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Recent advances in molecular modeling using deep learning have the potential to
revolutionize the field of structural biology. In particular, AlphaFold has been observed
to provide models of protein structures with accuracies rivaling medium-resolution X-ray
crystal structures, and with excellent atomic coordinate matches to experimental protein
NMR and cryo-electron microscopy structures. Here we assess the hypothesis that
AlphaFold models of small, relatively rigid proteins have accuracies (based on
comparison against experimental data) similar to experimental solution NMR
structures. We selected six representative small proteins with structures determined by
both NMR and X-ray crystallography, and modeled each of them using AlphaFold. Using
several structure validation tools integrated under the Protein Structure Validation Software
suite (PSVS), we then assessed how well these models fit to experimental NMR data,
including NOESY peak lists (RPF-DP scores), comparisons between predicted rigidity and
chemical shift data (ANSURR scores), and 15N-1H residual dipolar coupling data (RDC Q
factors) analyzed by software tools integrated in the PSVS suite. Remarkably, the fits to
NMR data for the protein structure models predicted with AlphaFold are generally similar,
or better, than for the corresponding experimental NMR or X-ray crystal structures. Similar
conclusions were reached in comparing AlphaFold2 predictions and NMR structures for
three targets from the Critical Assessment of Protein Structure Prediction (CASP). These
results contradict the widely held misperception that AlphaFold cannot accurately model
solution NMR structures. They also document the value of PSVS for model vs. data
assessment of protein NMR structures, and the potential for using AlphaFold models for
guiding analysis of experimental NMR data and more generally in structural biology.
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INTRODUCTION

Recent advances in protein structure prediction based on deep
learning from experimental protein structure data have the
potential to revolutionize structural biology. Building on
advances in attention-based machine learning (Vaswani et al.,
2017; Huang et al., 2019), contact prediction based on sequence
covariance (Marks et al., 2011; Morcos et al., 2011; Marks et al.,
2012; Ovchinnikov et al., 2015; Ovchinnikov et al., 2016; Buchan
and Jones, 2018), the massive and still growing databases of
genomic sequence data, and the rapidly growing Protein Data
Bank of experimental protein structures, these methods are being
recognized as major advances enabling new structural biology
research (Jones and Thornton, 2022).

In the 2020 Critical Assessment of Protein Structure
Prediction (CASP14), the DeepMind AlphaFold2 (AF2) deep
learning method (Jumper et al., 2021a; Jumper et al., 2021b)
demonstrated outstanding performance in blind predictions of
protein structure, delivering excellent structural matches to
experimental models derived from X-ray crystallography,
NMR, and cryoEM data, over a wide range of target difficulty
(Kryshtafovych et al., 2021). These AlphaFold2model predictions
had an unprecedented high accuracy, assessed by backbone
atomic coordinate global distance test (GDT_TS) scores. On
96 CASP14 targets AF2 models had a mean GDT_TS of
0.88 ± 0.1, corresponding to a backbone atom root-mean-
squared deviation (RMSD) between predicted and
experimental protein structures of about 1.5 Å (Kryshtafovych
et al., 2021). Buried sidechain conformations in these blind
predictions of protein structure are also generally a remarkably
good match between the predicted model and experimental
structure (Pereira et al., 2021). Soon afterward, the related
RosettaFold (Baek et al., 2021b) method also demonstrated
excellent modeling accuracy on natural proteins, and was
found to be particularly successful in modeling de novo
designed proteins. These results have opened the door to
innovative de novo protein design approaches using these
platforms (Anishchenko et al., 2021). In addition, it was also
quickly recognized that the structures of protein-protein
complexes and multimeric assemblies can often be reliably
modeled using modified approaches with these same AI
platforms (Baek et al., 2021a; Baek et al., 2021b; Evans et al.,
2021; Humphreys et al., 2021; Colman et al., 2022; Mondal et al.,
2022). While challenges remain, particularly for dynamic protein
systems and complex multiprotein assemblies, these methods are
already having a major impact on structural biology.

These advances are particularly relevant for structural studies
of proteins using NMR data. In the 2017 CASP13 blind protein
structure prediction experiment, we organized an “NMR-guided
prediction” challenge for the CASP protein structure prediction
community called CASP-NMR (Sala et al., 2019). In this project
we provided 13 simulated and real NMR data sets for 10 small
(80–326 residues) proteins, including interatomic contacts
obtained (or, for simulated data, obtainable) from NOESY
experiments and backbone dihedral restraints obtained (or
obtainable) from backbone chemical shift data. These included
NOESY data typical of that obtained for 15N, 13C-enriched,

perdeuterated proteins up to about 40 kDa, which were
simulated and used to generate tables of ambiguous contacts
using simple NOESY peak assignment protocols. These
Ambiguous Contact Lists were provided, together with
backbone dihedral angle restraints obtainable from chemical
shift data, to the CASP prediction community for data-assisted
prediction. Real NMR data collected for a de novo designed
protein were also used to generate ambiguous contact lists and
chemical-shift based backbone dihedral angle restraints, that were
then provided to CASP13 predictor groups, including one set of
(ambiguous) experimental NMR-based contacts in which only
backbone resonance (no sidechain) assignments were available.
The CASP community was then challenged to use these data to
“guide” blind protein structure predictions. These predictions
were compared to NMR-based models generated from these data
by experts using conventional methods, or against the unassigned
NOESY peak list data. Remarkably, several CASP13 prediction
groups provided models that matched the reference structures
and/or fit these NMR data even better than the models generated
by conventional expert NMR structure analysis. Notable among
these top-performing NMR-guided prediction groups were
methods using NMR-guided MELD (Robertson et al., 2019)
and NMR-guided Rosetta (Kuenze and Meiler, 2019) methods.
Amazingly, some other CASP13 prediction groups provided pure
prediction models, which did not use the NMR data at all, that
also matched the reference structures better than the models
generated with the data by expert data analysis (Sala et al., 2019).
Among the top performing groups in this category were machine
learning methods including AlphaFold.

Even more exciting results came in late 2020 from the
CASP14 blind protein structure prediction experiment. In
CASP14, the next-generation AlphaFold2 methods
demonstrated outstanding performance in protein structure
prediction (Kryshtafovych et al., 2021; Pereira et al., 2021).
Interesting results were observed for three CASP14 targets for
which NMR data were available (Huang et al., 2021). For two
of these, the pure prediction AlphaFold2 models were observed
to fit real experimental NMR data as well or better than the
reference structures provided by the experimental NMR
groups. In a third case, target T1027, a protein exhibiting
spectral properties indicating extensive conformational
dynamics, the AlphaFold2 model did not fit the NMR data
as well as the reference experimental NMR structure. The
AlphaFold2 prediction model of a fourth NMR target, the
238-residue integral membrane protein MipA, also was an
excellent fit to the experimental NMR data. This study also
demonstrated how an AlphaFold2 model of CASP14 target
T1029 could be used to guide reanalysis of the experimental
NMR NOESY data to provide a revised experimental structure
which better fits other NMR structure quality assessment
metrics, including residual dipolar coupling (RDC) Q
factors and ANSURR scores. The conclusions of this
CASP14 - NMR study, using blind predictions for targets
not made available to the prediction groups, are supported
by two other recent studies of the modeling accuracy of
AlphaFold, using as reference either previously deposited
NMR structure coordinates (Zweckstetter, 2021), or X-ray
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crystal structures and experimental RDC data (Robertson
et al., 2021).

The Protein Structure Validation Software suite (PSVS)
(Bhattacharya et al., 2007) integrates multiple tools for protein
structure validation, with a particular focus on protein NMR
structure validation. PSVS provides several knowledge-based
protein structure validation tools, including Molprobity clash
and Ramachandran backbone analyses (Lovell et al., 2003; Chen
et al., 2010), as well as Verify3D (Luthy et al., 1992) and ProsaII
(Sippl, 1993) protein fold analysis tools. PSVS also provides a
model vs. data protein structure validation analysis using the
PDBStat (Tejero et al., 2013) software for distance and dihedral
angle restraint violation analysis, supporting several common
distance restraint formats and providing conversion of distance
and dihedral angle restraints between these formats to allow
interoperability between various NMR structure modeling
software packages. Recently, PSVS has been updated (version
2.0) to include additional model vs. data structure validation
tools, including the RPF-DP score (Huang et al., 2005; Huang
et al., 2012) comparing structure models against NOESY peak list
data, RDC Q factors (Cornilescu et al., 1998; Clore and Garrett,
1999) comparing models against RDC data, and the ANSURR
(Accuracy of NMR Structures Using RCI and Rigidity) score
(Fowler et al., 2020) comparing measures of conformational
rigidity for various regions of protein structure models with
metrics of rigidity based on backbone chemical shift data.

Here, we test the hypothesis, based on our experiences in
CASP13 and CASP14, that small protein structures modeled
using the recently released AlphaFold platform fit
experimental NMR NOE, RDC, and structural rigidity
(chemical shift) data as well as models generated by experts
using conventional NMR data analysis methods. Six proteins
solved by expert NMR spectroscopists in the course of the PSI
Structural Genomics Initiative were modeled by AlphaFold and
then assessed against both experimental NMR data and
knowledge-based statistical metrics using the PSVS software
suite. AlphaFold modeling was done by excluding information
from the deposited structure itself, or from any homologous
templates, as input information. In all cases, the various PSVS
structure quality scores for AlphaFold models document that
these predicted structures fit the NMR data as well, or often
better, than experimental structures deposited in the Protein Data
Bank by expert spectroscopists. Overall, this study demonstrates
the outstanding value of AlphaFold for modeling small, relatively
rigid protein structures, and for providing atomic coordinates
useful in guiding analysis of experimental data.

MATERIALS AND METHODS

NMR and X-Ray Structure Coordinate Sets
and NMR Data
Experimentally-determined protein structure coordinates and
NMR data were taken for proteins deposited in the Protein
Data Bank (PDB) by the Northeast Structural Genomics
Consortium (NSEG) (Montelione et al., 2013). For this
study we used small proteins solved by both NMR and

X-ray crystallography methods, and for which both nearly
complete resonance assignment and NOESY peak list data are
publicly available from the NESG NMR/X-ray Pairs web site
(Everett et al., 2016) (https://montelionelab.chem.rpi.edu/
databases/nmrdata/). For three of these proteins, 15N-1H
residual dipolar coupling data are also available from this site.
These proteins ranged in size from 58 to 158 residues (excluding
short hexa-His purification tags). These same atomic coordinates
and most of these NMR data are also available in the PDB and/or
the BioMagResDataBase (BMRB). In addition, structures of these
same six proteins that have been energy-refined using the NMR-
restrained Rosetta refinement protocol (Mao et al., 2014) were also
obtained from the NESG/NMR X-ray Pair web site. For the two
structures for which RDCs were used in the original structures
deposited in the PDB (SrG115C and RpR324), the Rosetta
refinement was carried out with these RDC data. For a third
target (SgR209C) RDC data is also available in the NESG database,
but it was obtained only after the structure was deposited in the
PDB, and was not used in the original structure determination nor
in the Rosetta refinement.

Solution NMR Structure Determinations
For two cases required for this study, target protein structures were
redetermined from the original NMR data following the standard
methods of the NESG consortium (Liu et al., 2005; Montelione and
Szyperski, 2010). The solution NMR structure ensemble for RpR324
was recalculated using previously described NMR data (Ramelot
et al., 2012), including the resonance assignments, NOE, dihedral,
and hydrogen bond restraints of PDB entry 2LPK, but excluding the
RDC data, using CYANA (Güntert and Buchner, 2015) followed by
refinement with CNS in explicit water. The structure of target
SgR209C, PDB entry 2LO6 determined without RDC data, was
redetermined using the NOE, dihedral, and hydrogen bond
restraints from this PDB entry, but also including 15N-1H RDC
data measured on samples partially aligned using polyacrylamide
stretched gel (PAG) and polyethylene glycol (PEG) alignment
media, that were not used in the original structure determination.
These RDC data were also obtained from the NESG NMR/X-ray
Pairs web site. RDC data were manually assessed and excluded if
they had peak overlap in the 1H-15N 2D plane or were in disordered
regions of the protein. This resulted in 65 PAG and 69 PEG RDCs
used in the refinement, carried out using the same standardmethods
outlined above for RpR324.

AlphaFold Modeling
AF modeling was carried out using the AF-multimer software
(Evans et al., 2021) installed on the NPL cluster in the Center
for Computational Innovation at Rensselaer Polytechnic
Institute. The system has 40 nodes each with 2 × 20 core
2.5 GHz Intel Xeon Gold 6248 CPUs and 8x NVIDIA Tesla
V100 GPUs, with 32 GiB HBM, with 768 GiB RAM per node.
This version of AF was trained using the PDB database of
April, 2018 and did not use any NMR structures in the training
data (Jumper et al., 2021a). PDB structures deposited after
November 2005, including the X-ray crystal and NMR
structures of the query target proteins structures themselves
and the structures of any homologs detected with HMMPred
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(Soding et al., 2005) were excluded as modeling templates.
Hydrogen atoms were added by the AF prediction pipeline to
each model using restrained refinement of the H atom
positions using the Amber force field (Case et al., 2021) in
OpenMM with heavy atom coordinates restrained to their
positions using a harmonic potential with high weight of
10 kcal/mol - Å2 (Jumper et al., 2021a). The AlphaFold
model was represented by five top-scored conformations
along with estimates of prediction reliability (pLDDT), as
described elsewhere (Jumper et al., 2021a).

Knowledge-Based Protein Structure Model
Validation
All structure quality statistical analyses were performed using the
Protein Structure Validation Software (Bhattacharya et al., 2007)
(PSVS ver 2.0-pre) (https://montelionelab.chem.rpi.edu/PSVS/
PSVS2/). PSVS runs a suite of knowledge-based software tools
including PDBStat (ver 5.21.6) (Tejero et al., 2013), ProCheck
(ver 3.5.4) (Laskowski et al., 1993), MolProbity (mage ver 6.35.
040409) (Chen et al., 2010), and an implementation of the
algorithms of FindCore2 (Snyder et al., 2014) coded in
PDBStat. The structure validation scores of these programs
were used to calculate normalized Z scores relative to mean
values and standard deviations obtained for a set of 252
reference X-ray crystal structures of <500 residues, resolution
<1.80 Å, R-factor < 0.25, and R-free < 0.28; positive Z scores
indicate “better” scores.

Residual Dipolar Coupling Q Score Analysis
15N-1H residual dipolar couplings Dcalc were calculated from
model structures by single-value decomposition of the Saupe
matrix (Losonczi et al., 1999) using PDBStat (Tejero et al.,
2013), called from PSVS ver 2.0. Residual dipolar coupling Q
factors were analyzed by PDBstat using both of the following
methods. The most commonly used RDC-fit score Q1,
described by Cornilescu et al. (1998) is

Q1 �

�����������������∑N
i�1(Di, exp −Di.calc)2∑N

i�1(Di, exp)2
√√

(1)

where Dexp and Dcalc are the measured and calculated values of
the RDC, and N is the number of RDCs assessed. In addition, we
also assessed models using RDC-fit score Q2, described by Clore
and Garrett (1999) and used by the DC: Servers for Dipolar
Coupling Calculations (https://spin.niddk.nih.gov/bax/
nmrserver/dc/svd.html).

Q2 �

�����������������∑N
i�1(Di, exp −Di.calc)2
N[D2

a(4 + 3R2
h)/5]

√√
(2)

where Da is the axial component, and Rh is the rhombic
component, of the orientation tensor. The Q2 factor is
preferable in case of a limited RDC sampling over all possible
orientations (Clore and Garrett, 1999).

RPF-DP Scores
RPF-DP scores are a set of fast and sensitive structure quality
assessment measures used to evaluate how well a 3D structure
model fits with NOESY peak and resonance assignment lists, and
hence to assess the accuracy of the structure (Huang et al., 2005;
Huang et al., 2012). RPF-DP scores provide a type of NMR “R-
factor”, in which models are compared against unassigned NMR
NOESY peak list data. RPF-DP scores were computed with the
program RPF, called from PSVS. An RPF server is also available
online at https://montelionelab.chem.rpi.edu/rpf/. RPF-DP
metrics have been described previously (Huang et al., 2005;
Huang et al., 2012; Huang et al., 2021), but as they play a key
role in this work, we provide a brief overview of these model vs.
data structure quality assessment metrics here. Additional details
are provided in the original paper (Huang et al., 2005).

The RPF-DP score algorithm is outlined schematically in
Figure 1, adopted from Huang et al. (2005), Huang et al.
(2012), Huang et al. (2021). Nodes represent all protons listed
in the resonance assignment table. Edges connect the nodes and
represent all potential associated NOEs from the NOESY peak
lists, within a chemical shift match tolerance. In constructing the
ambiguous NOE network GANOE (shown on right side of
Figure 1), each NOESY cross peak (p) may be ambiguously
assigned to one or more proton pairs, as determined by chemical
shift degeneracies and match tolerances. The true NOE network,
GNOE, corresponding to the true 3D structure(s), is a subgraph of
GANOE. Given complete NOESY peak lists and resonance
assignments, for each NOESY cross peak p, at least one of its
possible proton pair assignments has a corresponding edge in
GNOE. For each structure model (shown on left side of Figure 1), a
distance network G is calculated, from the summation distances
(sum of inverse sixth powers of individual degenerate proton-
proton distances), assuming uniform effects of nuclear relaxation
processes. Nodes of G are connected by an edge if the
corresponding interproton summation distance in the model
structure is ≤ dNOE_max, where dNOE_max is the (estimated)
maximum distance detected in the NOESY spectrum.
Summation distances are used to address the lack of
stereospecific assignments of prochiral methylene proton pairs,
sets of protons that are degenerate (e.g., the three hydrogens of a
methyl group, degenerate methylene protons, or degenerate
resonances of Tyr or Phe), or combinations of these kinds of
ambiguities (e.g., for prochiral isopropyl methyl groups of Leu or
Val for which stereospecific assignments are not available). The
default upper-bound observed distance, dNOE_max, used in these
metrics is 5 Å, but this can also be calibrated from the NOESY
data. For models derived by X-ray crystallography, protons are
added with ideal covalent geometry using the program Reduce
v2.14 (Chen et al., 2010).

As illustrated in Figure 1, proton pair short distances present
in the atomic coordinates of a model structure, represented by the
network G, may or may not be represented in the graphical
representation of the NOESY peak list data GANOE. NOESY cross
peaks represented in GANOE that are consistent with the short
interproton distances in the network derived from the model, G,
are defined as true positives (TPs), while NOESY peaks expected
from the model (edges in G) that are not observed in the data,
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GANOE, are false positives (FPs). Since GANOE is an ambiguous
network, a FN score is assigned to a NOESY peak only if none of
the several possible short proton-proton distances consistent with
these several possible NOESY peak assignments are observed in the
structure model, represented by G. In this context, recall (R)
measures the fraction of NOESY cross peaks that are consistent
with the query structure models, while precision (P) measures the
fraction of short proton pair distances in the structure model that
are observed in the NOESY peak list (i.e., in GANOE), weighted by
interproton distance to minimize the impact of weak NOEs arising
from interproton distances near the edge of the defined distance
cutoff (Huang et al., 2005). Hence “recall violations” are NOESY
peaks (or “noise peaks”) that cannot be explained by the model and
resonance assignments, and “precision violations” are short
distances in the model that are not supported by NOESY data,
which may result from overpacking, incorrect sequence-specific
assignments, or from exchange broadening. The F-measure is the
harmonic mean of the recall and precision. Equations used to
calculate recall (R), precision (P), and F-measure (F, also called the
performance) are shown in Figure 1. The DP score is a scaled
F-measure that accounts for lower-bound and upper-bound values
of the F-measure. The lower-bound of F(G) is estimated by
F(Gfree), where Gfree is a distance network graph computed
from interproton distances in a freely rotating polypeptide chain
model, as described by Flory and co-workers (Flory, 1969), and the
upper-bound of F(G) is determined by assessing the completeness
of the NOESY peak list data for the 3- and 4-bond connected H
atoms which all have interproton distances <5 Å.

RPF-DP scores can be calculated either for individual models
from an ensemble of conformations, and averaged, or using
average proton pair distances across the ensemble. The latter
ensemble DP score (<DP>) is usually 10%–15% higher than the
former average of individual DP scores (DPavg). However, when

the conformational ensemble is more diverse, larger differences
between DPavg and <DP> are observed. In various studies (Huang
et al., 2005; Raman et al., 2010; Huang et al., 2012; Rosato et al.,
2012; Rosato et al., 2013; Rosato et al., 2015; Sala et al., 2019;
Huang et al., 2021), structures within 2.0 Å RMSD of the
corresponding expert-derived “correct” structure have been
observed to have <DP> scores > 0.70 for NMR ensembles,
and DPavg scores > 0.60 averaged over the individual conformers.

Accuracy of NMR Structures Using RCI and
Rigidity Scores
The Accuracy of NMR Structures Using RCI and Rigidity
(ANSURR) method provides an independent assessment of
model accuracy by comparing protein flexibility computed from
backbone chemical shifts with protein flexibility predicted with a
graph theory based measure of structural rigidity (Fowler et al.,
2020). ANSURR provides twomeasures of similarity between these
metrics, a correlation score (corr) which assesses the correlation
between peaks and troughs of observed and predicted structural
flexibility along the sequence, and root-mean-squared deviation
(RMSD) between these metrics. Both the corr and RMSD score are
reported as a percentile score (ranging from 0 to 100). These scores
were calculated using ANSURR program version 1.2.0.

Well-Defined Residue Ranges and Global
Distance Test scores
For NMR structure ensembles, the ranges of residues that are “well-
defined” were determined by standard conventions instantiated in
the programs Cyrange Kirchner and Güntert (2011) and FindCore2
(Snyder et al., 2014). Following the recommendations of the wwPDB
NMR Structure Validation Task Force (Montelione et al., 2013),

FIGURE 1 | Schematic description of RPF-DP scores. In this analysis, the graph Gwith nodes corresponding to all 1H’s and edges representing all short (e.g., <5 Å) 1H-1H
distances in a structure model (left), is compared with a graph GANOE (right), in which nodes again correspond to all 1H’s, and edges describe all possible assignments for each
NOESY cross peak. True positives (TPs) are edges common to both G andGANOE, false positives (FPs) are edges present in G but not in GANOE, and false negatives (FNs) are the
set of edges in GANOE representing themultiple possible assignments of a NOESY cross peak, none of which are present in G. Thesemetrics are used to compute recall (R),
precision (P), and F-measure as shown in the figure and outlined in theMethodsSection. The F-measure is the harmonicmeanof the recall andprecision. TheDiscriminatingPower
(DP) is a normalized F-measure corrected to account for the F-measure expected for a random-coil chain (DP = 0) and the best F-measure possible considering the completeness
of theNMRdata (DP=1.0). SinceNOESYdata is restricted to short distances (e.g.,<5 Å), true negatives (TNs, peaks not expected from themodel and not observed in theNOESY
data) can dominate these statistics and are not included in these recall, precision, and F-measure metrics. Figure and legend are adopted from Huang et al. (2021).
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residues were used in superimpositions and structure quality
assessment if they are “well-defined” (i.e., well-converged) across
the NMR structure ensemble and also “reliably predicted” by
AlphaFold, as outline in our previous studies comparing NMR-
derived and AlphaFold models (Huang et al., 2021).

GDT_TS scores were computed by the method of Zemla
(Zemla, 2003; Zhang and Skolnick, 2004) using the
representative “medoid” conformer (Montelione et al., 2013;
Tejero et al., 2013) from each of the NMR-derived or
AlphaFold conformational ensembles, superimposed using
backbone Cα atoms within the “well defined” residue ranges:

GDT_TS � (P1 + P2 + P4 + P8)/4 (3)
Here, P1, P2, P4, and P8 are the percent of residues with
backbone Cα RMSD’s <1 Å, <2 Å, <4 Å, and <8 Å,
respectively, for consensus reliably-modeled / well-defined
residue ranges of the superimposed structure pairs. GDT_TS =
100% would mean that all consensus reliably-modeled residues

superimpose with backbone Cα RMSD <1 Å while GDT_TS of
50% corresponds to an average backbone RMSD of about 4 Å. For
brevity, GDT_TS scores are referred to throughout this paper as
GDT scores, and are reported as real numbers between 0 and 100.

Molecular Modeling
Molecular visualization and preparation of graphical representations
for figures was done using PyMol (DeLano, 2002).

RESULTS

RPF-DP and ANSURR Scores for
Assessment of Prediction and Experimental
NMR Models in CASP14
In previous studies, we have explored the value of RPF-DP scores
in assessing models generated in the Critical Assessment of

FIGURE 2 | Plots of DP score vs. GDT for NMR and AlphaFold models. For each model, the DP score compares model vs. NMR NOESY peak list data, and the GDT
score is ameasure of similarity to the NMR conformer with best DP score (Huang et al., 2021). Plots are provided for (A) target T1055 (511CASP14models; linear correlation
coefficient r2 = 0.66) (B) target T1027 (520 CASP14 models; r2 = 0.51) (C) target T1029_original (529 CASP14 models; r2 = 0.05), and (D) target T1029_revised (529
CASP14models; r2 = 0.87). Open circles are values for CASP14 predictionmodels (excluding AFmodels), red squares are the NMR structure models deposited in the
PDB, and blue triangles are AF predictionmodels. In panels (C) and (D), the original NMR structures of target T1029, before revised analysis of NOESY data, are indicated by
yellow squares. Negative DP scores are returned for a fewmodels which fit the NMRdatamore poorly than expected for a random coil conformation (models with DP< 0, not
shown) and were not include in the calculations of linear correlation coefficients. These data are replotted from reference Huang et al. (2021).
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Protein Structure Prediction (CASP) rounds 13 and 14 (Sala et al.,
2019; Huang et al., 2021). When an accurate model is used as the
reference structure for computing GDT scores, there is generally a
strong correlation between the DP score and GTD (Figures
2A,B). In this analysis, consensus well-defined and reliably-
predicted residue ranges were used for calculating GDT scores
between CASP14 NMR structures and prediction models
(Table 1), as described previously (Huang et al., 2021).
Prediction models from some 100 + prediction groups in each
CASP edition, each contributing 5 models, span a wide range of
structural accuracy. Some poor prediction models can even
return negative DP scores meaning that the agreement
between the model and the chemical shift/NOESY peak list
data is poorer than what would be expected for a random coil
polypeptide conformation (Huang et al., 2005). Interestingly, for
CASP14 target T1055, the best prediction models (provided by
AlphaFold2) have DP scores higher than the experimental NMR
structures (Huang et al., 2021). For target T1027, the DP score is
correlated with model prediction accuracy; however the best
prediction models (again from AlphaFold2) have DP scores
lower than the NMR-derived models. This result is
attributable to specific dynamic features of this protein, and
are analyzed in detail in Huang et al. (2021). Target T1029
presented an especially instructive case. The initial NMR
structure provided for CASP model assessment,

T1029_original, had a relatively poor DP score (~0.25), and
when used as a reference model for the GDT analysis resulted
in a poor correlation between DP and GDT across 529 prediction
models (Figure 2C, linear correlation coefficient r2 = 0.05).
Recognizing a potential problem, the experimentalists
reassessed their NOESY data for this target, and redetermined
the NMR structure. The resulting models have much improved
DP scores (~0.70), though only marginally better than the
AlphaFold2 prediction models, and when used as a reference
structure for GDT analysis provide a strong correlation between
DP and GDT (r2 = 0.87) as expected for an accurate reference
structure (cf Figures 2C,D). These results illustrate the value of
DP scores in assessing model accuracy using experimental
NOESY data.

The same CASP14 NMR structures were also assessed using
ANSURR (Figures 3, 4). A similar analysis of CASP14 prediction
models has also recently been reported by Fowler and
Williamson, the developers of ANSURR (Fowler and
Williamson, 2022). Plots of ANSURR corr vs. RMSD score
(Figure 3) demonstrate the power of ANSURR in identifying
accurate prediction models. For CASP14 target T1055, ANSURR
scores for the AlphaFold2 models (blue triangles) are somewhat
better than for the experimental NMR structures (red squares),
consistent with the conclusion of DP analysis. However, many
other CASP14 prediction models (with lower GDT to the

TABLE 1 | NMR and X-ray crystal structures used in this study.

Sample PDB ID /
BMRB ID

PDB release
date

Total number of
residuesa

Consensus well-defined residue
rangeb

Alignment media for RDC
measurements

CtR107
X-ray 3E0H 2008-09-30 158 4–158
NMR 2KCU / 16097 2009-01-20

GmR137
X-ray 3CWI 2008-05-06 70 1–63
NMR 2K5P / 15844 2008-08-26

RpR324
X-ray 3LMO 2010-02-16 93 4–91
NMR 7TZD / 18263 This work
NMR*,c 2LPK / 18263 2012-02-29 PEG/Phage

SgR42
X-ray 3C4S 2008-02-12 58 1–56
NMR 2JZ2 / 15604 2008-01-22

SgR209C
X-ray 3OSJ 2010-10-06 147 13–38, 47–134, 138–143
NMR 2L06 / 17031 2010-08-25
NMR*,c 7TZ8 / 17031 This work PEG/PAG

SrR115C
X-ray 3MA5 2010-04-07 92 2–92
NMR 2KCL / 16084 2009-01-06
NMR* 2KCV / 16821 2009-01-20 PEG/Phage

CASP14 NMR Targets
T1055 6ZYC / 34545 2021-05-19 148 310–426
T1027 7D2O / 36385 2020-12-02 174 36–75; 96–145
T1029_origd 6UF2 / 30676 2020-09-30 125 3–19, 29–46; 53–122 PAG
T1029_revisedd 7N82 / 30925 2021-07-14 125 3–19, 29–46; 53–122 PAG

aNumber of residues in deposited NMR structure, excluding disordered purification tags, if any.
bConsensus of well-defined residues in NMR structures determined by Cyrange (Kirchner and Güntert, 2011) and FindCore2 (Snyder and Montelione, 2005; Snyder et al., 2014), and
“reliably modeled” residues determined by AF. For CASP14 targets, only Cyrange was used to identify well-defined residue ranges (Huang et al., 2021).
cThe asterisk (*) designates the structure was modeled with 15N-1H RDC data using two alignment media.
dFor target T1029 three kinds of RDC data in one alignment medium were available: N-HN, Cα-C′, and Cα-Hα.
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reference NMR structure) also have very good ANSURR scores
(Figure 3A). A similar conclusion can be made for target T1029
(Figure 3C), where the ANSURR scores clearly distinguish the
original NMR structure (yellow squares) from the revised NMR
structure (red squares). In this case the revised NMRmodels have
somewhat better ANSURR scores than the AlphaFold2 models
(blue triangles), also consistent with DP analysis. For target
T1027 the ANSURR scores are generally higher for the NMR
structures (red squares) than for the AlphaFold2 models (blue
triangles; Figure 3B), which is also consistent with the DP
analysis of Figure 2B. However, this target has significant
amounts of not-well-defined (Table 1) (apparently flexible)
backbone structure (Wu et al., 2020) which can potentially
dominate the ANSURR score. This sensitivity of the ANSURR
score to removal of not-well-defined regions is evident by
comparing Figure 3B (full-length) and 3D (trimmed).

An important feature of the DP analysis is the correlation
between DP and GDT scores when an accurate model is used as

the reference structure for calculating the GDT score (Figure 2).
Using these CASP14 prediction models, we also assessed if
ANSURR scores provide a similar correlation (Figure 4).
Generally speaking, the ANSURR scores (corr plus RMSD) do
not exhibit as strong correlation with GDT scores as DP scores for
these CASP14 NMR targets. The linear correlation coefficients r2

for ANSURR (or DP) vs. GDT are 0.35 (0.66), 0.47 (0.51), and
0.57 (0.87) for CASP14 NMR targets T1055, T1027, and
T1029_revised, respectively. Indeed, some incorrect prediction
models with GDT scores as low as 50 have ANSURR scores
similar to those of the best AlphaFold2 and NMRmodels. For the
“trimmed” T1027 models, many inaccurate CASP14 prediction
models have better ANSURR scores than either the AlphaFold2
or NMR models (Figure 4D). Hence, while ANSURR is a
powerful and convenient tool for model quality assessment,
requiring only backbone chemical shift data, it is important to
complement ANSURR scores with other metrics of structural
accuracy.

FIGURE 3 | ANSURR Correlation vs. RMSD scores for NMR and AlphaFold prediction models. (A) CASP14 target T1055, (B) T1027, (C) T1029 (data shown for
both T1029_original and T1029_revised NMR structures), and (D) target T1027_trimmed (residues 36–75 and 96–145) in which coordinates are trimmed to remove the
structurally not-well defined (i.e., unreliable) polypeptide segments. As in Figure 2, in each panel, the open circles are CASP 14 prediction models (excluding AFmodels),
red squares are the final NMR structure models, including T1029_revised, blue triangles are AF prediction models, and yellow squares [in panel (C)] are for the
original NMR structure of target T1029, i.e., T1029_original.
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NMR / X-Ray Pairs Used for Assessment of
AlphaFold
Six targets from the NESGNMRX-ray Pairs data set (Everett et al.,
2016) were selected for which NMR structures were determined
using standard methods of the NESG Consortium (Liu et al., 2005;
Montelione and Szyperski, 2010), but without any residual dipolar
coupling data. The PDB id’s (and also BMRB id’s for NMR
structures) for these X-ray crystal and NMR structures, together
with the PDB coordinate release dates, are listed in Table 1.

The solution NMR structure of target RpR324 is reported in
multiple PDB entries, but all of the apo structures were refined
with some RDC data. As part of the aim of this study was to
assess the accuracy of AF models compared to NMR structures
solved with and without RDC data, the deposited chemical
shift and NOESY NMR data for RpR324 (BMRB id 18263)
were used to re-determine its structure without any RDC data,
using our standard NMR structure analysis methods.

This structure was deposited in December 2021 as PDB
entry 7TZD.

Three of these NESG target proteins were also determined
using standard methods that also included refinement with
15N-1H residual dipolar coupling data (Table 1). For two
protein targets, these data were obtained from the NESG
NMR/X-ray Pairs web site (Everett et al., 2016): RpR324
(2LPK) and SrG115C (2KCV). In a third case, for target
SgR209C, 15N-1H RDC data were available in our database
but were not used in the original PDB deposition. For the
purposes of this study, the structure was re-determined using
the original NOESY, dihedral, and hydrogen bond restraint
data (BMRB id 17031) together with these RDC data. This
structure and RDC data were deposited in December 2021 as
PDB entry 7TZ8.

This process provided 9 solution NMR structures (NMR-
based models consisting of ensembles of conformers) for six

FIGURE 4 | Plots of ANSURR composite score vs. GDT for NMR and AlphaFold models. The data of Figure 3 were replot to compare the sum of ANSURR
correlation and RMSD scores vs. GDT (Huang et al., 2021). Plots are provided for CASP14 targets (A) T1055 (linear correlation coefficient r2 = 0.35), (B) T1027 (r2 =
0.47), (C) T1029 (r2 = 0.57; data shown for both T1029_original and T1029_revised NMR structures), and (D) T1027_trimmed (residues 36–75 and 96–145, r2 = 0.11) in
which coordinates are trimmed to remove the structurally not-well defined or unreliably predicted polypeptide segments. In each panel, the open circles are the
CASP 14 prediction models (excluding AF models), red squares are the final NMR structure models deposited in the PDB, blue triangles are AF prediction models, and
yellow squares are for the original NMR structures of target T1029, before revised analysis of NOESY data.
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NESG targets, where all six were determined using chemical shift
and NOESY data without any RDC data, and three were
determined using, in addition, 15N-1H RDC data. In all three
cases where RDC data are available, the RDCs were measured
using two alignment media, either polyethylene glycol (PEG) and
PF1 phage, or PEG and polyacrylamide stretched gels (PAG)
(Table 1).

Well-Defined and Not-Well-Defined
Regions of Models
For structure quality assessment and structural comparisons, it
is important to identify “not-well-defined” regions of the
protein NMR structure model; i.e., regions where the
multiple models (typically 20) generated in the NMR
modeling process do not converge, and hence the
coordinates are not reliable. Such regions of the structure
model will often also have poor knowledge-based structure
quality scores and hence are generally excluded from
Procheck, Molprobity packing, and Molprobity
Ramachandran outlier analysis. Most importantly, not-well-
defined regions of NMR structures should not be used for
comparisons with prediction models. For identifying not-well-
ptdefined regions of these NMR model ensembles, we
compared results of Cyrange (Kirchner and Güntert,
2011) and FindCore2 (Snyder and Montelione, 2005;
Snyder et al., 2014) (summarized in Supplementary Table
S1). These results were generally consistent, and were used to
identify consensus ranges of well-defined residue segments.
In comparisons with AlphaFold models, we considered only
polypeptide segments which are both well-defined in the
solution NMR structures and also reliably predicted in the
output of AlphaFold; i.e., pLDDT reliability scores >80
(Jumper et al., 2021b; Jumper and Hassabis, 2022). For
the 9 proteins studied here, “not-well-defined” and “not-
reliably-modeled” metrics are very consistent with each
other (Huang et al., 2021; Supplementary Table S1). The
resulting consensus residue ranges of reliably comparable
regions are summarized for each protein target in Table 1.
The union of the consensus 1) unreliably-modeled residue
ranges based on AF pLDDT score and 2) not-well-defined
residue ranges based on NMR structure convergence, were
then excluded from the NMR, X-ray, and AF coordinates for
structure quality assessment and structure comparisons
(e.g., for calculating GDT scores). This process “trims”
N-terminal and C-terminal regions, as well as some
internal polypeptide loop segments. For example, for
target SgR209C, this process identified both N- and
C-terminal regions, along with two internal polypeptide
loops (residue ranges 1–12, 39–46, 135–137, and 144–147,
Table 1) for which atomic coordinates are not consistently
modeled in the NMR and/or AF models. These residues were
exclude from structural comparisons and knowledge-based
structure quality assessment statistics. A similar approach
was used to define comparable regions of experimental NMR
structures and CASP14 AF prediction models (Huang et al.,
2021).

Modeling With AlphaFold
The six protein targets were modeled with AlphaFold-
multimer (Evans et al., 2021) implemented on GPU clusters
at RPI, and analyzed with PSVS ver 2.0 (and PDBStat). The
resulting well-defined regions of the polypeptide backbone
structures are compared for the NMR, AF, and X-ray
crystal structures of the six NESG protein targets in
Figure 5. In these comparisons, the RDC-refined NMR
structure models are shown where available. Generally, the
AF, NMR, and X-ray models of these six protein targets are an
excellent match. A backbone structural similarity matrix is
provided below each superimposed set of backbone structure
models (Figure 5). These pairwise comparison scores are
between the medoid conformer of each structure ensemble
(or the single conformer reported for the X-ray crystal
structure). The upper diagonal elements in each matrix are
Cα GDT scores, the lower diagonal Cα RMSD scores, and the
diagonal values are mean pairwise backbone Cα RMSDs
between each member of the structure ensemble and the
medoid conformer. In most cases, excluding target CtR107,
the NMR, X-ray, and AlphaFold models have high pairwise
similarity scores (GDT of 81.5–99.6) and low backbone
RMSDs (0.48–1.68 Å). In particular, the AlphaFold models
are in excellent agreement with RDC-refined NMR structures
(GDT 91.3–99.4). For target RpR324, the AlphaFold
models are a better match to the NMR structure, while in
the other cases they are a better match to the X-ray crystal
structure. For RpR324, the AlphaFold models have
high similarity with the NMR structures determined both
without (GDT = 92.9, RMSD 1.13 Å) and with (GDT =
99.4, RMSD 0.59 Å) RDCs; the match to the X-ray crystal
structure is significantly poorer (GDT = 86.7, RMSD 1.74 Å).
The basis of this difference is discussed in more detail below.
On the other hand, for target target CtR107 the
AlphaFold model is a relatively poor match to the NMR
model (GDT = 64.7; RMSD 3.89 Å). The NMR model of
CtR107 is particularly poorly converged, with backbone
RMSD of well-defined regions within the NMR ensemble
of 2.11 Å (compared to the five other targets with more
typical ensemble backbone RMSDs of 0.4–1.0 Å). The
AlphaFold model of CtR107 is, however, an excellent match
to the corresponding X-ray crystal structure (GDT = 97.3;
RMSD 1.09 Å).

Assessment of NMR and AlphaFold Models
for Representative NESG Structure Using
RPF and DP Scores
The PSVS v2.0 server was next used to assess <DP> and DPavg
metrics (along with Ravg, Pavg and Favg metrics) for the NMR,
AlphaFold, and X-ray models (Table 2). Included in this
analysis are the corresponding NMR structures refined
using a NMR-data-restrained Rosetta modeling protocol
(Mao et al., 2014). Generally, for most models and methods,
the <DP> score is > 0.70 and DPavg > 0.60, meeting criteria for
good quality models (Huang et al., 2012; Huang et al., 2021).
Remarkably, in most cases the AlphaFold models have DP
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scores (i.e., how well the model fits the NMR data) similar to,
or in some cases better than, the NMR structures generated
from these same NOESY peak list data. For each target, the
scores for the best performing method is shown in bold font.
Considering DPavg as the most discriminating score, compared
to the NMR-based models the AF models had the best score
(or tied for best score) for three of the six targets; for the
other three targets the DPavg score for the AF models was
only slightly lower (0.1 units) than the best-scoring NMR-
based models. For four of the six targets, the AF models fit
the NMR data better than the corresponding X-ray crystal
structures; for the remaining two targets the DPavg for the AF
models is only slightly lower (0.1 units) than for the
corresponding X-ray crystal structure. Hence, AlphaFold,
using no sample-specific experimental data, provides models
with an accuracy, based on the DP score, as good or better
than the experimentally derived NMR or X-ray crystal
structures.

The one outlier in this analysis is, again, target CtR107.
Comparing the <DP> and DPavg provides information about
how well individual conformers in the NMR ensemble fit the

NMR data. The observation that DPavg is significantly less than
<DP> indicates that while the average distances across the
(relatively broad) conformer distribution are consistent with
the NOESY data, no individual conformer is a good fit to these
data. Rather, there appear to be multiple conformations in
solution, providing inconsistent NOESY peak data for which
no single model is well fit. None of the modeling methods
(NMR, AF, or X-ray) provide models with DPavg score > ~0.53.
This suggests that more powerful ensemble-averaged modeling
methods, fitting the data to multiple conformational states, are
needed to optimally explain the observed NOESY data
obtained for CtR107 in aqueous solution.

Assessment of NMR and AlphaFold Models
for Representative NESG Structure Using
Knowledge-Based Metrics
A necessary, but not sufficient, condition for model accuracy is
good knowledge-based structure quality scores. PSVS 2.0
integrates multiple software packages to assess backbone and
sidechain dihedral angle distributions using Procheck (Laskowski

FIGURE 5 |Comparison of AlphaFold, NMR and X-ray crystallography models. Superimposed backbone structures of solution NMR structures (NMR, blue), X-ray
crystal structures (X-ray, grey), and AlphaFold prediction models (AF, red) for six proteins selected from the NESG NMR/X-ray pairs database. Below each
superimposition is a matrix of backbone structurally-similarity statistics. The upper diagonal provides GDT-TS scores, and the lower diagonal Cα backbone RMSDs. The
diagonals (with values in red) are Cα RMSD’s within the corresponding superimposed conformer ensemble relative to the medoid conformer. These models are
compared only for residues that are both “well-defined” in the NMR ensemble and “reliably predicted” in the AlphaFold models, as indicated in Table 1. For NMR and AF
model ensembles, the coordinates of the medoid conformers are compared. For NMR structures refined with RDC data (i.e., targets RpR324, SgR209C, and SrR115C)
the image provided is for the medoid conformer of the structure determined with these RDC data.
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et al., 1993), and overall packing scores and Ramachandran
statistics using MolProbity (Lovell et al., 2003; Chen et al.,
2010). ProCheck - backbone and ProCheck - all (backbone
plus sidechain) dihedral angle distributions and MolProbity
packing scores are normalized to Z scores, such that values of
Z > 0 are better quality scores than the mean (Z = 0) obtained for
252 high-resolution X-ray crystal structures (Bhattacharya et al.,
2007). These ProCheck-all and MolProbity packing scores
assess the quality of both backbone and sidechain
conformations in NMR, X-ray, and AlphaFold models.
Typically, good models have average Z scores > −3 for these
various structure quality scores. For all of the targets and all of
the methods, almost all of the models have average Z scores >
−3; for many of the targets and methods values of Z are >0
(Table 2). Ramachandran analysis with Molprobity indicates
nearly all backbone dihedral angles are in the allowed and
generously allowed phi-psi regions. Generally speaking, the
AlphaFold models (and Rosetta-refined NMR models) have
excellent knowledge-based dihedral Z score, packing Z
scores, and Ramachandran statistics for these metrics; in
some cases the AlphaFold models have no Molprobity

packing violations at all (in these cases MolProbity does
not provide a proper packing score, and the Z score is
defined as > +3.5 in Table 2). Both the backbone and core
sidechain conformations of the AlphaFold models have
excellent knowledge-based validation statistics.

Assessment of NMR and AlphaFold Models
for Representative NESG Structures Using
ANSURR
The models provided for these targets and methods were also
assessed using ANSURR (Table 2). Using both full-length and
trimmed (as defined in Table 1) models, the best (or second
best) ANSURR scores (corr + RMSD) were returned for the
AlphaFold models. The one exception was for target RpR324,
where the RDC-refined experimental NMR models returned
the highest ANSURR score. It is interesting to observe that
ANSURR scores have a wide diversity across the models
generated by the different modeling methods used for the
same protein target, suggesting that it provides strong
structural discrimination.

TABLE 2 | Structure quality statistics for experimental and predicted protein structures.

Sample Method <DP>a DPavg
a Ravg

a Pavg
a Favg

a ProCheck
-bbb

ProCheck
-allb

Mol
Probityb

Rama-
chandran
statisticsc

ANSURRd

full length
ANSURRd

trimmed

CtR107 NMR - 2KCU 0.72e 0.39 0.96 0.83 0.89 −1.30 −3.02 −1.21 96.8 / 3.1 91 ± 20f 82 ± 20f

Rosetta 0.70 0.40 0.95 0.84 0.89 −0.04 +0.41 +0.38 99.3 / 0.6 111 ± 25 104 ± 26
AF 0.53 0.52 0.96 0.87 0.91 +0.04 +0.12 +1.53 98.4 / 1.6 134 ± 6 129 ± 5
X-ray - 3E0H — 0.53 0.92 0.91 0.91 −0.24 −0.47 −0.39 98.7 / 1.3 96 131

GmR137 NMR - 2K5P 0.86 0.73 0.98 0.88 0.93 −1.97 −2.84 −0.14 95.0 / 4.6 58 ± 31 35 ± 24
Rosetta 0.86 0.74 0.98 0.88 0.93 −0.47 +0.47 +0.72 98.5 / 1.3 109 ± 32 75 ± 33
AF 0.80 0.78 0.98 0.90 0.94 −0.67 −0.89 >3.50g 93.7 / 5.7 127 ± 11 82 ± 13
X-ray - 3CWI — 0.73 0.94 0.91 0.93 −0.51 −0.77 +0.45 97.0 / 3.0 50 50

RpR324 NMR - 7TZD 0.84 0.79 0.95 0.89 0.92 +0.90 +0.24 +1.39 97.6 / 1.3 139 ± 10 124 ± 11
NMR - 2LPK* 0.82 0.79 0.96 0.88 0.92 +1.22 +0.65 −0.91 98.4 / 1.4 154 ± 13 142 ± 16
Rosetta* 0.82 0.81 0.96 0.89 0.92 +1.97 +2.84 +0.78 99.8 / 0.2 137 ± 15 120 ± 10
AF 0.81 0.81 0.96 0.89 0.93 +1.69 +1.83 +1.53 98.8 / 1.2 125 ± 10 132 ± 8
X-ray - 3LMO — 0.80 0.95 0.90 0.92 +1.49 +1.60 +1.10 100.0 / 0.0 117 116

SgR42 NMR - 2JZ2 0.75 0.65 0.97 0.83 0.89 −2.08 −2.25 −0.35 96.3 / 3.7 100 ± 33 84 ± 31
Rosetta 0.73 0.68 0.97 0.84 0.90 −1.14 −0.06 +1.31 99.2 / 0.8 134 ± 20 116 ± 20
AF 0.74 0.72 0.97 0.85 0.91 −1.10 −0.12 >3.50g 96.9 / 3.1 152 ± 7 139 ± 9
X-ray - 3C4S — 0.73 0.96 0.85 0.90 −0.90 −0.47 +0.73 98.2 / 1.8 117 117

SgR209C NMR - 2L06 0.80 0.67 0.97 0.89 0.92 +0.98 +0.53 −1.95 98.1 / 1.7 104 ± 19 79 ± 20
NMR - 7TZ8* 0.79 0.64 0.97 0.87 0.92 +0.87 +0.41 +1.37 96.7 / 2.8 122 ± 16 91 ± 18
Rosetta 0.80 0.69 0.97 0.89 0.93 +1.65 +2.37 +0.04 99.0 / 1.0 114 ± 23 82 ± 11
AF 0.74 0.73 0.97 0.90 0.93 +1.69 +2.13 >3.50g 99.0 / 1.0 140 ± 11 129 ± 6
X-ray - 3OSJ — 0.70 0.94 0.91 0.93 +1.30 +0.83 −0.39 98.5 / 1.5 133 99

SrR115C NMR - 2KCL 0.83 0.82 0.93 0.97 0.95 +1.65 +1.30 +0.04 97.5 / 2.4 152 ± 15 144 ± 15
NMR - 2KCV* 0.83 0.81 0.93 0.96 0.95 +1.85 +1.30 −0.69 97.1 / 2.9 142 ± 17 132 ± 15
Rosetta* 0.83 0.82 0.93 0.97 0.95 +2.64 +3.02 +1.35 98.8 / 1.2 130 ± 7 119 ± 6
AF 0.82 0.81 0.92 0.97 0.95 +2.40 +2.60 >3.50g 98.9 / 1.1 150 ± 6 144 ± 6
X-ray - 3MA5 — 0.80 0.91 0.98 0.94 +0.67 −1.18 >3.50g 93.2 / 6.8 108 108

aThe <DP> score is the DP score for the average inter proton distances in the ensemble, while DPavg, recall (Ravg), precision (Pavg), and F-measure (Favg) scores are the average value of
these metrics assessed individually for each member of the structure ensemble.
bZ scores relative to the corresponding scores obtained from a database of 252 high-resolution X-ray crystal structures solved at <1.8 Å resolution (Bhattacharya et al., 2007).
cPercent of backbone residues in allowed/generously allowed regions of Ramachandran map (Lovell et al., 2003).
dANSURR scores are the sum of ANSURR corr plus RMSD scores (Fowler et al., 2020), where the highest potential score is 200 ANSURR scores are reported for both the full-length
protein (including disordered regions) and for the trimmed coordinates that exclude the not-well-defined regions of the protein structure as indicated in Table 1.
eFor each metric and target, the best score (or tied best score) is indicated in bold font.
fAs ANSUUR scores for each ensemble span a wide range, the ANSURR scores are reported ± standard deviation.
gMolProbity does not return a clashscore for models with zero clashes; these are assigned a Z score of >3.50.
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Assessment of NMR and AlphaFold Models
for Representative NESG Structures Using
Residual Dipolar Coupling Data
For three of these targets, 15N-1H RDC data was also
available, allowing assessment of models against RDC data.
These data are plotted in Figure 6, and the resulting analyses
provided by PSVS/PDBStat are summarized in Table 3. For
five of the six RDC data sets (three targets, each in two RDC
alignment media) the NMR structures determined with
the RDC data (with or without Rosetta refinement) were
the best fit to the RDC data. However, for all six RDC data
sets, the AlphaFold models fit the RDC data better than the
NMR-based models generated from NOE data without RDC
data. In five of six cases, the AlphaFold models do not fit the
RDC data as well as models determined using these RDC
data; however in the sixth case, target SgR209C in PEG
alignment media, the AlphaFold models have an even
better fit to RDC data (lower Q factor) than the
corresponding NMR-derived models generated using these
RDC data. This same conclusion is demonstrated by linear
regression analysis (R2) of calculated vs. observed RDC values
(Figure 6). Overall, the AlphaFold models fit the
experimental RDC data better than NMR structures
generated without RDC data, and in some cases have RDC
Q factor and linear regression (R2) of calculated vs. observed

RDC values rivaling those obtained for NMR models refined
with these RDC data.

DISCUSSION

For the twelve data sets available for nine protein targets, the
AlphaFold models have remarkably good fit to the experimental
NMR data. Across a wide range of structure validation methods,
including both knowledge-based validations of backbone/
sidechain dihedral angle distribution and packing scores, and
model vs. data validation against experimental NOESY and RDC
data, the AF models have similar, and in some cases, better
structure quality scores compared with models generated using
conventional structure generation methods in the hands of
experts using these same NMR data.

The DP score for assessment of NMR derived models has been
used routinely in our laboratory, and by various scientists
associated with the Northeast Structural Genomics
Consortium, as a primary validation tool since its
development as a “NMR R factor” in 2005 (Huang et al.,
2005; Huang et al., 2006; Raman et al., 2010; Huang et al.,
2012; Rosato et al., 2012; Rosato et al., 2013; Rosato et al.,
2015; Sala et al., 2019; Huang et al., 2021) (https://
montelionelab.chem.rpi.edu/rpf/). However, despite its
sensitivity to model inaccuracies and its power for refining

FIGURE 6 | AF structures have excellent fit to RDC data. Comparison of experimentally measured 15N-1H RDC data (plotted on x-axis) and values computed from
experimental or prediction models using PDBStat (Tejero et al., 2013). The data points are for (blue) NMR models determined without RDC data, (green) NMR models
refined with 15N-1H RDC data, (red) AlphaFold prediction models, and (gold) X-ray crystal structures. For NMR and AlphaFold model ensembles, the medoid conformer
of the well-defined regions (as indicated in Table 1) were compared. The linear correlation coefficient (R2) for each data set is shown in the inset.
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NOESY peak list data (Huang et al., 2012), it has not been broadly
adopted by the protein NMR community. Here we describe
incorporation of RPF-DP analysis into the PSVS 2.0 software
package and server. Hopefully this integration will provide
broader access to these valuable tools.

In this study we outline the value of using a series of models,
generated in this case by the CASP community, to evaluate the
correlation between DP and GDT. In this analysis, carried out
with good quality NMR data, an accurate reference structure
provides a linear correlation (e.g., Figures 2A,B,D), while an
inaccurate reference structure provides a poor correlation
(Figure 2C). Another valuable insight is provided by
comparing the <DP> score, based on the average interproton
distance within a model, and DPavg, the average DP score
computed for each model in the ensemble. In cases where the
ensemble is tight and all the models fit the data, these two metrics
are similar. However, as observed for the case of target CtR107,
for dynamic systems with NOESY data arising from multiple
conformations, no single conformer model explains all of the
NOESY peak list data to provide a good DP score, and <DP> is
much greater than DPavg. Such dynamic protein structures also

challenge currently available deep-learning-based modeling
methods like AlphaFold (Huang et al., 2021).

For most of the cases studied here AlphaFold models returned
ANSURR scores similar to or better than the experimentally-
determined NMR or X-ray structures (Table 2). ANSURR scores
are particularly powerful for protein structure quality assessment
since they utilize backbone NMR resonance assignment data that
is obtained early in the traditional structure determination
process. Chemical shift data are also part of a PDB NMR
structure deposition, and is available for many NMR
structures. ANSURR scores are sensitive to hydrogen-bonding
and accurate atomic packing (Fowler et al., 2020; Fowler and
Williamson, 2022), and hence can potentially be improved by
energy refinement of the structure model. However, ANSURR
scores can also be affected significantly by large “not-well-
defined” or disordered regions of the protein structure (Fowler
and Williamson, 2022), as illustrated in Figures 3, 4. In addition,
for the CASP14 models studied here we observe that there is not a
strong correlation between ANSURR and GDT score, potentially
complicating the interpretation of the ANSURR score.

Plots of ANSURR vs. DP scores for the CASP14 NMR targets
(Supplementary Figure S1) have surprisingly low linear
correlations (r2 ranging from 0.05 to 0.38). This suggests that
DP and ANSURR scores provide complementary information for
protein NMR structure validation. Indeed, the DP score generally
has a better correlation with structural accuracy than the
ANSURR score. Since not-well-defined regions often still
contribute to the NOESY data, these cannot be excluded from
DP analysis. While protein NMR structures deposited in the PDB
include chemical shift data, most do not include NOESY peak list
(or raw experimental free induction decay NMR data) required
for the RPF-DP analysis. Practitioners of protein NMR structure
determination using NOE data are encouraged to use DP score
analysis for refining atomic models and to aid in the accurate
interpretation of NOESY peak lists from NMR spectral data.

Our analysis of NMRmodels generated with and without RDC
data revealed that for six data sets for three targets, AlphaFold
models fit these RDC data better than the NMR structures
determined without RDC data. In some cases, the AlphaFold
models have RDC Q factors rivaling those obtained for NMR
structures determined with these same RDC data. These
observations strongly support the concept of using AlphaFold
models as a starting point for RDC-based structure
determination, without the need for generating NMR NOESY
data (Cole et al., 2021).

Analysis of the AF predictions for target RpR324 is of
particular interest because the NMR and X-ray crystal models
have notably different structures and also different
oligomerization states (Ramelot et al., 2012). A detailed
analysis of these structural details is presented in Figure 7.
Movement of the α3 helix results in a more “open”
hydrophobic cavity in the X-ray structure than in the NMR
“closed” conformation (Figure 7A). The NMR sample used for
this study was largely monomeric, and size-exclusion
chromatography with multiple angle light scattering (SEC-
MALS) measurements demonstrate less than 13% dimer in
solution (Ramelot et al., 2012). Conversely, in the crystal

TABLE 3 | 15N-1H RDC Q Factors for experimental and AF modelsa.

Sample Method Q1b Q2c

RpR324 PEG NMR - 7TZD 0.383 ± 0.022 0.474 ± 0.036
NMR - 2LPK*,d 0.122 ± 0.011e 0.144 ± 0.014e

Rosetta* 0.323 ± 0.016 0.364 ± 0.023
AF 0.283 ± 0.021 0.331 ± 0.032
X-ray - 3LMO 0.395 0.464

RpR324 Phage NMR - 7TZD 0.454 ± 0.042 0.560 ± 0.074
NMR - 2LPK* 0.225 ± 0.014 0.239 ± 0.016
Rosetta* 0.220 ± 0.015 0.245 ± 0.018
AF 0.227 ± 0.010 0.253 ± 0.012
X-ray - 3LMO 0.459 0.564

SrR115C PEG NMR - 2KCL 0.430 ± 0.024 0.368 ± 0.033
NMR - 2KCV* 0.135 ± 0.047 0.111 ± 0.043
Rosetta* 0.292 ± 0.019 0.257 ± 0.025
AF 0.357 ± 0.007 0.327 ± 0.010
X-ray - 3MA5 0.378 0.355

SrR115C Phage NMR - 2KCL 0.250 ± 0.014 0.319 ± 0.022
NMR - 2KCV* 0.162 ± 0.016 0.205 ± 0.020
Rosetta* 0.170 ± 0.013 0.218 ± 0.022
AF 0.235 ± 0.006 0.321 ± 0.010
X-ray - 3MA5 0.275 0.348

SgR209C PEG NMR - 2L06 0.471 ± 0.057 0.489 ± 0.070
NMR - 7TZ8* 0.276 ± 0.036 0.277 ± 0.038
Rosetta 0.499 ± 0.053 0.546 ± 0.078
AF 0.256 ± 0.009 0.266 ± 0.012
X-ray - 3OSJ 0.272 0.307

SgR209C PAG NMR - 2L06 0.503 ± 0.065 0.433 ± 0.073
NMR - 7TZ8* 0.243 ± 0.030 0.191 ± 0.028
Rosetta 0.535 ± 0.061 0.501 ± 0.094
AF 0.371 ± 0.010 0.303 ± 0.012
X-ray - 3OSJ 0.323 0.273

a15N-1H RDC Q factors were computed for “trimmed” residue ranges shown in Table 1.
bRDC Q1 factors computed by the method of Cornilescu et al. (1998).
cRDC Q2 factors computed by the method of Clore and Garrett (1999).
dFor each RDC Q factors assessment in each alignment media, the NMR structures
refined with the RDC data are indicated with an asterisk (*). NMR-restrained Rosetta
refinement was carried out with 15N-1H RDC data for targets SrR115C and RpR324, but
did not use RDC data for target SgR209C.
eThe best (lowest) score for each target and method is indicated in bold font.
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lattice the protein forms a homodimer with an extensive buried
interdomain interface. It remains unclear if there is biological
significance for dimerization or for the open conformation,
although it seems likely that this represents a functionally
relevant conformation. We were interested in finding out
whether the AlphaFold prediction would match the NMR or
X-ray structure more closely and whether modeling RpR324 as a
homodimer using AlphaFold-multimer would provide a model
matching the X-ray crystal structure with a more open
conformation.

We found that the monomeric AlphaFold models for RpR324
are an excellent match to NMR structures and NMR data, and are
significantly better matches to the NMR structure than to the
corresponding X-ray crystal structure (Figure 7A). The GDT and
RMSD analysis (Figure 5) shows that the AlphaFold model has
best structural agreement with NMR structure 2LPK* refined
with 15N-1H RDC data collected with two alignment media
(Table 3 and Figure 7A). Based on the RPF-DP analysis, the
AlphaFold prediction models agree with the NMR NOESY data
just as well as the experimental NMR structure determined
using both NOESY and RDC data (2LPK*), and has even better
ProCheck and MolProbity clash scores as determined by PSVS
analysis (Table 2). The agreement of AlphaFold models with the
NMR 15N-1H RDC data as measured by Q factors is significantly
better than that observed for the X-ray structure (Table 3).
Taken together, it is clear that the AlphaFold models are more
similar to the NMR structures than the X-ray structure, even
though the AlphaFold AI was trained on a database of only
X-ray structures.

The next noteworthy result is that the dimeric AlphaFold
model, generated using AlphaFold multimer, correctly
matches the dimer interface observed in the protein crystal,
giving further support that this dimerization interface may
have biological significance, rather than being a crystallization
artifact. The resulting AlphaFold-predicted protomer from
this dimer has an almost identical structural match with the
monomeric AlphaFold model (Figure 7B), which matches
closely the conformation in the monomeric NMR structure
(Figure 7A). Differences between AlphaFold dimer models
and the X-ray crystal structure are still apparent with the ɑ3
helix being more open in the X-ray structure, resulting in small
alterations at the dimer interface (Figures 7C,D). Hence, even
when modeling the dimeric complex, AlphaFold does not
predict the open structure observed in the X-ray crystal
structure. The idea that the X-ray structure might represent
a functional conformation of RpR324 is, however, supported
by the expected biological function of this protein as a
specialized acyl carrier protein (AcpXL) for the synthesis of
very long-chain fatty acids (20–30 carbons). Although covalent
modification of RpR324 on residue S37 by attachment of 4′-
phosphopantetheine did not result in any significant changes
to the NMR structure, it is believed that addition of a very long
chain fatty acid to this carrier arm could favor dimerization or
expansion of the hydrophobic cavity as observed in the X-ray
structure (Ramelot et al., 2012). While modeling of multiple
conformational states of proteins, and energy landscapes,
remains an important challenge in the field of protein
structure prediction, this structure-function analysis of

FIGURE 7 | Detailed comparison of solution NMR, X-ray crystal, and AF models of target RpR324. (A) Backbone ribbon representation of solution NMR structure
of RpR324 (medoid conformer from PDB ID 2LPK, apo AcpXL) (blue), overlayed with AlphaFold structure calculated as monomer (red), and X-ray crystal structure (PDB
ID 3LMO) (grey). (B)Overlay of AlphaFold structure calculated as monomer (red) and calculated as a dimer (orange) using AlphaFold-multimer software. (C)Comparison
of (left) AlphaFold dimer (orange) with α3 helix highlighted in cyan (left), with (right) X-ray crystal structure (grey), with α3 helix highlighted in magenta. (D) Overlay of
protomers from dimeric AlphaFold model (orange) with X-ray crystal structure (grey), illustrating the significant difference in orientation of α3 helix.
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AcpXL RpR324 illustrates the power of AlphaFold models for
developing specific testable hypotheses for driving structural
biology research.

One caveat of this study is the fact that the AlphaFold2 AI
is trained on X-ray crystal structures available in the PDB
through April 2018 (Jumper et al., 2021a). For many of the
protein targets predicted in CASP14, including the three
CASP14 NMR targets analyzed here, no structures (or
structures of homologs) were available in the training data
used by AlphaFold2. Although we do not know which X-ray
crystal structures were used for training and which were used
for testing, the X-ray crystal structures of at least some NESG
NMR/X-ray pairs were probably included in the training data.
Hence, while these experimental structures (and the
structures of homologs) were excluded as templates for
AlphaFold modeling, we cannot exclude that there is some
kind of indirect memorization within the graph neural
network that specifically enhances performance for these
targets. However, for about half of the NMR/X-ray pairs
we observe DP scores and RDC Q factors indicating that
the AlphaFold models fit the NMR data a bit better than the
corresponding X-ray crystal structures; this further argues
against the notion that the remarkable performance of
AlphaFold in generating models that fit NMR data is a
trivial result of memorization of specific structural features
from the X-ray crystal structures.

Our study begs the question: is experimental NMR structure
determination of small, relatively rigid proteins obsolete?
Considering the relatively small number of cases studied here,
this would be too strong a conclusion. At the very least
AlphaFold models need to be validated against experimental
data. However, deep learning methods like AlphaFold and
RosettaFold have the potential to generate novel insights into
structure function relationships at an unprecedented rate, and on
genomic and pangenomic scales. Considering this sea change in our
ability to generate reliable protein structures, it is important to
consider how to use these models to guide sample preparation and
data analysis. For example, models could be used for construct
optimization, surface analysis for buffer optimization or site-directed
mutagenesis to improve spectral quality, interpreting chemical shift
perturbations due to protein-ligand, protein-protein, and protein-
nucleic acid interactions on modeled protein structures, screening
peptides for protein complex formation (Mondal et al., 2022),
refining AlphaFold models against RDC, sparse NOE, chemical
shift, or paramagneticNMRdata, usingmodels in interpretingNMR
data in terms of multiple conformational states of proteins, and the
further development of “inverse structure determination” (Huang
et al., 2021) in which AlphaFold models are used to guide NMR
assignments and data interpretation.

CONCLUSIONS

These studies provide an unambiguous demonstration that
AlphaFold can predict structures of small, relatively rigid,
single-domain proteins in solution, without structural
templates, with an accuracy rivaling experimental NMR

studies. AlphaFold models predicted for this study using the
platform available in the public domain fit our experimental
NMR data (NOEs and RDCs) as well or better than NMR
structures generated from these same data by experts using
traditional methods. These results contradict the widely held
misperception that AlphaFold cannot accurately model
solution NMR structures. While AlphaFold and other deep
learning methods do not yet have the ability to model multiple
alternative conformations of proteins, protein dynamics, and
various complex aspects of protein-biomolecular interactions,
these models provide a higher starting point with which to
begin structure-dynamic-function studies of proteins.
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