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P53-Related Anticancer Activities of
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Lung Cancer

K. Laka and Z. Mbita*"

Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Polokwane, South Africa

Current lung cancer treatment strategies are ineffective, and lung cancer cases continue to
soar; thus, novel anticancer drugs and targets are needed, and medicinal plants are
promising to offer better alternatives. This study was aimed at analysing two p53 splice
variants during the potential anticancer activities of Drimia calcarata (Dc) methanol and
water extracts against different human lung cancer cell lines of varying p53 mutation status,
and these included mutant H1573 and mutant H1437 and p53-wild type (A549) cells. The
anticancer activities of the Dc extracts were assessed by establishing the cytotoxic effect
and the apoptosis-inducing capacity of these extracts, using the MTT assay and Annexin V
analysis, respectively, with the latter confirmed using fluorescence microscopy. The
molecular mechanisms induced by these extracts were further evaluated using cell
cycle analysis and RT-PCR. Both extracts demonstrated safety against noncancerous
lung MRC-5 fibroblasts and exhibited significant anticancer potency (p < 0.001) against the
H1437 (ICsp values: 62.50 pg/ml methanol extract and 125 pug/ml WE), H1573 (ICsq value:
125 pg/ml for both extracts) and A549 (ICsq value: 500 ug/ml ME). The water extract had
no effect on the viability of A549 cells. Treated H1437 cells underwent p53-dependent
apoptosis and S-phase cell cycle arrest while H1573 treated cells underwent p53-
independed apoptosis and GO/G1 cell cycle arrest through upregulation of p27 mRBNA
expression levels. The expression levels of STATT, STAT3, STATSA and STATSB genes
increased significantly (o < 0.001) following the treatment of H1573 cells with ME and WE.
Treatment of H1437 cells with ME upregulated the STATT, STAT3, STAT5A and STATSB
mRNAs. Our results indicate that the proliferative inhibitory effect of D. calcarata extracts
on A549 and H1573 cells is correlated with the suppression of Bel-2, STAT3 and STAT58B
while that is not the case in H1437 cells. Thus, our results suggest that the dysregulation of
anti-apoptotic molecules Bcl-2, STAT3, STAT5A and STAT5B in H1437 may play arole in
cancer cell survival, which may consequently contribute to the development of p53-
mutated non-small human lung cancer. Our results indicate that D. calcarata is a promising
source of anticancer agents for the treatment of p53-mutant human non-small lung cancer
cells than the p53-wild type human non-small lung cancer cells.
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D. calcarata inhibits lung cancer cells

Drimia calcarata

l

Plant extraction ™) Fractionation mss) LC-MS

!

Cell cycle

7\

Muse Cell PCR: Cell cycle
cycle assay related genes

AO/EB
staining

GRAPHICAL ABSTRACT |

- Cytotoxicity

!

Cytotoxicity
\ PCR:
Apoptosis — Apoptosis
related
Caspase 3/7
activation

Annexin and
Dead cell assay

1 INTRODUCTION

Cancer is one of the leading cause of mortality, worldwide, second
only to cardiovascular diseases (Yusuf et al., 2020; Sung et al,
2021). It is a challenge in African countries, generally, due to
limited funding available to deal with the cancer epidemic and
awareness, which should be prioritised with more possible
resources channelled towards cancer prevention and treatment
(Kuete and Efferth, 2015). Lung cancer remains the leading cause
of cancer death, with an estimated 1.8 million deaths (18%),
followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and
female breast (6.9%) cancers (Wu et al., 2019; Sung et al., 2021).
In South Africa, lung cancer is the second most common cancer
among men and the sixth most common cancer among women,
according to Cancer Association of South Africa (CANSA). There
are three basic types of lung disease. It is essential to understand
which type of cancer one has since the type of cancer subtype
impacts on the available treatment options and outlook. The lung
cancer subtypes include non-small cell lung cancer, small cell
lung cancer, and those characterised by carcinoid tumours (Jemal
et al., 2008). Worldwide, little is known about the lung cancer
subtypes mortality rates as the death certificates do not record the
subtype information (Howlader et al, 2020). In terms of
treatment, lung cancer is typically treated by surgery,
chemotherapy, and radiation. In patients with advanced
disease or relapse, surgery remains the most -effective
therapeutic option. However, new drugs are being investigated

that target specific components of tumour cells, improving
survival.

Even with technological improvement, radiation still affects, to
a certain extent, healthy tissues surrounding and adjacent to
tumours, for example the highly radiosensitive lung tissue
(Schaue et al, 2015). Lung cancer treatment is changing
significantly thanks to directed therapies. Therapies in this
category include drugs that target driver mutations, those that
inhibit immune checkpoint molecules, and those that target
presumptive important molecules in malignant growth and
survival (Hirsch et al, 2016). Cetuximab and necitumumab,
monoclonal antibodies directed against the EGFR, are among
these therapies (Thatcher et al., 2015; Watanabe et al., 2019),
along with several VEGF and VEGF receptor inhibitors. Despite
not showing the same striking levels of response as targeted
treatment for driver mutations, some of these drugs did extend
overall survival in patients with lung cancer in phase three trials
(Sandler et al., 2006; Reck et al., 2009; Reck et al., 2014).

Screenings of medicinal plants used as anticancer drugs have
providled modern medicine with effective cytotoxic
pharmaceuticals (Balunas and Kinghorn, 2005). The diversity
of the biosynthetic pathways in plants has provided a variety of
lead structures that have been used in drug development (Tejesvi
et al, 2007). Thus, in the past decade, targeting natural
compounds has been particularly successful in the field of
anticancer drug research (Ashrafizadeh et al, 2020z
Ashrafizadeh et al., 2020b; Mirzaei et al., 2021; Abadi et al,

Frontiers in Molecular Biosciences | www.frontiersin.org

June 2022 | Volume 9 | Article 876213


https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

Laka and Mbita

2022). Due to the increase in this public health problem, African
people have chosen to take alternative medicine from traditional
healers so that they can fight these diseases, because they cannot
afford Western medicine (Abdullahi, 2011). In Africa, most
medicines are from natural products, particularly, plants,
where plant barks; leaves, or roots are dissolved in boiled
water and taken orally or applied on wounds (Ozioma and
Chinwe, 2019). This shows the importance of natural products
in African countries. Even when looking at pharmaceuticals,
worldwide, most medicines are derived from plants (Mbele
et al., 2017).

It is now necessary to study molecular mechanisms of
medicinal plants and their bioactive compounds (Lee et al,
2011). The lack of selective diagnostic biomarkers and effective
therapeutic drugs has made non-small-cell lung cancer (NSCLC)
one of the deadliest diseases. Despite a great emphasis on
understanding genetic defects in NSCLC, its molecular
pathogenesis remains unclear (Shi et al., 2012).

In recent years, it has been possible to develop agents that
target specific molecular pathways in malignant cells as a result of
a better understanding of the mechanisms that drive malignancy
in non-small cell lung cancer (Zhou et al., 2020). The key driving
forces behind cancer (CSC) stem cells, including PI3K/AKT/
mTOR and JAK/STATS3, had been shown to be highly regulated
in high-CSC cancers, and clinical trials are being conducted to
identify small molecules that target these pathways
(Losuwannarak et al., 2019). Despite being a small percentage
of the total cancer cell population in lung adenocarcinomas, CSCs
from patients contributed to tumorigenesis and relapse (Gomez-
Casal et al, 2013).

JAK/STAT pathway in mammals is the principal pathway
signalling cytokines, growth factors, cell migration, and
apoptosis. Activated JAK/STAT pathway promotes cell
proliferation and differentiation, as well as migration and
apoptosis (Rawlings et al., 2004). This pathway involves two
protein families, the JAKs and the STATSs, which are activated
after tyrosine receptors are phosphorylated. Upon activation of
JAKs, phosphorylation of the tyrosine motifs in the cytoplasmic
tail of the receptor enables STAT binding (Bolli et al., 2003). In
response to growth factors and cytokines, the transcription factor
STAT3 is phosphorylated at tyrosine 705 (Tyr705), and it
functions in a wide range of cellular functions such as cell
proliferation, survival, inflammation, metabolism, and
immunity. STAT3 is constitutively activated in cancer cells,
unlike normal cells where it is strictly regulated (Khan et al,
2015; Huang et al.,, 2016). STAT3 functions as a hub for many
oncogenic pathways, so inhibiting STAT3 could lead to the
inhibition of several upstream signalling pathways at the same
time (Lee et al., 2019). Despite the existence of numerous STAT3
inhibitors, none of them have achieved FDA approval for use in
clinical trials for lung cancer, indicating that inhibiting STAT3
alone may not be sufficient to eradicate cancer cells (Huang et al.,
2016). Therefore, it is imperative to identify novel therapeutic
agents that can suppress STAT3 signalling and trigger apoptosis
simultaneously through different mechanisms (Khan et al., 2020).
In 50%-70% of patients with NSCLC, the PI3K pathway is active
based on the AKT phosphorylation (Tsurutani et al., 2006).

D. calcarata inhibits lung cancer cells

In lung cancer, abnormal activation of PI3K/AKT signalling is
a common occurrence. The tumour suppressor phosphatase,
(PTEN), was the first to demonstrate the importance of PI3K/
Akt pathway in cancer (Li et al., 1997). PTEN dephosphorylates
the 3’-position on the inositol ring, which results in the
elimination of the second messenger, PIP3, which then
terminates signaling through this pathway (Li et al, 1997;
Macehama and Dixon, 1998). This pathway’s activation was
clearly established as one of the key pathways underpinning
tumorigenesis where mutations in the PIK3CA gene, encoding
the p110a PI3K catalytic subunit (Samuels et al., 2004), which
resulted in constitutive activation of this pathway (Samuels et al.,
2005). In non-small lung cancer cells, the overexpression of
pl10a was significantly associated with AKT activation. A
study using a lung cancer cell line, NCI-H460, with a PI3K
allele (NCI-H460) had their p110a expression manipulated,
both in vitro and in vivo successfully, consequently, decreasing
proliferation of non-small lung cancer cells (Scrima et al., 2012).
Through the inhibition of PI3K/Akt/mTOR signalling pathways
and activation of JNK and p38 MAPK signalling pathways,
platycodin-D induced autophagy in NCI-H460 and A549 cells
(Zhao et al., 2015).

Previous efforts to determine whether or not the transcription
factor and tumour suppressor protein p53 is required for DNA
damage-induced apoptosis in human cancer cells produced
contradictory conclusions (Jaiswal et al, 2020). Some studies
concluded that p53 maintains pluripotency, and then promotes
differentiation in response to DNA damage or developmental
signals. Some concluded that pluripotent embryonic stem cells
require p53 for apoptosis (Qin et al., 2007; He et al., 2016a); others
concluded they do not. For example, in one study, doxorubicin
(Adriamycin) did not induce apoptosis in p53—/— pluripotent
embryonic stem cells, whereas in another, Adriamycin induced
apoptosis in >90% of p53—/— pluripotent embryonic stem cells
(Aladjem et al., 1998; Prost et al, 1998). These reports
unequivocally demonstrated that the multiple roles of p53 in
cell cycle regulation and apoptosis are first acquired during
pluripotent stem cell differentiation.

P53 also plays a major role in the response to many anticancer
therapeutics, particularly those that cause DNA damage (Aubrey
etal,, 2018). The p53 expression and function might be associated
with the suppressive effect of most medicinal plants on cell
growth and proliferation of cancer cells. P53 knockout mice
were completely resistant to apoptosis induced by y-radiation
and treatment with chemotherapeutic drugs that induced DNA
damage (e.g., etoposide, cyclophosphamide, cisplatin) (Strasser
et al,, 1995; Aubrey et al, 2018). P53 is the most commonly
mutated tumour-suppressor gene in human cancers (Bykov et al.,
2018; Sabapathy and Lane, 2018). Over 50% of human cancers
overexpress mutant forms of p53. A growing number of studies
suggests that the nature of a p53 mutation in a cell can impact
upon cellular properties, clinical responses to therapy and
prognosis of a tumour (Canale et al., 2017; Labbé et al., 2017).

It remains unclear how p53 handles the different signals to
decide the appropriate cell fate in response to stress, and how
these responses are implicated in tumorigenesis and cancer
progression. They can also be associated with response to
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treatment, depending on the cell context. The human p53 gene
contains two promoters, multiple exons and polyadenylation
sites, thus, it is transcribed into multiple variants (Bourdon
et al, 2005). The analysis of the expression of p53 isoforms
and p53 mutation status may help to define different subtypes
within a particular cancer type, which would have different
responses to treatment. Thus, the understanding of the
regulation of p53 transcripts expression and their biological
activities in relation to the cellular context would constitute an
important step toward the improvement of the diagnostic,
prognostic, and predictive values of p53 in cancer treatment
(Bourdon et al., 2014).

Depending on the nature of the genetic alteration, p53 induces
either cell growth arrest or apoptosis (Jovanovic et al., 2019; Mijit
et al., 2020). Different p53 isoforms play an important role in
regulating cell fate in response to different stimuli in normal cells
by differentially regulating gene expression. In cancer cells,
abnormal expression of p53 isoforms contributes actively to
cancer formation and progression, regardless of p53 mutation
status. However, clinical studies failed to establish p53 mutation
status as a clear predictive or prognostic factor of cancer
progression and treatment. Kosaka et al. (2009) reported that
P53 gene mutations were not independently associated with the
prognosis for patients with surgically treated lung
adenocarcinoma. The recent discovery of p53 isoforms that
can differentially regulate cell cycle arrest and apoptosis
suggests that their expression, rather than p53 mutations,
could be more relevant in cancer, and can be targeted as
prognostic biomarkers. Nevertheless, uncovering of p53
isoforms has opened new perspectives in the cancer research
field. This study was aimed at analysing two p53 splice variants
during the potential anticancer activities of Drimia calcarata
methanol and water extracts against different human lung
cancer cell lines of varying p53 mutation status, and these
included p53-mutant H1573 and p53-mutant H1437 and p53-
wild type A549 cells.

2 METHODS AND MATERIALS

2.1 Plant Extracts Preparation

Drimia calcarata bulbs were harvested from the Phalakwane
village, Ga-Mphahlele in the Limpopo province, South Africa.
The bulbs were air-dried and pulverized into powder using a
laboratory grinder. Powdered plant material was thoroughly
extracted using methanol and water (1:10 w/v), following a
protocol previously reported by (Eloff, 1998). Following
extraction, the samples were air-dried and the dried plant
extracts were reconstituted in acetone for phytochemical
analysis and dimethylsulphoxide (DMSO) (Sarchem, RSA) for
all the cell culture-based assays.

2.3 Cell Culture and Cell Viability

Cell culture and MTT assay were performed following a method
that has been previously reported (Laka et al., 2019). Different
media were used and these included the Roswell Park Memorial
Institute 1,640 (RPMI-1640) for A549, H1573 and H1437, Eagle’s

D. calcarata inhibits lung cancer cells

Minimum Essential Medium (EMEM) (Hyclone, United States)
for the MRC-5 while Dulbecco’s Modified Eagle Medium
(DMEM) (Hyclone, United States) was used for the HEK-293
cells. All media contained Foetal Bovine Serum (10%) (Hyclone,
United States) and a mixture of penicillin-streptomycins (1%)
(Biowest, United States). The cell lines were kept in a 5% CO,
chamber at 37°C. The cytotoxicity of the different plant extracts
was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay. Three cell lines;
A549 (lung carcinoma cells, CCL-185™), H1573 (lung
adenocarcinoma, CRL-5802™"), H1437 (lung adenocarcinoma,
CRL-5872™) were used. Initially, the cells were seeded at a
concentration of 1 x 10° cells/well in 96-well culture plate
overnight and treated with different concentrations of each
extract, solvent controls (0.25% DMSO, 0.25% H,0) and
positive control (50 uM curcumin). Following treatment, the
cells in each well were subjected to 5mg/ml MTT reagent
(10 pul) (ThermoFischer Scientific, United States) and incubate
in the CO; incubator for 3 h. After incubation, the formed crystals
were dissolved by adding 100 pl DMSO and placed in the dark for
an hour at 25°C. Thereafter, the absorbance readings were
measured using microtitre  plate reader (Promega,
United States) at 560 nm. The cell viability was analysed using
the formula (Sung et al., 2021) as previously reported (Makgoo
et al, 2019).

sample absorbance (560 nm)

Cell viability (%) = X100 (1)

untreated absorbance (560 nm)

2.4 Morphological Examination

(Fluorescence Microscopy Imaging)

The effect of the extracts on the morphological features of lung
cancer A549, H1573 and H1437 cells was determined using
fluorescence microscopy as describe previously (Ezhilarasan
et al,, 2017). Cells were seeded at an initial concentration of
1 x 10° in 24 well culture plates and exposed to solvent controls
(0.25% DMSO, 0.25% H,0), positive control (50 uM curcumin)
and ICsps of ME (62.50 pug/ml) and WE (125 pug/ml), for 24 h.
Cells were fixed for 10 min with 3.7% paraformaldehyde, followed
by staining with AO/EB (1 pg/ml). After washing with one X PBS,
morphological changes were observed under the Eclipse Ti-U
fluorescence microscope (Nikon Instruments Inc., United States)
and captured using DSRI-1 camera (Nikon Instruments Inc.,
United States).

2.5 Annexin V and Dead Cell Assay

The apoptosis analysis was carried out using the protocol
previously described by Acikgoz et al. (2021). Apoptosis was
induced by seeding the cells at 1 x 10° cells/well, overnight, after
which incubate them in the presence of D. calcarata extracts
using the ICs, values for 24 h. The Muse  Annexin V and Dead
Cell reagent (Merck-Millipore, Germany) was used to stain the
cells. The cells were then %laced in the dark for 20 min at room
temperature. The Muse Cell Analyser (Merck-Millipore,
Germany) was used to analyse the samples.
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TABLE 1 | The primer sequences of apoptosis related genes, cell cycle related genes and STAT genes.

Gene Forward primers Reverse primer Accession number
Bcl-2 5'-GCACCGGGCATCTTCTCCTC-3' 5'-CCGAGATGTCCAGCCAGCTG-3’ NM_000,657.3
pb3 5'-GTTGCCCAGGCTGGAGTGGAG-3' 5'-GGCTGAGACAGGTGGATCGC-3' NM_000,546.6
Bax 5'-GGGTGGTTGGGTGAGACTC-3’ 5'-AGACACGTAAGGAAACGCATTA-3’ NM_001,291,429.2
STAT1 5'-GCCCCGATGGTCTCATTCCG-3' 5'-GTCCTTCAACAGGGCACGCT-3' NM_001,384,880.1
STAT3 5'-TGCCTGCGGCATCCTTCTGC-3' 5'-ACAGGCGTGAGCCACCATGC-3' NM_139,276.3
STAT5B 5'-GGATGGGTGCATCGGGGAAG-3' 5'-TCTCAGAGGCAGGTGCTGGT-3' NM_012,448.4
STAT5A 5'-AGAAGCACCACAAGCCCCAC-3' 5'-GTGTTTCCTGACCGCCCCAA-3' NM_001,288,718.2
CLAT 5'-GCACTGCAGCAACCCCAAGAG-3' 5'-GAGCTGCAGTTTCCCTCTCAG-3’ NM_003,914.4
CLB1 5'-GTGCCAGTGCCAGTGTCTGAG-3' 5'-TCATGTTTCCAGTGCTTCCCG-3' NM_001,354,844.2
p21 5'-GACCTGTCACTGTCTTGTAC-3' 5'-GGTAGAAATCTGTCATGCTGG-3' NM_000,389.5
CDC2 5'-GGTTCCTAGTACTGCAATTCG-3' 5'-TTTGCCAGAAATTCGTTTGG-3’ NM_033,379.5
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concentrations of (D) calcarata extract using Muse® Count and Viability assay.

FIGURE 1 | Cytotoxic effect of D. calcarata extracts on noncancerous lung MRC-5 fibroblasts (A), lung cancer cells, p53-wild type A549 (B), p53-mutated
H1573 (C) and p53-mutated H1437 (D). No significant difference on the cell viability was observed after treatment of MRC-5. The water extract (WE) significantly (*p
0.01) decreased the viability of A549 cells. Both WE and ME significantly (**p < 0.001) reduced the cell viability of H1573 and H1437 cells. Cytotoxicity of selected

4

< Extracts (ng/mL)
&
Concentration

2.6 Cell Cycle Analysis Assay

The cell cycle analysis was carried out using the protocol
previously described by Kwak et al. (2021). Cell culture flasks
(25 cm) were used to grow cells overnight. Following culturing,
cells were treated with solvent controls, positive control and ICsgs
of D. calcarata extracts for 24 h. The cells were pelleted by
centrifugation and fixed for 3 h in 70% ethz(i@nol at —20°C. After
fixation, the cells were stained with the Muse Cell Cycle Reagent

(Merck—Méllipore, Germany) and placed in the dark for 30 min.
The Muse Cell Analyser was used to analyse the samples.

2.7 Reverse Transcription-Polymerase

Cl@!ain Reaction Components
ZR RNA MiniPrep Kit (Zymo Research, United States) was used
for total RNA extraction and manufacturer’s instructions were
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FIGURE 2 | The cytotoxicity data of selected D. calcarata concentrations on MRC-5 (A,E), p53-wild type A549 (B,F), p53-mutant H1573 (C,G) and p53-mutant
H1437 (D,H) cells. The difference was found to be statistically insignificant (ns) after the treatment of A549 with WE. The difference was found to be statistically significant
(*p < 0.01 and **p < 0.001) after treatment of H1573 and H1437 with WE and ME. Comparing with the untreated control.
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followed. The complementary deoxyribonucleic acid (cDNA) was
synthesised using a Promega AMV II Reverse Transcription
System (United States). The EmeraldAmp® GT PCR Kit
(Takara Bio, United States) employed for the
amplification of apoptosis-related genes, cell cycle-related
genes and STAT genes using the primer sets (Table 1).
Amplification was done using T100  Thermal Cycler (BioRad,
United States). The PCR products were mixed with the novel
juice (Genedirex, Taiwan). Samples were visualised using 2%
agarose gels, which were viewed using D-DiGit Gel Scanner
(LICOR, United States). The band densities from three

was

independent experiments were measured and analysed using
Image] software [National Institutes of Health (NIH),
United States].

2.8 Fractionation

The bulb methanol extract and water extract (2g) were
chromatographed on a glass column (30 x 2 cm®) packed with
silica gel (60 g) dissolved in 50:50 acetone and hexane. Elution
was carried out using 50:50 (Acetone: Hexane), 100% Acetone,
50:50 (Acetone: Methanol) for the methanol extract and 50:50
(Acetone: Hexane), 100% Acetone, 50:50 (Acetone: Methanol)
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FIGURE 3 | Nuclear morphology of p53-wild type A549 cells after AO/EB staining. D. calcarata extracts induced typical apoptotic changes in cultured A549 cells:

(A) untreated cells, (B) 0.25% DMSO, (C) 0.25% H,0, (D)-50 puM Curcumin, (E)-500 pg/ml ME, (F)-500 WE. The samples were analysed using an Eclipse Ti-U
fluorescence microscope (Nickon Instruments Inc. United States) and images were captured at x20 magnification. The red arrows indicate intact nuclei, while yellow
arrows show cells undergoing early apoptosis and blue arrows point to cells displaying late apoptosis.

and 7:1:2 (Butanol: Acetic acid: Distilled water). The solvents
were removed under a stream of cold air at room temperature.
Once the solvents were evaporated, the samples were dissolved in
DMSO/water for cell culture experiments and Liquid
Chromatography-Mass Spectrometry (LC-MS) Analysis.

2.9 Liquid Chromatography-Mass
Spectrometry Analysis

Fraction samples (1 mg/ml) were prepared. Fifty percent
methanol in water containing 1% formic acid was used to
prepare the samples. The LC-MS analysis was done as
previously described (Stander et al, 2017). Calibration,
calculation and the rest of the settings were done using
polyalanine as previously reported (Rautenbach et al., 2017).

2.10 Statistical Significance

GraphPad Prism Version 6.0 was employed for graphical data analysis
presented as mean + standard error of mean (SEM). The one-way
ANOVA Tukey Kramer Multiple Comparison Test was used to verify
the statistical significance and the asterisks (*) (**) and (***) were used
to indicate p < 0.05, p < 0.01 and p < 0.001, respectively.

3 RESULTS

3.1 In vitro Inhibition of Lung Cancer Cells
Growth by D. calcarata Bulb Extracts

The D. calcarata extracts showed no significant activity against
the normal lung cells MRC-5 (Figure 1A; Supplementary Table
S1). The water extract (WE) showed the lowest cytotoxicity
activity with no 50% inhibitory concentration (ICsy) value
while methanol extract (ME) had the highest activity with ICs
of 500 pg/ml (52.948 + 1.569) against the p53-wild type A549 cells
(Figure 1B; Supplementary Table S2). Both extracts showed the
highest activity against the p53-mutant H1573 (Figure 1C;
Supplementary Table S3) and p53-mutant H1437 (Figure 1D;
Supplementary Table S4) adenocarcinoma lung cancer cells,
which showed ICs, values of 125 pg/ml ME (49.000 + 1.807)
and WE (47.667 + 2.348) for H1573 and 62.50 ug/ml ME
(52.667 + 2.108) and 125pug/ml WE (56.167 + 1.470) for
H1437 cells. The p53-wild type A549 looks less sensitive
towards the two extracts as compared to p53-mutant cell lines,
H1573 and H1437.

The ICs, values obtained from the MTT assay were used to
verify the cell viability reduction by the D. calcarata extracts
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arrows depict early apoptotic cells.
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FIGURE 4 | Nuclear morphology of p53-mutant H1573 cells after AO/EB staining. D. calcarata extracts induce morphological changes in cultured cells: (A)—
untreated cells, (B) 0.25% DMSO, (C) 0.25% H.0, (D) 50 pM Curcumin, (E) 125 pg/ml ME, (F) 125 pg/ml WE. The samples were analysed using an Eclipse Ti-U
fluorescence microscope (Nickon Instruments Inc. United States) and images were captured at x20 magnification. The red arrows indicate intact nuclei, while yellow

against the normal lung cells and lung cancer cells, using the
MUSE Count and Viability Assay. Methanol extract exhibited
pronounced cytotoxic effects in all the cell lines tested: p53-
wild type A549 (Figures 2B,F), p53-mutant H1573 (Figures
2C,G) and p53-mutant H1437 (Figures 2D,H) (51.550 +
1.267, 52.733 + 0.203, and 32.295 * 1.661, respectively).
Water extract showed no significant effect on the A549 cell
viability (80.000 + 5.056), whereas it showed best activity
against the H1573 cells (59.700 + 2.488) and H1437 cells
(54.824 £ 1.176). The cytotoxic results showing data from
three independent experiments are summarised in
Supplementary Tables S5-S8.

3.2 Acridine Orange/Ethidium Bromide

Staining Showed Apoptosis Induction

Following AO/EB staining (Figures 3A-F), untreated control
cells (A) and 0.25% DMSO treated cells (B) and 0.25% H,O (C)
displayed intact nuclei (red arrows). P53-wild type lung cancer
A549 cells that were exposed to curcumin (D) and D. calcarata
extracts (E-F) displayed a large number of cells undergoing early
apoptosis, which fluoresced green/yellow (yellow arrows) and
cells showing late stage of apoptosis, which showed uneven
orange fluorescence at their periphery (blue arrows). The

number of cells
untreated control.

Figures 4A-F indicate the morphological changes of p53-
mutant H1573 cancer cells. Untreated control cells (A) and
0.25% DMSO (B) and 0.25% H,O-treated (C) cells displayed
intact nuclei (red arrows), while lung cancer cells exposed to
curcumin (D) and D. calcarata extracts (E-F) contained many
cells going through early apoptosis, which fluoresced green/
yellow (yellow arrows) and reduced cell number. Figures 5A-F
indicate the morphological changes of p53-mutant H1437
cancer cells. Following AO/EB staining, untreated control
cells (A) and 0.25% DMSO (B) and 0.25% H,O treated (C)
cells displayed intact nuclei (red arrows), while lung cancer
cells exposed to curcumin (D) and D. calcarata extracts (E-F)
contained many cells demonstrating early apoptosis, which
fluoresced green/yellow (yellow arrows) and reduced cell
numbers.

slighly decreased comparing with the

3.3 Apoptosis Analysis Using Annexin V

To identify the type of cell death induced by the D. calcarata
extracts, especially, specifically, whether the extracts
induced necrosis or apoptosis in lung cancer cells, with
the MUSE Annexin V and Cell Dead Kit was used.
Figure 6 shows the analysis of live cells, cells at the early
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arrows show cells going through early apoptosis.

FIGURE 5 | Nuclear morphology of p53-mutant H1437 cells after AO/EB staining. D. calcarata extracts induced typical apoptotic changes in cultured cells: (A)
untreated cells, (B)-0.25% DMSO, (C) 0.25% H,0, (D)-50 uM Curcumin, (E)—62.50 ug/ml ME, (F)— 125 pg/ml WE. The samples were analysed using an Eclipse Ti-U
fluorescence microscope (Nickon Instruments Inc. United States) and images were captured at x20 magnification. The red arrows indicate intact nuclei, while yellow

stages of apoptosis, those at the late stages of apoptosis and
necrotic cells. As showed in Figure 6, the number of live
cells in response to different extracts can be used as an index
of apoptosis efficiency when compared to control. All
extracts indicated minute significant reduction of live
cells in A549 (Figures 6A-C) cells and significantly (p <
0.001) decreased the live cells of H1573 (52.393 + 1.83 ME
and 39.700 £ 073 WE) (Figures 6D-F; Supplementary
Figure S7; Supplementary Table S10) and H1437
(59.270 + 2.564 ME and 62.114 + 0.974 WE) (Figures
6G-I; Supplementary Figure S8; Supplementary Table
S11) in comparison with the untreated control cells,
which showed a non-significant change of live cells. D.
calcarata ME and WE induced both early and late
apoptosis in H1573, H1437 and A549 lung cancer cells.
Both extracts induced more early apoptosis in all three cells,
with H1573 cells exhibiting more apoptosis than H1437
cells, with A549 demonstrating the least. In addition, both
extracts showed a significant increase of dead cells in A549
cells than the untreated control cells; however, the p53-wild
type A549 cells were less sensitive compared to the other two
p53-mutant cell lines.

3.4 Expression Analysis of
Apoptosis-Related Genes

To investigate the mechanism of apoptosis induced by the D.
calcarata extracts after 24 h incubation of lung cancer cells, RT-
PCR was used to evaluate the expression of several apoptosis
genes, including p53, Bcl-2 and Bax for evaluation of apoptotic
cell death mechanism. Results in Figures 7A,B show that ME
slightly decreased the antiapoptotic Bcl-2 and highly decreased
the expression of both p53 variants, 1 and 2 in p53-wild type A549
cells. There was no expression of the pro-apoptotic gene, Bax in
both the untreated and treated p53-wild type A549 cells.
Following treatment of p53-mutant H1573, the D. calcarata
extracts had no significant effect on the mRNA levels of p53
variants. Figure 7E shows that there was a significant (p < 0.001)
decrease in the level of Bcl-2 expression when compared with the
untreated control of A549 cells. The mRNA expression level of
P53 variant one was not affected by ME while, WE and curcumin
significantly increased the p53 variant 1 (p < 0.001) in p53-mutant
H1437 cells (Figure 7F). Both extracts and curcumin significantly
(p < 0.001) upregulated the mRNA expression of Bcl-2 in H1437
cells compared with the untreated control (Figure 7I). The
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FIGURE 6 | Apoptosis evaluation in p53-wild type A549 (A-C), p53-mutant H1573 (D-F) and p53-mutant H1437 (G-1) cells after 24 h treatment. In (A-D), solvent
controls had no significant (ns) effects on all the lung cancer celllines. All D. calcarata extracts and positive control agent significantly (o < 0.001) induced apoptosis in
lung cancer cells comparing with the untreated control.

methanol extract and curcumin significantly

(p <0.05and p <

0.001, respectively) increased p53 variant 2. On the contrast, WE
significantly (p < 0.001) decreased the mRNA expression of p53
variant 2 (Figure 7J). The results are summarised in

Supplementary Table S12-S14 showing
independent experiments.

data from three

3.5 Cell Cycle Analysis

The cell cycle was assessed using a PI uptake analysis method
using Muse” Cell Cycle Kit. Figures 8A-C, have both extracts had
no significant effect on the cell cycle progression of p53-wild type
A549 cells. There was a significant (p < 0.001) increase in the
population of p53-mutant H1573 cells at the GO/G1 phase. In the
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untreated control, the mean percentage of GO/G1 cells was
36.100 + 2.473, while in ME-treated cells, it was 59.100 *
1.264 and in WE-treated cells, it was 55.667 + 2.07 and a
significant decrease (p < 0.001) in the population of H1573
cells at the G2/M phase following treatment with ME and WE
as (32.150 + 1.578 and 36.200 + 2.728) compared to the untreated
control cells (Figures 8D-F; Supplementary Figure S10;
Supplementary Table S16). Interestingly, there was a
significant increase (p < 0.001) in the population of H1437
cells at the S phase, with the untreated control having the
least, 14.133 + 0.899, followed by WE 39.233 + 1.936 and ME
with the highest 48.800 + 0.723. A significant decrease (p < 0.001)
in the population of p53-mutant H1437 cells at the GO/G1 was
observed following treatment with both extracts (26.667 + 1.235
and 29.567 + 0.984) (Figures 8G-I; Supplementary Figure S11;
Supplementary Table S17).

Expression analysis of Cell cycle-related genes were analysed
to determine the effect of D. calcarata methanol and water
extracts on cell cycle progression of human non-small lung
cancer cells. The p21 was significantly (p < 0.001) higher in
ME-treated p53-wild type A549 cells compared to the untreated

control (Figure 9A). The expressions of CLB1 and CDC2 were
significantly upregulated in ME-treated A549 cells compared to
the untreated control (Figures 9B,C, respectively). Treatment of
p53-mutant H1573 with D. calcarata extracts upregulated the
mRNA expression of p21I, but in contrast, downregulated CDC2
(Figures 9F,H). Differential effect of two extracts was observed
on the expression of CLB1, ME downregulated CLBI expression
whereas WE increased its expression (Figure 9G). The mRNA
expression levels of p21 (p < 0.001), CLBI (p < 0.05 and p < 0.001)
and CDC2 (p < 0.001) in the p53-mutant H1437 cells were
significantly upregulated after treatment with both extracts
(Figures 9K-M). Figures 9E,],P show the PCR band products.
The results are summarised in Supplementary Tables S18-S20
showing data from three independent experiments.

3.6 Regulation of STATS in Lung Cancer

Cells

The potential signalling factors correlated with the change in cell
viability and function, after treatment, the mRNA expression of
STATI, STAT3, STAT5A and STAT5B were assessed using PCR.
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FIGURE 7 | (Continued).

The results in Figures 10A-F show that ME downregulated the
expression of STATI, STAT3 and STAT5A, while STAT5B was
upregulated in p53-wild type A549 cells (p < 0.001). Figures
10G-L, treatment of the p53-mutant HI573 cells led to
downregulation of STATI (p < 0.05 and p < 0.001), STAT3 (p <
0.05 and p < 0.001), STAT5A (p < 0.001) and STAT5B (p < 0.001),
respectively. Interestingly, treatment of the H1437 with both extracts
resulted in the upregulation of STATI, STAT3 and STAT5A (Figures
10M-0,Q, p < 0.001, respectively). However, treatment of the p53-
mutant H1437 with ME had no significant effect on the expression of
STAT5B, while ME upregulated STAT5B (Figure 10P, p < 0.001). The
results are summarised in Supplementary Tables $21-S23 showing
data from three independent experiments.

3.7 Chemical Composition of D. calcarata
Fractions by Liquid Chromatography Mass
Spectrometry

Looking at Table 2, all the fractions contain the compound
psoralen (M-H formula mass: 187.09). Water fractions, 3 and

4, share an unknown compound (M-H formula mass:
230.1216), which is not found in the methanol fraction 3.
The methanol fractions 1 and 2 and water fractions 1 and 2,
only share the compound psoralen (M-H formula mass:
187.09) that is found in all the fractions (Table 3).
Furthermore, cardiac glycoside found in abundance in
Drimia species know as Scillaren A M-H formula mass:
693.6864, Chemical formula: C3;4Hs,0;3, was present in
methanol fraction 3 only. UV chromatograms of the
fractions from the LC/MS system are
Supplementary Figure S12.

shown in

3.8 The in vitro Cytotoxicity of D. calcarata
Fractions Against A549 Cells

3.8.1 Water Fractions

The results in Figures 11A,B, water fractions 2 and 3 showed
safety against the human embryonic kidney HEK-293 cells
while fraction 1 showed safety after exposure to
15.63-62.50 pg/ml and fraction 4 showed safety following
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FIGURE 7 | Analysis PCR band intensities analysis of apoptotic genes in p53-wild type A549 [(A)—Bcl-2, (B) p53 variants, (C) GAPDH and (D) PCR gels], p53-
mutant H1573 [(E)-Bcl-2, (F)-p53 variants, (G)-GAPDH and (H)-PCR gels] and p53-mutant H1437 [(I)-Bcl-2, (J)-p53 variants, (K)-GAPDH and (L)-PCR gels] cells.
A549 (D) Lane 1: 100/1,000 bp Ladder, Lane 2: untreated, Lane 3: 0.25% DMSO, Lane 4: 0.25% H,0, Lane 5: 500 pg/mI ME, Lane 6: 50 pM curcumin, Lane 7: HEK-
293 cells and Lane 8: blank. H1573 (H) Lane 1: 100/1,000 bp DNA Ladder, Lane 2: untreated, Lane 3: 0.25% DMSO, Lane 4: 0.25% H,0O, Lane 5: 125 pg/mI ME,
Lane 6: 125 pg/ml WE, Lane 7: 50 uM curcumin, Lane 8: HEK-293 cells and Lane 9: blank. GAPDH was used as a loading control. H1437 (L) Lane 1: 100/1,000 bp DNA
Ladder, Lane 2: untreated, Lane 3: 0.25% DMSO, Lane 4: 0.25% H,0, Lane 5: 62.50 pg/mIME, Lane 6: 125 pg/mlWE, Lane 7: 50 uM curcumin, Lane 8: HEK-293 cells
and Lane 9: blank. GAPDH was used as a loading control.

treatment with concentrations 15.63-125 ug/ml, higher
concentrations exhibited cytotoxic effects on the HEK-293
cells. An in vitro cytotoxicity screening of the D. calcarata
fractions indicated high cytotoxicity effect on the lung
cancer cell line (A549), with the fractions 2, 3, and 4
showing the highest toxicity than fraction 1 (Figures
11C,D). The results are summarised in Supplementary
Table S24, S25.

3.8.2 Methanol Fractions

Results obtained by MTT assay revealed that methanol
fraction one did not exhibit a significant effect against
HEK-293 following treatment with 15.63-500 pg/ml
concentrations of fraction 1. On the other hand, fraction

two and three resulted in the cell viability was above 80%
following treatment with concentration 15.63-31.25 ug/ml
and 15.63-62.50 ug/ml, respectively (Figure 12A). The
methanol fractions 1, 2 and 3 exhibited cytotoxicity against
and A549 cells, with fraction 1 exhibiting high toxicity than
fractions 2 and 3 (Figure 12B). The results are summarised in
Supplementary Table S26, S27.

4 DISCUSSION

Over 27 million people in South Africa rely on traditional
medicine for their health needs (Street et al., 2008). There is
poor documentation on the use of South African plants for cancer
treatment; however, they have been exploited throughout the
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FIGURE 8| The percentage of p53-wild type A549 (A-C), p53-mutant H1573 (D-F) and p53-mutant H1437 (G-) cells in the GO/G1, S and G2/M cell cycle phases
after 24 h treatment. D. calcarata extracts had no effect on the cell cycle progression of A549, promoted GO/G1 cell cycle arrest of H157 (**p < 0.001) and S-phase cell
cycle arrest of H1437 (“*p < 0.001) comparing with the untreated control.

world for the development of new and effective anticancer agents
(Twilley et al., 2020). Currently, there is no research on the
anticancer activities of D. calcarata extracts on lung cancer cells.
Three human non-small-cell lung carcinoma (NSCLC) cell lines
(p53-wild type A549, p53-mutant H1573 and p53-mutant H1437)
were used in this study. The data presented in this study
demonstrated that methanol extract (ME) exhibited cytotoxic
effect against all the lung cancer cell lines, regardless of their p53
statuses. The methanol (ME) extract was more active against p53-
mutant lung cancer cells (H1573 and H1437) compared to the
p53-wild type A549 cells, which exhibited an ICs, value of 500 pg/
ml, compared to 125 pg/ml for both p53-mutant lung cancer cells.
The Water extract (WE) was also highly effective against the
H1573 and H14347, exhibiting ICs, values of 125 and 250 pg/ml,
respectively. This is the first time extracts from Drimia calcarata

species have been tested against lung cancer cells of varying p53
mutation statuses. However, Drimia maritima bulb extract had
been previously reported to demonstrate higher cytotoxicity and
apoptotic activity compared to the leaves extract on lung A549
cancer cells (Bozcuk et al., 2011).

During apoptosis, a series of modifications, such as chromatin
condensation, is generally exhibited by apoptotic cells. To observe
apoptotic body formation and nuclear changes that signify
apoptosis, A549, H1573 and H1437 cells treated with D.
calcarata 1Cs, values for 24h were double stained with
acridine orange/ethidium bromide. Previously, Ciniglia et al.
(2010) indicated that AO/EB double staining assay can be
recommended as a reliable and rapid assay to detect the
apoptotic effect-of anticancer compounds or general cell death,
since it allows distinction among the viable, early, or late
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FIGURE 9 | PCR analysis of cell cycle related genes in p53-wild type A549 [(A)-p21, (B)-CLB1, (C)-CDC2, (D)-GAPDH and (E)-PCR gels], p53-mutant H1573 [(F)-
p21, (G)-CLBT1, (H)-CDC2, (I)-GAPDH and (J)-PCR gels] and p53-mutant H1437 [(K)-p217, (L)-CLB1, (M)-CDC2, (N)-GAPDH and (0)-PCR gels] cells. A549 (E) Lane
1: 100/1,000 bp Ladder, Lane 2: untreated, Lane 3: 0.25% DMSO, Lane 4: 0.25% H,0, Lane 5: 500 pg/ml ME, Lane 6: 50 pM curcumin, Lane 7: HEK-293 cells and
Lane 8: blank. H1573 (J) Lane 1: 100/1,000 bp DNA Ladder, Lane 2: untreated, Lane 3: 0.25% DMSO, Lane 4: 0.25% H,0, Lane 5: 125 pg/ml ME, Lane 6:
125 pug/ml WE, Lane 7: 50 uM curcumin, Lane 8: HEK-293 cells and Lane 9: blank. GAPDH was used as a loading control. H1437 (P) Lane 1: 100/1,000 bp DNA

Ladder, Lane 2: untreated, Lane 3: 0.25% DMSQO, Lane 4: 0.25% H»0, Lane 5: 62.50 pg/mI ME, Lane 6: 125 pg/mlWE, Lane 7: 50 uM curcumin, Lane 8: HEK-293 cells
and Lane 9: blank. GAPDH was used as a loading control.
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FIGURE 10 | PCR analysis of STATs in p53-wild type A549 [(A)-STATT, (B)-STAT3, (C)-STAT5A, (D)-STAT5B, (E)-GAPDH and (F)-PCR gels], p53-mutant H1573
[(G)-STATT, (H)-STAT3, (I)-STAT5A, (J)-STAT5B, (K)-GAPDH and (L)-PCR gels] and p53-mutant H1437 [(M)-STATT, (N)-STAT3, (0)-STAT5A, (P)-STAT5B, (Q)-
GAPDH and (R)-PCR gels] cells. A549 (F) Lane 1: 100/1,000 bp Ladder, Lane 2: untreated, Lane 3: 0.25% DMSO, Lane 4: 0.25% H20, Lane 5: 500 pg/ml ME, Lane 6:
50 uM curcumin, Lane 7: HEK-293 cells and Lane 8: blank. H1573 (L) Lane 1: 100/1,000 bp DNA Ladder, Lane 2: untreated, Lane 3: 0.25% DMSO, Lane 4:
0.25% H,0, Lane 5: 125 pg/ml ME, Lane 6: 125 pg/ml WE, Lane 7: 50 pM curcumin, Lane 8: HEK-293 cells and Lane 9: blank. GAPDH was used as a loading control.
H1437 (R) Lane 1: 100/1,000 bp DNA Ladder, Lane 2: untreated, Lane 3: 0.25% DMSO, Lane 4: 0.25% H,0, Lane 5: 62.50 ug/ml ME, Lane 6: 125 pg/ml WE, Lane 7:
50 pM curcumin, Lane 8: HEK-293 cells and Lane 9: blank. GAPDH was used as a loading control.

Frontiers in Molecular Biosciences | www.frontiersin.org 20 June 2022 | Volume 9 | Article 876213


https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

Laka and Mbita

TABLE 2 | Chemical composition of principal compounds in Water fractions.

D. calcarata inhibits lung cancer cells

Fraction 1.50:50 (Hexane: Acetone)

Compound Retention M-H M-H Compound References
time (min) formula CID
Psoralen 19.26 187.0968 C11HgO3 6,199 Wu et al. (2010)
Fraction 2.100% Acetone
Psoralen 19.26 187.0959 Cy1HgO3 6,199 Wu et al. (2010)
Fraction 2. 100% Acetone
Compound Retention M-H M-H Compound References
time (min) formula CID
Baccatin Il 21.16 603.2467  Cz1H35014 65,366 Lee et al. (2014)
Limonin-17-beta-D-glucoside 24.08 649.2479  CaoHyo014 24,820,753 Mandadi et al. (2007); Jayaprakasha et al. (2010);
Brito et al. (2014)
Vanillic acid 4-Beta-D-Glucoside 24.38 329.2315  Cy4H1g09 14,132,336 Gong et al. (2019); Navarro et al. (2019)

Fraction 3.50:50 (Acetone: Methanol)

Compound Retention M-H
time (min)

Eriodictyol 7-O-glucoside 13.24 449.1078
Psoralen 19.28 187.0952
Cyanidin 3-O-(6"" acetyl) glucoside 22.84 491.2101
Scillirubroside/scilliphaeosidin-glucoside 22.84 607.2842
Glucosciliphaeoside 2413 707.3246
6p-Acetoxyscillarenin3-Op-D-glucoside (1—4)- 753.3319
a-L-rhamnoside

Chlorogenic acid 355.2257

M-H Compound References
formula CID
Cs1H21044 13,254,473 Areias et al. (2001); Hu et al. (2012)
C11HsO3 6,199 Wu et al. (2010)
Co3Ho3015 — Brito et al. (2014); Sorrenti et al. (2015)
CogH31015 — Knittel et al. (2014)
CasHs2014 - Kakouri et al. (2019)
CagHs4015 — Kakouri et al. (2019)
C16H1809 1,794,427 Brito et al. (2014)

Fraction 4.70:10:20 (Butanol: Acetic acid: Water)

Compound Retention M-H M-H Compound References
time (min) formula CID
Psoralen 19.26 187.0934 Cy1HgO3 6,199 Wu et al. (2010)

apoptotic cells, based on nuclear morphology variations and
chromatin disintegrations. In all three tested cell lines,
fluorescence microscopy with AO/EB staining revealed, in p53-
wild type A549, cells differently stained nuclei (green and orange)
exposure to ME and WE (Figures 3E,F). The treatment also
caused apoptosis-related morphological changes such as nuclei
fragmentation and formation of apoptotic bodies. In the p53-
mutant H1573 (Figures 4E,F) and p53-mutant H1437 (Figures
5E,F) AO/EB staining revealed similar stained cells (green),
reduction in cancer cell number and also feature of apoptosis
like cell shrinkage and nuclei fragmentation were observed
following treatment with ME and WE. For preliminary
confirmation of apoptotic/necrotic cell death, AO/EB staining
has been used in several studies (Rajavel et al., 2017; Suganya
etal,, 2019; Khan et al., 2021). This results provide morphological
proof that the Drimia calcarata extracts induce apoptosis and
inhibit cell growth of NSCLC cell lines.

To identify the different pathways of cell death-either
necrosis or apoptosis in treated cancer cells with D.
calcarata extracts, staining with Muse. Annexin V and
Dead Cell reagent was used to confirm cell death induction.
As shown in Figure 6, the findings indicated that D. calcarata
ME and WE induced both early and late apoptosis in all the

three tested cell lines, p53-wild type A549, p53-mutant H1573
and p53-mutant H1437. Tumours often arise as a result of
deregulated mechanisms that are involved in the regulation of
cell homeostasis, which include cell cycle arrest, and apoptosis.
The latter is an ideal mode for potential anticancer drugs that
can be utilized for therapeutic intervention (Ghavami et al,,
2009). Cancer chemotherapy and chemoprevention may be
improved by agents that inhibit cancer cell proliferation and
induce apoptosis. In spite of the development of various
anticancer agents, successful cancer treatment is hindered
by associated adverse side effects and acquired drug
resistant (Khan and Mlungwana, 1999). Thus, growing
interest is being shown in the development of novel safe
and effective treatments for cancer using plant-based
compounds. Additionally, it has been shown that p53 is one
of the most powerful tumour suppressor genes in human
cancers, which regulates both intrinsic and extrinsic
apoptotic pathways (Maximov and Maximov, 2008). Bax
and Bcl-2 genes have been found to be some of the main
regulators of apoptosis through the mitochondrial pathway as
well as in controlling cytochrome-c release (Ashkenazi and
Herbst, 2008). Upon an apoptotic stimulus, Bax, proapoptotic
Bcl-2 associated X protein, translocates to mitochondrial outer
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TABLE 3 | Chemical composition of principal compounds in Methanol fractions.

Compound Retention M-H
time (min)

Fraction 1.50:50 (Hexane: Acetone)
Psoralen 19.23 187.0951

Fraction 2% Acetone
Ficuspirolide 8.13 241.0800
Hydroxytyrosol 8.73 153.0574
Quercertin derivative 8.92 299.0803
Quercertin derivative 9.39 299.0853
Vanillic acid 4-Beta-D-Glucoside 10.06 329.0868
Vitexin (Apigenin-8-C-glucoside) 14.05 431.1902
Taxifolin 4'-glucoside 15.54 465.0994
Eriodictyol 7-O-glucoside 15.83 449.1059
Psoralen 19.25 187.0970
Oleuropein 21.07 539.1743
Baccatin Il 22.33 603.2449
Bilobalide 650
Limonin-17-beta-D-glucoside 649

Fraction 3.50:50 (Acetone: Methanol)
Hydroxytyrosol 5.45 153.0.90
Protocatechuic acid glucoside 315.0704
Pantothenate 5.81 218.1042
Quercertin derivative 16.16 299.0414
Petunidin 3,5-Di-O-Beta-D-Glucoside 16.20 641.1682
Psoralen 19.22 187.0951
Oleuropein 21.07 539.1341
Scillirubroside/scilliphaeosidin-glucoside 22.83 607.2767
Scillaren A — 693.6864
Unknown 16.06 1,371.4402
Glucoscilliphaeoside 24.10 707.3322
6p-Acetoxyscillarenin3-Op-D-glucoside 2413 753.3315
(1—4)-a-L-rhamnoside
Dihydroquercetin - 284.0297

membranes, where it activates cytochrome-c release, which
then activates caspase-9 and -3 and eventually leads to
apoptosis (Thomas et al., 2000). The role of Bcl-2 in this
process is different. It can promote mitochondrial integrity
or block caspase activation factors for the activation of
caspases or regulate apoptosis by interacting with other
molecules in the Bcl-2 family (Hengartner, 2000; Jeong and
Seol, 2008). Accordingly, a cell’s reaction to apoptotic signals is
caused by the ratio between levels of the pro-apoptotic Bax and
the antiapoptotic Bcl-2.

In a previous study (Monga et al., 2013), (+)-cyanidan-3-ol
(CD-3), isolated from Acacia catechu and also detected in D.
calcarata ME and WE extracts, was shown to upregulate the
mRNA and protein levels of Bax, while decreasing the mRNA and
protein levels of Bcl-2 in MCF-7 cells. In CD-3-treated MCF-7
cells, cytochrome-c was found to be released from the
mitochondria. In other words, CD-3 promoted the induction
of apoptosis was by modifying the ratio of pro-apoptotic to anti-
apoptotic proteins, favouring cell death. Researchers concluded
that the up-regulation of Bax and the subsequent decrease in Bcl-
2 protein expression may be one of the key mechanisms through
which CD-3 induces apoptosis in MCF-7 cells (Monga et al.,

D. calcarata inhibits lung cancer cells

M-H Compound References
formula CID
C11HgO3 6,199 Wu et al. (2010)
C13H2004 100,987,513  Kuo and Li, (1999)
CgH1003 82,755 Bertelli et al. (2020)
Ci5H1007 5,280,343 Danihelova et al. (2013)
C15H1007 5,280,343 Danihelova et al. (2013)
C14H1809 14,132,336 Gong et al. (2019); Navarro et al. (2019)
Co1H20010 5,280,441 Miao He et al. (2016)
Cs1H22042 71,587,141 De Rosso et al. (2014); Navarro et al. (2019)
Co1H21011 13,254,473 Areias et al. (2001); Hu et al. (2012)
C11HgO3 6,199 Wu et al. (2010)
CosH31013 5,281,544 Longo et al. (2017)
Cg1Hzg014 65,366 Lee et al. (2014)
Cs0H3s016 73,581 Longo et al. (2017)
C3oH40014 24,820,753 Mandadi et al. (2007); Jayaprakasha et al. (2010);
Brito et al. (2014)
CgH1003 82,755 Bertelli et al. (2020)
CiH1609 11,972,438 Abu-Reidah et al. (2013)
CoH16NOs 6,613 Rodriguez-Pérez et al. (2013)
C15H1007 5,280,343 (Danihelova et al. (2013); Rhimi et al. (2019)
CogHszz017 75,184,857 Li et al. (2019); Wang et al. (2020)
C11HeO3 6,199 Wu et al. (2010)
CosHz2015 5,281,544 Longo et al. (2017); Shirzad et al. (2017)
CogHz1015 — Knittel et al. (2014)
CgeHs2013 441,870 Kakouri et al. (2019)
Cs2H75062 - —
CaeHs2014 — Kakouri et al. (2019)
CagHs4015 — Kakouri et al. (2019)
C1s5H1207 417 —

2013). Several compounds including bilobalide, limonin and
protocatechuic acid detected in D. calcarata have been
reported to inhibit cell proliferation and induce apoptosis in
various cancer cells. Bilobalide isolated from the leaves of Ginkgo
biloba inhibited cell proliferation and induced apoptosis in FaDu
human pharyngeal squamous cell carcinoma via both the death
receptor-mediated apoptotic pathway and the
mitochondrial-mediated intrinsic apoptotic pathway (Jeong
et al, 2020). The in vitro results proved that bilobalide
effectively suppressed the gastric cancer cell growth and
induced cell death by nuclear damage and apoptosis induction
(Liu et al., 2021). Limonin isolated from Poncirus trifoliata rafin
seeds induced apoptosis through the upregulation of
proapoptotic protein Bax and downregulation of anti-
apoptotic protein Bcl-2 in HCT-15 and SNU 449 cells in a
dose-dependent manner (Rahman et al, 2015). A purchased
protocatechuic acid reduced the growth rate of three non-
small lung cancer cells, A549, H3255 and Calu-6; and
increased Bax expression and reduced Bcl-2 expression (Tsao
et al., 2014).

In order to examine the mechanism of apoptosis-induction
during 24-h incubation of lung cancer cells with D. calcarata

extrinsic
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extracts, RT-PCR was used to measure the expression of
several apoptotic genes, including p53, Bcl-2 and Bax. In
WE-treated H1437 cells, apoptosis was associated with
increased mRNA expression of p53, whereas in A549 and
H1573 cells, the mRNA expressions of Bcl-2 and p53 were
decreased. As a result, D. calcarata WE induced the p53-
dependent apoptosis in HI1437, ME induced the p53-
independent apoptosis in A549 and both ME and WE
induced the p53-independent apoptosis in H1573. The A549
cells were not undergoing as much apoptotic cell death as the
other lung cancer cells while the water extract showed no
toxicity. D. calcarata extracts selectively affect the growth of
human non-small lung cancer cells.

The chemotherapeutic drug cisplatin modulates the JAK/
STATS pathway by dephosphorylating it in cancer cells.
Additionally, numerous platinum-containing compounds
disrupt STAT3 signalling and interfere with its
biochemical activities (Song et al., 2004; Turkson et al.,
2005; Thoennissen et al.,, 2009). Our results demonstrate

that D. calcarata ME, downregulated the expression of
STATI, STAT3 and STAT5B, and upregulated expression
of STAT5A gene in A549. It has been shown that activated
STATS5 reduces antitumour immunity and increases tumour
proliferation, invasion, and survival (Baskiewicz-Masiuk and
Machalinski, 2004; Rani and Murphy, 2016). Previously,
STAT5A partly inhibited the apoptosis induced by miR-
1469 in lung cancer cells, A549 and NCI-H1650 (Xu et al,,
2015). A possible explanation for the poor apoptosis rate in
the present study can be found in the upregulation of
STAT5A. Thus, STAT5A may prevent ME induced
apoptosis and serve as a drug resistant mechanism of lung
cancer A549 cells in response to water extract.

STATI, STAT3, STAT5A and STAT5B genes were increased
by both extracts in H1437. ME decreased STATI1, STATS,
STAT5A and STAT5B in HI1573 cells, while treatment with
WE lead to  significant  increase = of  STATI,
STAT3, STAT5A, while no significant change in STAT5B gene
expression.
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Crosstalk exists between the JAK-STAT pathway and p53
function. STAT1 decreases the expression of MDM2, thus
stabilizing p53 (Townsend et al., 2004). STAT1 binds p53 and
accentuates transcriptional effects of p53 on certain p53-
responsive apoptotic genes like Bax (Aladjem et al, 1998).
Another study showed that persistently activated STAT3 may
disable p53 without the requirement for p53 mutations. Activated
STATS3 interacts with the promoter of the p53 gene, inhibiting p53
expression (Niu et al., 2005). Furthermore, blocking STAT3 in
cancer cells up-regulates expression of p53, leading to p53-
mediated tumour cell apoptosis. As a point of convergence for
many oncogenic signalling pathways, STAT3 is constitutively

activated at high frequency in a wide diversity of cancers
including lung cancer (Sen et al, 2020) and is a promising
molecular target for cancer therapy (Niu et al, 2005). Thus,
repression of p53 expression by STATS3 is likely to have an
important role in development of tumours and targeting
STAT3 represents a novel therapeutic approach for p53
reactivation in many cancers lacking p53 mutations (Niu et al.,
2005). Our results indicate that the inhibitory proliferative effect
of D. calcarata extracts on p53-wildtype A549 and p53-mutated
H1573 non-small lung cancer cells is correlated with the
suppression of Bcl-2, STAT3 and STAT5B while that is not the
case in p53-mutant H1437 non-small lung cancer cells. Thus, our
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results suggest that the dysregulation of anti-apoptotic molecules
Bcl-2, STAT3, STAT5A and STAT5B in H1437 by D. calcarata
may play a role in the prolongation of cell survival, which may
subsequently contribute to the development of p53-mutated non-
small human lung cancer H1437 cells. A more profound
understanding of the potential interaction between p53 and
activated STATSs is necessary in order to take full advantage of
novel p53 targeted therapies.

To our knowledge this is the first report of D. calcarata
methanol and water extracts fractions, their chemical
compositions and their cytotoxicity against lung cancer A549
cells as well as their safety on the human embryonic kidney HEK-
293 cells. Previously, methanol extract and water extract chemical
compositions were reported and the extracts showed safety
against human embryonic kidney HEK-293 cells. Compounds
detected in both extracts included dihydrophaseic acid hexoside,
2-hydroxyethyl 4-acetyl-4-methyl-5-oxohexanoate, limonin-17-
beta-d-glucoside  (1-) and  6B-Acetoxyscillarenin3-Op-d-
glucoside (1—4)-a-L-rhamnoside. Psoralene was only detected
in the water extract (Laka et al., 2021). In the present study, all the
D. calcarata fractions contain a similar compound psoralen with
the chemical formula C;;HsO; (M-H formula: 187.09). Many
reports have also confirmed that psoralen has the potential to
eliminate various human cancer cells (Wang et al, 2011; Wu
et al., 2013). Previously, Wu et al. (2013) reported that psoralen
showed significant antiproliferative activity against the HepG-2
and C6 cancer cell lines. Furthermore, psoralen significantly
inhibited cell proliferation by inducing GO/G1 phase arrest in
MCEF-7 cells and G2/M phase arrest in MDA-MB-231 cells
(Wang et al, 2018). Thus, psoralen might be the main key
compound responsible for the cytotoxic activity of the D.
calcarata. The search for anticancer agents from natural
sources has been successful worldwide, and active constituents
have been isolated and are nowadays used to treat human
tumours. The ethnopharmacological knowledge is helpful to
lead the search for plants with potential cytotoxic activity.
Thus, the search for new drugs is imperative and the results of
our investigation call for future isolation and characterization of
the active constituents in D. calcarata extracts.

5 CONCLUSION

The water extract showed cytotoxicity against both the p53-
mutant H1437 and H1573 cell lines and no effect on the p53-
wild type A549 cell line, whereas the methanol extract exhibited
cytotoxic effects against both the p53-mutant and p53-wild type
lung cancer cells. The A549 cells were less susceptible than the
p53-mutant cell lines, H1573 and H1437. D. calcarata extracts
selectively affect the growth of human non-small lung cancer
cells. The growth inhibition of human lung cancer cells
mediated by D. calcarata extracts appears to be associated
with apoptosis and G0/G1 and S-phase cell cycle arrest and

D. calcarata inhibits lung cancer cells

altered expression of the tumour suppressor and anti-apoptotic
genes p53 and Bcl-2, cancer-related genes, especially those that
are involved in both cell cycle (p21, CLB1 and CDC2) and
transcriptional factors, such as STATSs. Our results indicate that
the proliferative inhibitory effect of D. calcarata extracts on p53-
wildtype A549 and p53-mutated H1573 non-small lung cancer
cells correlated with the suppression of Bcl-2, STAT3 and
STAT5B while that is not the case in p53-mutant
H1437 non-small lung cancer cells. Thus, our results suggest
that the regulation of anti-apoptotic molecules Bcl-2, STAT3,
STAT5A and STAT5B in H1437 by D. calcarata may play a role
in the prolongation of cell survival, which may subsequently
contribute to the development of p53-mutated non-small
human lung cancer H1437 cells. The D. calcarata water and
methanol fractions reduced the cell viability of A549 cells. In
LC-MS profiling, the major compounds produced by D.
calcarata water and methanol fractions was identified as
psoralen and an identified compound might be the reason
behind this plant’s anticancer activities. Additionally, our
results indicate that D. calcarata gives most promising results
as an anticancer agent for the p53-mutant human non-small
lung cancer cells than the wild type-p53 human non-small lung
cancer cells.
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