, A., Monk, J. M., King, Z. A., and Palsson, B. O. (2014). Constraint-based
Models Predict Metabolic and Associated Cellular Functions. Nat. Rev. Genet.
15, 107–120. doi:10.1038/nrg3643

Djema, W., Bernard, O., and Giraldi, L. (2020). Separating Two Species of
Microalgae in Photobioreactors in Minimal Time. J. Process Control 87,
120–129. doi:10.1016/j.jprocont.2020.01.003

Ehrgott, M. (2000).Multicriteria Optimization. Springer Berlin Heidelberg. doi:10.
1007/978-3-662-22199-0

Erickson, D. W., Schink, S. J., Patsalo, V., Williamson, J. R., Gerland, U., and Hwa,
T. (2017). A Global Resource Allocation Strategy Governs Growth Transition
Kinetics of Escherichia coli. Nature 551, 119–123. doi:10.1038/nature24299

Gerdts, M. (2011).Optimal Control of ODEs and DAEs. Berlin, Boston: De Gruyter.
Giordano, N., Mairet, F., Gouzé, J.-L., Geiselmann, J., and de Jong, H. (2016).

Dynamical Allocation of Cellular Resources as an Optimal Control Problem:
Novel Insights into Microbial Growth Strategies. PLoS Comput. Biol. 12 (28),
e1004802. doi:10.1371/journal.pcbi.1004802

Goel, A., Eckhardt, T. H., Puri, P., de Jong, A., Branco dos Santos, F., Giera, M.,
et al. (2015). Protein Costs Do Not Explain Evolution of Metabolic Strategies
and Regulation of Ribosomal Content: Does Protein Investment Explain an

Anaerobic Bacterial Crabtree Effect? Mol. Microbiol. 97, 77–92. doi:10.1111/
mmi.13012

Goelzer, A., Fromion, V., and Scorletti, G. (2011). Cell Design in Bacteria as a
Convex Optimization Problem. Automatica 47, 1210–1218. doi:10.1016/j.
automatica.2011.02.038

Gurobi (2021). Gurobi Optimizer Reference Manual. Tech. Rep. Beaverton, OR:
Gurobi Optimization LLC.

Hermes, H., and Lasalle, J. P. (1969). Functional Analysis and Time Optimal
Control. New York: Academic Press.

Höffner, K., Harwood, S. M., and Barton, P. I. (2012). A Reliable Simulator for
Dynamic Flux Balance Analysis. Biotechnol. Bioeng. 110, 792–802. doi:10.1002/
bit.24748

Höffner, K., Khan, K. A., and Barton, P. I. (2016). Generalized Derivatives of
Dynamic Systems with a Linear Program Embedded. Automatica 63, 198–208.
doi:10.1016/j.automatica.2015.10.026

Jeanne, G., Goelzer, A., Tebbani, S., Dumur, D., and Fromion, V. (2018).
Dynamical Resource Allocation Models for Bioreactor Optimization. IFAC-
PapersOnLine 51, 20–23. doi:10.1016/j.ifacol.2018.09.020

Klipp, E., Heinrich, R., and Holzhütter, H.-G. (2002). Prediction of Temporal Gene
Expression. Eur. J. Biochem. 269, 5406–5413. doi:10.1046/j.1432-1033.2002.
03223.x

Lerman, J. A., Hyduke, D. R., Latif, H., Portnoy, V. A., Lewis, N. E., Orth,
J. D., et al. (2012). In Silico method for Modelling Metabolism and Gene
Product Expression at Genome Scale. Nat. Commun. 3. doi:10.1038/
ncomms1928

Liu, L., and Bockmayr, A. (2020). Regulatory Dynamic Enzyme-Cost Flux Balance
Analysis: A Unifying Framework for Constraint-Based Modeling. J. Theor. Biol.
501, 110317. doi:10.1016/j.jtbi.2020.110317

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 86667615

Köbis et al. Time-Optimal Adaptation

https://www.frontiersin.org/articles/10.3389/fmolb.2022.866676/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2022.866676/full#supplementary-material
https://doi.org/10.1038/s41586-020-2505-4
https://doi.org/10.1038/s41586-020-2505-4
https://doi.org/10.1038/nrg3643
https://doi.org/10.1016/j.jprocont.2020.01.003
https://doi.org/10.1007/978-3-662-22199-0
https://doi.org/10.1007/978-3-662-22199-0
https://doi.org/10.1038/nature24299
https://doi.org/10.1371/journal.pcbi.1004802
https://doi.org/10.1111/mmi.13012
https://doi.org/10.1111/mmi.13012
https://doi.org/10.1016/j.automatica.2011.02.038
https://doi.org/10.1016/j.automatica.2011.02.038
https://doi.org/10.1002/bit.24748
https://doi.org/10.1002/bit.24748
https://doi.org/10.1016/j.automatica.2015.10.026
https://doi.org/10.1016/j.ifacol.2018.09.020
https://doi.org/10.1046/j.1432-1033.2002.03223.x
https://doi.org/10.1046/j.1432-1033.2002.03223.x
https://doi.org/10.1038/ncomms1928
https://doi.org/10.1038/ncomms1928
https://doi.org/10.1016/j.jtbi.2020.110317
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Liu, L. (2020). Unifying Metabolic Networks, Regulatory Constraints, and Resource
Allocation. Berlin, Germany: Freie Universität Berlin. Ph.D. thesis. doi:10.
17169/REFUBIUM-27061

Mahadevan, R., Edwards, J. S., and Doyle, F. J. (2002). Dynamic Flux Balance
Analysis of Diauxic Growth in Escherichia coli. Biophysical J. 83, 1331–1340.
doi:10.1016/s0006-3495(02)73903-9

Mahadevan, R., and Schilling, C. H. (2003). The Effects of Alternate Optimal
Solutions in Constraint-Based Genome-Scale Metabolic Models.Metab. Eng. 5,
264–276. doi:10.1016/j.ymben.2003.09.002

Molenaar, D., van Berlo, R., de Ridder, D., and Teusink, B. (2009). Shifts in Growth
Strategies Reflect Tradeoffs in Cellular Economics.Mol. Syst. Biol. 5, 323. doi:10.
1038/msb.2009.82

Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What Is Flux Balance Analysis?
Nat. Biotechnol. 28, 245–248. doi:10.1038/nbt.1614

Papagiannakis, A., Niebel, B., Wit, E. C., and Heinemann, M. (2017). Autonomous
Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle.Mol. Cell 65,
285–295. doi:10.1016/j.molcel.2016.11.018

Pavlov, M. Y., and Ehrenberg, M. (2013). Optimal Control of Gene Expression for
Fast Proteome Adaptation to Environmental Change. Proc. Natl. Acad. Sci.
U.S.A. 110, 20527–20532. doi:10.1073/pnas.1309356110

Powell, E. O. (1956). Growth Rate and Generation Time of Bacteria, with Special
Reference to Continuous Culture. J. General Microbiol. 15, 492–511. doi:10.
1099/00221287-15-3-492

Powell, N., Shilton, A., Chisti, Y., and Pratt, S. (2009). Towards a Luxury Uptake
Process via Microalgae - Defining the Polyphosphate Dynamics.Water Res. 43,
4207–4213. doi:10.1016/j.watres.2009.06.011

Reimers, A. M., Knoop, H., Bockmayr, A., and Steuer, R. (2017). Cellular
Trade-Offs and Optimal Resource Allocation during Cyanobacterial
Diurnal Growth. Proc. Natl. Acad. Sci. U. S. A. 114, E6457–E6465.
doi:10.1073/pnas.1617508114

Rügen, M., Bockmayr, A., and Steuer, R. (2015). Elucidating Temporal Resource
Allocation and Diurnal Dynamics in Phototrophic Metabolism Using
Conditional FBA. Sci. Rep. 5 (16), 15247. doi:10.1038/srep15247

Scott, M., and Hwa, T. (2011). Bacterial Growth Laws and Their Applications.
Curr. Opin. Biotechnol. 22, 559–565. doi:10.1016/j.copbio.2011.04.014

Segel, L. A., and Slemrod, M. (1989). The Quasi-Steady-State Assumption: A
Case Study in Perturbation. SIAM Rev. 31, 446–477. doi:10.1137/
1031091

Sekar, K., Linker, S. M., Nguyen, J., Grünhagen, A., Stocker, R., and Sauer, U.
(2020). Bacterial Glycogen Provides Short-Term Benefits in Changing
Environments. Appl. Environ. Microbiol. 86. doi:10.1128/aem.00049-20

Varma, A., and Palsson, B. O. (1994). Stoichiometric Flux Balance Models
Quantitatively Predict Growth and Metabolic By-Product Secretion in Wild-
type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724–3731. doi:10.
1128/aem.60.10.3724-3731.1994

Waldherr, S., Oyarzún, D. A., and Bockmayr, A. (2015). Dynamic Optimization of
Metabolic Networks Coupled with Gene Expression. J. Theor. Biol. 365,
469–485. doi:10.1016/j.jtbi.2014.10.035

Yabo, A. G., Caillau, J.-B., Gouzé, J.-L., de Jong, H., and Mairet, F. (2022). Dynamical
Analysis andOptimization of a Generalized ResourceAllocationModel ofMicrobial
Growth. SIAM J. Appl. Dyn. Syst. 21, 137–165. doi:10.1137/21m141097x

Yang, L., Ebrahim, A., Lloyd, C. J., Saunders, M. A., and Palsson, B. O. (2019).
DynamicME: Dynamic Simulation and Refinement of Integrated Models of
Metabolism and Protein Expression. BMC Syst. Biol. 13, 2. doi:10.1186/s12918-
018-0675-6

Yegorov, I., Mairet, F., and Gouzé, J.-L. (2018). Optimal Feedback Strategies for
Bacterial Growth with Degradation, Recycling, and Effect of Temperature.
Optim. Control Appl. Meth 39, 1084–1109. doi:10.1002/oca.2398

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Köbis, Bockmayr and Steuer. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 86667616

Köbis et al. Time-Optimal Adaptation

https://doi.org/10.17169/REFUBIUM-27061
https://doi.org/10.17169/REFUBIUM-27061
https://doi.org/10.1016/s0006-3495(02)73903-9
https://doi.org/10.1016/j.ymben.2003.09.002
https://doi.org/10.1038/msb.2009.82
https://doi.org/10.1038/msb.2009.82
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1016/j.molcel.2016.11.018
https://doi.org/10.1073/pnas.1309356110
https://doi.org/10.1099/00221287-15-3-492
https://doi.org/10.1099/00221287-15-3-492
https://doi.org/10.1016/j.watres.2009.06.011
https://doi.org/10.1073/pnas.1617508114
https://doi.org/10.1038/srep15247
https://doi.org/10.1016/j.copbio.2011.04.014
https://doi.org/10.1137/1031091
https://doi.org/10.1137/1031091
https://doi.org/10.1128/aem.00049-20
https://doi.org/10.1128/aem.60.10.3724-3731.1994
https://doi.org/10.1128/aem.60.10.3724-3731.1994
https://doi.org/10.1016/j.jtbi.2014.10.035
https://doi.org/10.1137/21m141097x
https://doi.org/10.1186/s12918-018-0675-6
https://doi.org/10.1186/s12918-018-0675-6
https://doi.org/10.1002/oca.2398
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Time-Optimal Adaptation in Metabolic Network Models
	1 Introduction
	2 Materials and Methods
	2.1 Introduction and Notation
	2.2 Constraint-Based Modeling
	2.3 Time-Optimal Adaptation: Definition and Forms
	Time-Optimal Adaptation

	2.4 Applications and Case Studies
	2.5 Numerical Solution
	2.6 Time-Optimal Adaptation Variability Analysis
	2.7 Implementation

	3 Results
	3.1 A Coarse-Grained Self-Replicator Model
	3.2 Constant Environments and RBA
	3.3 TOA in Constant Environments
	3.4 The Role of Expectation: Optimists vs. Pessimists
	3.5 Time-Optimal Adaptation at a Nutrient Shift

	4 Discussion
	5 Conclusions and Outlook
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


