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Breast carcinogenesis is known to be instigated by genetic and epigenetic modifications
impacting multiple cellular signaling cascades, thusmaking its prevention and treatments a
challenging endeavor. However, epigenetic modification, particularly DNA methylation-
mediated silencing of key TSGs, is a hallmark of cancer progression. One such tumor
suppressor gene (TSG) RUNX3 (Runt-related transcription factor 3) has been a new insight
in breast cancer known to be suppressed due to local promoter hypermethylation
mediated by DNA methyltransferase 1 (DNMT1). However, the precise mechanism of
epigenetic-influenced silencing of the RUNX3 signaling resulting in cancer invasion and
metastasis remains inadequately characterized. In this study, a biological regulatory
network (BRN) has been designed to model the dynamics of the DNMT1–RUNX3
network augmented by other regulators such as p21, c-myc, and p53. For this
purpose, the René Thomas qualitative modeling was applied to compute the unknown
parameters and the subsequent trajectories signified important behaviors of the
DNMT1–RUNX3 network (i.e., recovery cycle, homeostasis, and bifurcation state). As a
result, the biological system was observed to invade cancer metastasis due to persistent
activation of oncogene c-myc accompanied by consistent downregulation of TSG RUNX3.
Conversely, homeostasis was achieved in the absence of c-myc and activated TSG
RUNX3. Furthermore, DNMT1 was endorsed as a potential epigenetic drug target to be
subjected to the implementation of machine-learning techniques for the classification of the
active and inactive DNMT1 modulators. The best-performing ML model successfully
classified the active and least-active DNMT1 inhibitors exhibiting 97% classification
accuracy. Collectively, this study reveals the underlined epigenetic events responsible
for RUNX3-implicated breast cancer metastasis along with the classification of DNMT1
modulators that can potentially drive the perception of epigenetic-based tumor therapy.
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1 INTRODUCTION

Breast cancer is one of the frequently diagnosed lethal malignancies affecting millions of women
worldwide. The risk factors include both genetic and epigenetic abnormalities whereby the latter
provides early prognostic biomarkers for breast cancer therapeutics (Chen, 2012; Sun et al., 2017).
Furthermore, DNA methylation is the most prominent epigenetic marker that frequently influences
the expression or silencing of genes involved in vital cellular activities such as cell proliferation,
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programmed cell death, and cell differentiation (Chen, 2012).
DNA methylation is mediated by DNA methyltransferases
(DNMTs), in which the DNMT1 isomer is explicitly
responsible for the maintenance of methylation status during
replication (S-phase) (Pouliot et al., 2015). Briefly, it transfers the
methyl group (−CH3) on cytosine in CpG dinucleotide regions by
keeping the CpG islands non-methylated that are preferably
located in the proximal promoter region of a gene (Tang
et al., 2009). On the contrary, the hypermethylation of
promoter CpG islands of TSGs due to the overexpression of
DNMT1 is a popular mechanism of gene silencing and a hallmark
of cancer (Subramaniam et al., 2014; Pouliot et al., 2015).

DNMT1-regulated hypermethylation of the TSG RUNX3
promoter region is a new insight and an early event in breast
cancer predominantly in TNBC (triple-negative breast cancer)
(Widschwendter and Jones, 2002; Jung et al., 2007; Jiang et al.,
2008; Subramaniam et al., 2009; Shin et al., 2016). Generally,
RUNX3 is known to elicit its tumor-suppressive ability through
major cancer signaling pathways including TGF-β, Wnt/β-
catenin, and KRAS (Chen, 2012). RUNX3 either influences the
downstream target of tumor suppressor signaling pathways or
acts as an antagonist for oncogenic pathways to exert its
antitumor activity. However, despite the evident role of
RUNX3 in breast cancer and the relation of DNMT1 with
RUNX3 gene, no study has explored the underlying epigenetic
molecular events by which DNMT1 silences RUNX3 to promote
breast cancer metastasis.

Furthermore, due to the pivotal implication of DNMT1 in
various tumors (Li et al., 2019) and the reversible nature of its
methylation activity, targeting DNMT1 through small
modulators is a promising pharmacological intervention to
revive the suppressed TSGs (such as RUNX3). To date, two
DNMT inhibitors (i.e., azacytidine and decitabine) have been
approved by FDA for the treatment of myeloid malignancies
(Gnyszka, Jastrzębski, and Flis 2013). However, the potential side
effects associated with these drugs limit their use in high-grade
malignancies. Therefore, the development of more potent
DNMT1 inhibitors acquiring potential binding pocket features
is highly desirable to restore the suppressed TSGs (RUNX3) in
cancer therapeutics. Previously, several in vivo and computational
studies have targeted DNMT1 for therapeutic purposes (Yoo
2011; Yoo, Kim, and Robertson 2012; Mirza et al., 2013; Krishna
et al., 2017); however, its impact on downstream target genes,
particularly RUNX3, requires further elucidation.

Therefore, in the present study, a BRN of the
DNMT1–RUNX3 signaling was developed to provide an
insight into the epigenetic-mediated silencing of RUNX3
leading to cancer development and metastasis. For this
purpose, qualitative modeling by the René Thomas formalism
was applied in a SMBioNet tool utilizing the existing wet-
laboratory data in the form of computation tree logic (CTL)
for parameter estimation and verification through the model
checking technique (Figure 1). The model trajectories were
explored to identify the paths involved in the overexpression
of DNMT1, activation of oncogene (c-myc), and suppression of
tumor suppressor genes (RUNX3, p21, and p53) leading to cancer
invasion or recovery (homeostasis). In addition, DNMT1 was
advocated as a potential drug target and favored to be subjected to
ML approaches to classify diverse DNMT1 modulators. Decision
tree (DT) and neural network classifiers were built utilizing the
data set of DNMT1 from the ChEMBL database to identify
potential two-dimensional binding features essential for the
modulation of DNMT1 activity (Figure 1).

2 MATERIALS AND METHODS

The overall methodology used in the current study is provided in
Figure 1.

2.1 Qualitative Modeling Framework

Definition 1. Biological Regulatory Network (BRN)
A BRN is a labeled, directed graph G = (V, E) in which

biological regulators are denoted as a set of nodes or vertices V
and their interactions as a set of edges E⊆ V × V. Each edge is
labeled by a pair of elements (τ, σ), where τ is the threshold at
which a gene U starts regulating a gene V, and σ represents the
type of interactions σ = + (activation) and − (inhibition) between
the nodes (Bernot et al., 2004).

Definition 2. Qualitative State
The state of the BRN is a configuration of the expression level

of all the nodes at a particular time instant. A state is n-tuple S =

FIGURE 1 | Flowchart showing the overall methodology utilized in the
current study. Qualitative modeling of the BRN to explore and model the
DNMT1–RUNX3 network was followed by the application of ML techniques to
construct the predictive ML (DT and ANN) models using the DNMT1
data set extracted from the ChEMBL database.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 8827382

Asim et al. Decoding the Role of Epigenetics in Breast Cancer

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


{sv1 , . . . , svn}, ∀svi ∈ δvi, where svi is the expression level of vi

(Bernot et al., 2004).

Definition 3. Resources
Each vi in a state of the BRN is controlled by its precursors G-

vi,
called the set of resources ωvi.

Let G = (V, E), at level svj, ωvi, defined as:
ωvj = vi ∈G−

vj | (svi ≥ τvi,vj and σvi,vj = +) or (svi < τvi,vj and σvi,vj =
−) (Bernot et al., 2004).

Definition 4. Parameters
Parameters of a biological regulatory network are indexed by

its set of resources. It is a cartesian product of each variable’s
element and resource (Saeed et al., 2016).

Definition 5. Betweenness Centrality
Network analysis techniques such as graph theory–based

approaches can be applied to further analyze the state graph
by sorting it based on betweenness centrality (Freeman 2019).
The betweenness centrality measures the extent to which a single
vertex or node is more central/connected than all other nodes. For
a particular node, the centrality metric is measured with the

number of shortest paths that pass through it, whereas the
betweenness would be high for a particular node if it appears
in many shortest paths (Golbeck 2015). Likewise, the qualitative
states with higher betweenness centrality value are more likely to
occur in the system, implying that these entities are frequently
expressed in biological phenomena. Moreover, the central or
more connected nodes in the system might represent a potential
therapeutic target (Golbeck 2015; Saeed et al., 2016).

2.2 Qualitative Modeling and Parameter
Estimation
René Thomas introduced a graph theory–based approach for
qualitative modeling of dynamic biological regulatory networks
(Thomas 1978). In this method, each BRN (Definition 1) is
modeled as a weighted, directed graph, which consists of a set
of nodes and edges. Nodes represent a biological entity (i.e., genes
or proteins), whereas edge represents the relationship of
activation or inhibition between the nodes.

Herein, the role of the epigenetic (DNMT1)-mediated RUNX3
silencing in cancer development and progression was examined
by regulating key oncogenes and TSGs. The literature-driven
information was used to generate the BRN, which signifies
important entities involved in the DNMT1–RUNX3 signaling

FIGURE 2 | Schematic knowledge-based network is presented to illustrate the stepwise process of replication and methylation (by DNMT1) of TSG RUNX3 and its
implication in different cancer pathways. Step 1: At the replication fork, UHRF1 recognizes hemimethylated DNA and recruits other proteins including DNMT1, Tip60,
HAUSP1, HDAC1, and PCNA to make a macroprotein complex. Step 2: DNMT1 in complex with these regulators transfers a methyl group through the base flip
mechanism onto the nascent daughter strand. The green color highlighted in the daughter strand depicts the hypomethylated promoter region of the nascent
RUNX3 gene. The red-headed lollipop structure here mimics the normal methylation status of RUNX3 gene. Step 3: Transcription machinery then successfully identifies
the promoter region to translate the functional RUNX3 protein, which acts as a tumor suppressor and combats the cancerous environment through the regulation of
major signaling pathways including TGF-beta, Wnt/β, and KRAS pathways. TSG RUNX3 exerts its antitumor activity by regulating the transcription of significant target
genes including p21, c-myc, and p53 (oval blue structures at the bottom). Steps 4 and 5: The entire macroprotein complex after performing its function undergoes
stepwise proteasomal degradation in the late S-phase of cell cycle. PCNA = proliferating cell nuclear antigen; DNMT1 = DNA methyltransferase 1; HAUSP1 =
herpesvirus-associated ubiquitin-specific protease; HDAC1 = histone deacetylase1; Tip60 = histone acetyltransferase; UHRF1 = ubiquitin-like, containing PHD and
RING finger domains 1; Ac= acetylation; RUNX3 = Runt-related transcription factor 3; TGF-β = transforming growth factor-beta; VEGF = vascular endothelial growth
factor; EMT = epithelial–mesenchymal transition; and TSG = tumor suppressor gene.
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and the relationship (activation and inhibition) among the
chosen entities. The unknown parameters were inferred by
encoding wet-laboratory biological observations as
propositional calculus or more precisely computation tree logic
(CTL) and verified through the model checking technique as
previously reported by Saeed et al. (2018). Briefly, model checking
is an automatic technique based on the exhaustive exploration of
the entire state space of a biological system, which therefore
allows the analysis and cross-verification of a large number of
possible outcomes of a network (Bernot et al., 2004). All
compatible combinations of parameters (Definition 4) were
generated and evaluated by a model checker using a
SMBioNet tool, and the model parameters that violate
laboratory data were eliminated.

Briefly, SMBioNet (Khalis et al., 2009) is a qualitative
framework–based tool that calls New Symbolic Model Verifier
(NuSMV) (Cimatti et al., 2002) as a model checker. NuSMV
works by considering a Model M of the BRN and its property φ,
which exhaustively explores M to verify φ. The SMBioNet
engages in this principle to identify logical parameters of the
models that comply more with the known observations. Once the
computational verification with laboratory data was completed,
the resultant model and all its trajectories were further analyzed
to understand how the systematic evolution of the
DNMT1–RUNX3 system takes place with time. The network
was explored using the concept of betweenness centrality to
underline important trajectories of the dynamic biological
system (i.e., homeostasis, bifurcation state, and recovery cycle).
Furthermore, the paths involved in the activation of oncogenes,
suppression of tumor suppressor genes, cancer invasion, and
recovery were also identified. This study also highlighted a
qualitative bifurcating at which the system can invade
tumorigenesis or normal homeostasis depending upon the
successive changes in the expression level of TSG and oncogenes.

2.3 Data Set Compilation or Collection
A total of 738 DNMT1 inhibitors were collected from the
ChEMBL database (target ID ChEMBL1993). Only those
compounds were extracted for which the biological activity
was estimated experimentally as the inhibitory potency (IC50

value). Initially, the removal of duplicates, small fragments (MW
< 200), and inconsistent activity values (IC50) was performed,
which was followed by the exploration and manual correction of
stereoisomers. The data preprocessing resulted in a final data set
of 242 DNMT1 inhibitors with IC50 values in the range of
0.01–1,600 μM (Section 2, Supplementary Tables S1, S2).

Briefly, our data set contains compounds of diverse origin that
include natural, synthetic (nucleoside/non-nucleoside), and
FDA-approved drugs against DNMT1, thus incorporating all
major scaffolds of DNMT1 inhibitors available to date. The
shortlisted DNMT1 inhibitors were used to build machine-
learning (DT and ANN) models. Therefore, a diverse subset
selection approach was utilized to divide the data set into a
training set (80%) and a test set (20%) for model building and
validation, respectively. Briefly, a diverse subset splits the data
into two sections based on chemical diversity calculated as a
function of distance between molecular descriptors (Koutsoukas

et al., 2013). The absolute biological activity values were
converted into binary numbers on the basis of an activity
threshold value (IC50 ≤ 10 µM) such that 1 represents active
and 0 indicates least-active class of DNMT1 inhibitors. This
binarization of DNMT1 data was supported by a histogram
plot provided in Supplementary Figure S1.

2.4 Calculation and Selection of 2D
Chemical Descriptors
All 2D MOE descriptors (2019.01) (ULC 2018) by excluding
energy-related descriptors were calculated for the training set. A
total of 158 2D descriptors were computed through MOE after
which the redundant, null, and constant value descriptors were
excluded from the final set. The descriptors with negligible
relevancy and weightage were also removed from the final set
of descriptors to improve the overall predictive ability of ML
models. Consequently, the selected descriptors were provided as
an input to WEKA (3.9.3) for the construction of a DT classifier
that was further used for shortlisting of the most relevant and
decision-making attributes.

2.5 Machine-Learning Approaches
Herein, the DT and ANN classification models were built using
the training set and the models were validated using the 20% test
set compounds.

2.5.1 Decision Tree
The C4.5 variant of the J48 algorithm implemented inWEKAwas
used to build the univariate tree of training set attributes. The J48
algorithm works by splitting the data into smaller subsets based
on features that will produce the most uniform child node at each
step (Yosipof, Guedes, and García-Sosa 2018). The process is
repeated iteratively until no more splits can be made or data are
uniformly classified into terminal nodes. Tree parameters were
tuned to improve the overall performance of the model and limit
the overfitting of data. Therefore, the lowest number of
confidence factor was used to incur more pruning and a
minimum of one instance per leaf was set for the splitting
rule, with a 10-fold cross-validation approach.

2.5.2 Artificial Neural Network
Artificial neural networks (ANNs) are nonparametric human
nervous system–inspired computational models, which process
complex input information to produce the output. A multilayer
perceptron (MLP) function ofWEKA (3.9.3) was utilized to build
the ANN model of DNMT1 inhibitors. The MLP network
typically consists of at least three layers: one input, one
output, and one hidden layer (can be more than one). The
perceptron calculates a linear combination of inputs and their
weights to compute a sum, and the output is calculated through
an activation function (most often the sigmoid) (Jiao et al., 2020).
Moreover, MLP uses back-propagation to find the optimized
input weights and builds hidden layer(s) for the classification of
nonlinear data (Frank, Hall, and Witten 2017). Generally, MLP
normalizes each attribute by default, to improve the performance
of the network. Overall, model training was performed using a
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10-fold cross-validation and the parameters were optimized on
the basis of number and nodes of hidden layer by constructing
several perceptron models. The default values of momentum,
learning rate and training time were used in order to build the
best-fit neural network.

2.5.3 Model Performance Validation
TheDT and ANNmodels were trained using the training set (80%),
and the classification was validated using the test set (20%). The
performance of the machine-learning model was further evaluated
using statistical parameters including accuracy (Eq. 1), sensitivity
(Eq. 2), specificity (Eq. 3), F-measure (Eq. 6), and MCC measure
(Eq. 7). Accuracy is the percentage of correctly classified active and
least-active compounds, whereas specificity is the percentage of true
least-active predicted compounds, and sensitivity is the proportion
of true active compounds predicted from our model. In addition,
F-score, also known as balanced accuracy, measures the precision
(how many compounds are correctly classified) and robustness
(resistance to errors) ofMLmodels. Likewise, Matthew’s correlation
coefficient (MCC) measures the difference between actual and
predicted values, and it is only high (near to 1) if all the classes
are predicted in good proportion.

Overall accuracy:

TP + TN
TP + FP + TN + FN

. (1)

Sensitivity (true-positive rate):

Tp � TP
TP + FN

. (2)

Specificity (true-negative rate):

Tn � TN
TN + FP

. (3)

Precision:

TP
TP + FP

. (4)

Recall:

TP
TP + FN

. (5)

F-measure:

2 ×
precision × recall
precision + recall

. (6)

Mathew’s correlation coefficient:

C � TP × TN − FP × FN
������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ . (7)

3 RESULTS

A schematic model depicting the stepwise process of replication
and methylation of TSG RUNX3 by DNMT1 and its subsequent

influence on various cancer signaling pathways was established
using the literature-driven information. Qualitative modeling was
then performed to unfold the cellular events involved in the
epigenetic, that is, DNMT1-mediated silencing of RUNX3 that
leads to cancer invasion. The comprehensive literature-driven
pathway of DNMT1–RUNX3 is elaborated in the Supplementary
Material Section S3, Figure 2. Briefly, a series of stepwise events
at the replication fork led by macroprotein complexes (DNMT1,
UHRF1, HAUSP, Tip60, HDAC1, and PCNA) ensures the
methylation of the newly synthesized daughter strand during
the S-phase (Figure 2). As a result, the nascent RUNX3 strand
acquires the normal status of methylation, whereas the promoter
region remains hypomethylated to facilitate active transcription
of RUNX3 gene. Subsequently, RUNX3 (transcription factor)
functions as a tumor suppressor protein to combat cancer
initiation and metastasis through various signaling pathways.
The TSG RUNX3 elicits an antitumor activity by regulating
the transcription of target genes (p21, c-myc, etc.) of the
major cancer signaling cascades, such as transforming growth
factor-beta (TGF-β), Wnt/β-catenin, and mitogenic KRAS
pathway as explained in Figure 2.

From literature-driven pathways described in Figure 2, a
qualitative biological regulatory network was generated based
on preferred entities. DNMT1, RUNX3, p21, c-myc, p53, and
MDM2 nodes were selected due to their well-established
functionality in the biological system (Supplementary
Material Section S3). As a result, the BRN (Figure 3A)
composed of total six nodes and nine interactions exhibiting
all the significant activation and inhibition relationships was
obtained. Initially, negative feedback loops were observed from
an inhibitory set of genes required by the system to generate the
stable states. According to the interaction graph (Figure 3A),
RUNX3 transactivates p21 to maintain the concentration of
DNMT1 through a negative feedback loop. In addition,
RUNX3 inhibits the onset of oncogene c-myc that might
upregulate the expression level of DNMT1 in a positive
manner. Interestingly, p53 also prevents upregulation of
DNMT1 through the activation of p21 and inhibition of
oncogene c-myc. Furthermore, the proposed network
characterized oscillatory behavior of two regulatory loops
involving DNMT1 and RUNX3: 1) a negative feedback loop
between p21 and DNMT1 through RUNX3 and 2) a positive
feedback loop between c-myc and DNMT1 through RUNX3
(Figure 3A). It is notable that the representation of the BRN
as a weighted, directed graph (Figure 3A) was obtained using
GENOTECH through the implementation of discrete formalism.
Therefore, the interaction graph utilized the qualitative data only,
that is, type of interaction (activation +, or inhibition −) among
the nodes (genes), and the threshold value for each interaction.
However, modeling the dynamic behavior of such complex
systems that include both positive and negative loops requires
the computation of accurate logical parameters. These parameters
were generated in the SMBioNet software using the known
experimental observations encoded as CTL formulas reported
in Figure 3B. The first CTL observation searches for a state with
high expression of DNMT1 and oncogenes leading to tumor
invasion. The later CTL formula seeks for the stable state or
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homeostasis that has normal expression level of tumor suppressor
genes (Figure 3B). These observations were coded as input in
SMBioNet to generate the preferred set of logical parameters.

3.1 Parameters
SMBioNet computed a total of 14 sets of logical parameters that are
presented as a heat map in Figure 4. The preferred set of logical
parameters verified through model checking might reflect the
probable biological trajectories in cancer invasion and recovery.
According to the known biological observations, the most
significant change occurs in the expression of DNMT1 and
RUNX3 in different types of malignancies including breast
tumor. The heat map suggests eight critical resources of DNMT1
based on the presence and absence of its activators and inhibitors.
For instance, (CMYC) indicates the presence of c-myc, and (CMYC,
P21) represents the presence of activator c-myc and the absence of
inhibitor p21. Likewise, (CMYC, P21, and P53) shows the presence
of activator c-myc whereby no inhibitor is present in the system.
The ability of each entity to evolve is described as a function of the
presence or absence of its resource as shown in Figure 4.

The trend of DNMT1 being induced in the presence of c-myc
was observed in all 14 parameter sets. Therefore, a parameter set

that allows DNMT1 to achieve its maximum threshold value of “2”
was selected to generate the state graph, assuming that this
concentration is lethal for breast cells. The selected parameters
(M6) allow all nodes to interact with others corresponding to the
natural dynamic phenomenon, while maintaining their
interdependencies for the activation or suppression. The source
code of input models is provided in the Supplementary Material
Section S1. The calculated parameters indicate that DNMT1
maintains a higher expression level in the presence of oncogene
c-myc signaling. Conversely, an activation of an inhibitor p21 or
p53 prevents the expression level of DNMT1 to exceed the normal
threshold value; it is also observed that TSG RUNX3 is activated in
the presence of DNMT1 signal. The expression of p53 is increased
when the MDM2 inhibition signals are absent in the system.
However, the collective behavior of the genes in a dynamic
biological system can only be concluded by interpreting the
trajectories in the state transition graph.

3.2 State Graph
On the basis of selected logical parameters (M6) inferred from
SMBioNet, a state graph was generated using GENOTECH and
analyzed on the Cytoscape software to highlight significant genetic

FIGURE 3 | (A) DNMT1–RUNX3 interaction graph (BRN) was generated by utilizing the preferred entities to discover all the important activation (+) and inhibition (−)
relationships among them. The network demonstrates predominantly two oscillatory behaviors in DNMT1–RUNX3 graph. The first one illustrates the RUNX3-stimulated
onset of p21, which in turn positively regulates DNMT1 (shownwith red arrows). The other loop exhibits the inhibition of c-myc by RUNX3, which also instigates the onset
of DNMT1 (shown with green pointed arrows). In addition, p53 can also be seen regulating DNMT1 through the activation of p21 and inhibition of c-myc signals.
(B) The second part of the figure demonstrates two CTL observations utilized by SMBioNet for the estimation of parameters that were later used to generate the state
graph of the dynamic model. According to CTL formulas, the overexpression of DNMT1 is responsible for hypermethylation at the promoter region of RUNX3 and
ultimately its suppression, which is associated with many cancer types including breast cancer. Each circle/node represents a gene, and the arrows among them show
the type of interaction they hold. Activation is denoted with green pointed arrows, and blunt red arrows represent inhibition whereby the weight of the arrows depicts
threshold values of interactions.
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evolution including the recovery cycle (Figure 5). The state
transition graph illustrates all the possible qualitative states
exhibited by the DNMT1–RUNX3 system as shown in Figure 6
(b). It contains a total of 32 nodes and 79 edges sorted on the basis
of the betweenness centrality concept of graph theory. Our
generated state graph highlights the temporal evolution of the
system in the form of trajectories from one qualitative state to the
other. It includes homeostasis, recovery trajectories, and
bifurcation state from which the biological system can evolve
either to homeostasis or to tumorigenesis. Here, we highlighted
two important trajectories of the qualitative model involved in
tumor progression and recovery/homeostasis. According to our
model, the activation of oncogene c-myc signal (c-myc = 1)
introduces pathogenesis in the biological system, which is
characterized by the qualitative states (0,0,1,1,0,0) and
(0,1,0,1,1,0) highlighted in Figures 5 and 6C, respectively.

3.3 Recovery
The qualitative model explains the step-by-step evolution of the
system to recover from stress environment and maintain
homeostasis. The onset of oncogenic c-myc (c-myc = 1) initiates
the pathogenesis by inhibiting cell cycle arrest protein/TSG p21 (p21
= 0) leading to the qualitative state (0,0,0,1,0,0), which consequently
activates DNMT1 (DNMT1 = 1) (1,0,0,1,0,0) in the system. It is a
typical pathogenic state characterized by high expression level of
DNMT1 and c-myc along with a suppressed concentration of TSGs,
that is, RUNX3, p21, and p53 as shown in Figure 5.

DNMT1 activatesRUNX3 bymaintaining themethylation status
(RUNX3 = 1) (1,1,0,1,0,0), which employs its tumor suppressor

activity and inhibits the onset of oncogene c-myc subsequently,
limiting the hyperactivation of DNMT1 leading to the states
(1,1,0,0,0,0) and (0,1,0,0,0,0), respectively. In addition, RUNX3
transactivates p21 (0,1,1,0,0,0) to further keep a concentration
check of DNMT1 expression level. The restoration of p21 signal
supervises the abnormal and uncontrolled proliferation, thus
causing the system to recover from a pathogenic environment.
These successive genetic changes evolve into homeostasis that is
generally characterized by the presence of TSGs with a moderate
concentration of DNMT1, and repressed oncogenes (0,0,1,0,0,0) as
shown in Figure 5. Notably, the qualitative state (0,0,1,0,0,0) is the
most central state of the system shown with lighter color and larger
diameter. This suggests a high probability of the infected system to
recover back to homeostasis through a series of steady states that are
relatively less central (low betweenness centrality). The graph in
Figure 5 with black pointed arrows describes all the states that the
system exhibits to recover from a pathogenic state. Under normal
circumstances, biological systems often exhibit oscillatory behavior
or homeostasis during which the overall status of the system
remains in a cycle of normal states. Thus, the qualitative model
should expect pathogenic trajectories along with normal
homeostasis behavior either as a cycle or as a closed path.

3.4 Bifurcation state
A transition bifurcation state highlighted in Figure 6 is
characterized by the onset of oncogene c-myc from which the
system could divert either toward pathogenic state or toward
homeostasis depending on the successive genetic alterations. The
suppressed level of TSG RUNX3 (right trajectory of Figure 6C)

FIGURE 4 | Heat map of logical parameters computed on SMBioNet shows 14 distinct sets of parameters. A preferred set of parameters were estimated through
model checking rendered as heat map alongwith their resources (M1–M14). Each column represents a distinct set of logical parameters where amoderate expression of
an entity is expressed using green color, an overexpression is expressed using red color, and an underexpression is illustrated using yellow color in the heat map.
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converges the system toward pathological path in which the
persistent activation of oncogene c-myc (c-myc = 1) with the
subsequent consistent suppression of TSG RUNX3 (RUNX3 = 0)
augments the hyperactivation of DNMT1. Consequently, the
activated c-myc also downregulates p21 and p53 to further
assist the metastasis and tumor invasion (1,0,0,1,0,0)
characterized by red square in Figure 6C. Alternatively (left
trajectory of Figure 6C), activation of TSG RUNX3 inhibits
the c-myc signaling and restores p21 expression, which
controls the concentration of DNMT1 to maintain normal
homeostasis of the system. This leads to normal qualitative
state (0,1,1,0,1,0) characterized by the moderate level of
DNMT1, the low expression of oncogenes, and the presence of
TSGs along with the oscillations of the p53–MDM2 circuit as
highlighted with green square on the left side of Figure 6C.
Moreover, the qualitative normal state (0,0,1,0,0,0) in the
homeostasis trajectory is well connected as shown with lighter
color and larger diameter, which explains the probability of this
state to occur more in the system than any other or pathogenic
state (1,0,0,1,0,0).

3.5 Machine-Learning Models
ML models were built in WEKA using the DNMT1 data set of
diverse structures and FDA-approved drugs (decitabine,
azacytidine) that were extracted from the ChEMBL database

(target ID ChEMBL1993). 80% of the collected DNMT1 data set
was utilized for training the model, while the remaining 20% was
included in the test set to validate the classification models. The
number of training and test set compounds along with other details
(bioactivities, activity threshold) is presented in Section 4,
Supplementary Table S3. In order to build classification models,
an activity threshold was established for both the training and test
sets such that compounds with IC50 values ≤10 μM and >18 μM
were categorized as active and least-active compounds, respectively.
As a result, the training set contained 146 active (class label 1) and
68 least-active (class label 0) compounds. Initially, all the provided
2DMOE (2019.01) (ULC 2018) descriptors were calculated to train
the DT model. The descriptors selected by the DT model were
further utilized to build the ANNmodel of DNMT1 inhibitors using
the MLP algorithm in WEKA. The descriptors including vsa_acc,
h_logP, b_count, radius, PEOE_VSA-5, b_double, SlogP_VSA5,
SMR_VSA2, Q_VSA_PNEG, and Kier3 (Wildman and Crippen
1999) were identified to be important for model learning and
differentiating between active and least-active compounds
efficiently. The detail of preferred descriptors is provided in
Supplementary Table S4 of Section 4.

3.5.1 Decision Tree
The J48 algorithm implemented in the ML software WEKA was
used to build the DT classification model. Parameters of DT were

FIGURE 5 | State graph of the recovery cycle from Model 6 (M6) is highlighted with black pointed arrows. Each circle indicates a unique qualitative state with gene
entities in the following order: DNMT1, RUNX3, p21, c-myc, p53, and MDM2, sorted based on betweenness centrality. The recovery trajectory illustrates how a
pathogenic system undergoes successive genetic evolution to reach normal homeostasis. The onset of oncogene c-myc introduces pathogenesis and tends to retain it
by downregulating p21 and upregulating DNMT1. However, the activation of TSG RUNX3 limits the overexpression of DNMT1 by inhibiting c-myc and restoring the
p21 expression. The normal state characterized as (0,0,1,0,0,0) exhibits a high betweenness centrality as shown with a larger diameter and lighter color in the state
graph. The color bar on the right side signifies the trend of betweenness centrality; that is, the lighter is the color and the larger is the diameter, the higher is the
betweenness centrality of the qualitative state and vice versa.
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FIGURE 6 | (A) Heat map of the first 8 sets of parameters out of total 14 (refer Figure 4) computed by SMBioNet is displayed, whereas Model 6 (M6) parameters
were used to generate the state transition graph for network analysis. (B) State graph of M6 is shown, which composed of 32 nodes and 79 edges sorted on the basis of
betweenness centrality. Each circle represents a unique state with gene expression in the order as follows: DNMT1, RUNX3, p21, c-myc, p53, and MDM2. The
generated state transition graph illustrates all the possible qualitative states of the system. Trajectories of the graph were then further analyzed to identify important
genetic evolution. (C) A bifurcation state is highlighted characterized by the qualitative state (010110). Trajectories display distinct paths from one common transition
state characterized by the onset of oncogene c-myc leading to homeostasis or pathological loop based on successive genetic changes. From the bifurcating
(0,1,0,1,1,0) state, the repressed RUNX3 (0,0,0,1,1,0) converges the system toward pathological state with a successive onset of DNMT1 (1,0,1,1,1,0) and offset of p53
(1,0,0,1,0,0). Here, the qualitative state (1,0,0,1,0,0) is characterized as pathological state (highlighted in red box in the right trajectory) experienced by the system due to
the consistent onset of oncogene c-myc along with persistent suppression ofRUNX3. On the contrary, the systemmight evolve toward normal state (highlighted in green
box in the left trajectory) if TSG RUNX3 gets activated causing constant inhibition of oncogene c-myc (1,1,0,0,1,0), to control the moderate expression level of DNMT1
(0,1,1,0,1,0). The normal state is characterized by the activation of RUNX3 along with the controlled expression level of DNMT1 (0,1,1,0,1,0), which is achieved by the
system through continuous activation of TSG RUNX3 along with the consistent inhibition of oncogene c-myc, ultimately leading to a typical reset state (0,0,0,0,0,0).
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optimized, and a pruned tree was built in order to get the best
accuracy and performance on the available data set. Therefore, a
minimum of 1 instance per leaf was set for the splitting rule and
the rest default parameters of the J48 algorithm were utilized to
build an optimal DTmodel. A final DTmodel with an overall size
of 23 and 12 terminal nodes was obtained using the DNMT1 data
set (shown in Section 4, Supplementary Figure S2). The overall
topology of the DT classifier is elaborated in Section 4 of the
Supplementary Material.

The model performance and overall predictive ability were
evaluated through different statistical parameters including
sensitivity (Eq. 2), specificity (Eq. 3), F-measure (Eq. 6), and
MCC value (Eq. 7). The DT classifier attained accuracy,
sensitivity, and specificity values of 0.974, 0.99, and 0.92,
respectively, as shown in table 1. Overall, 97% of DNMT1
inhibitors were correctly classified into active and least-active
class of compounds by the DT model. However, the ratios of
correctly predicted active compounds (TPR) and the truly
predicted least-active compounds (TNR) were observed to be
99% and 92%, respectively. The DT displayed an MCC value of
0.9 (table 1), indicating an optimal model efficiency with a strong
positive correlation between the actual and predicted class labels.
In addition, the F1-score was calculated to assess the balanced
classification accuracy performance of the trained DT model,
which turned out to be 0.98. As the DT showed an optimal
performance on the training data in terms of classification and
prediction, the descriptors identified by the DT model were
further utilized to build the predictive ANN model.

3.5.2 Artificial Neural Network
A set of 10 selected 2D descriptors [vsa_acc, h_logP, b_count,
radius, PEOE_VSA-5, b_double, SlogP_VSA5, SMR_VSA2,
Q_VSA_PNEG, and Kier3 (Wildman and Crippen 1999)]
were used to build the ANN model in WEKA utilizing the
MLP algorithm. Several ANN models were developed
exploiting different combinations of parameters in order to
obtain an optimal classification model. The final ANN
comprised of 10 input nodes, 1 layer of 4 hidden nodes, and
two output nodes (i.e., “1” for active and “0” for least-active
compounds) (Section 4, Supplementary Figure S3). The ANN
model was optimized using a training time of 500, learning rate of
0.3, and momentum of 0.2 to improve the accuracy and speed of
learning.

The classification performance of ANN was also evaluated
using statistical measures including classification accuracy, F1-
score, and MCC values as reported in table 1. The trained ANN

model attained a MCC value of 0.91, an overall classification
accuracy of 0.97, and a F1-score of 0.98, thus indicating an
optimal binary classification of our data set. Overall, 97% of
DNMT1 data was correctly classified into active and least-active
class by our learned ANN, whereby the true-positive and true-
negative prediction rates were observed to be 0.98 and 0.94
implying a higher specificity and sensitivity, respectively. Both
the trained DT and ANN classifiers displayed optimal statistical
performance, that is, greater than 96% and a good predictive
ability for the training data.

3.5.3 Model Validation
The obtained DT and ANN models were validated using the 20%
test set compounds that contain the most diverse chemical
structures of the DNMT1 inhibitor data set (activity range of
0.01–132 μM). Overall, DT and ANN acquired a classification
accuracy of greater than 70% for the test set whereby DT could
correctly classify 83% of the data and the ANNmodel attained an
accuracy of 73% (Table 1). Both the classifiers displayed an
optimal value of sensitivity, that is, 0.92 and 0.80 for DT and
ANN, respectively, implying a high true-positive prediction rate
on the test set. Moreover, F1-score was calculated as 0.89 for the
DT classifier and 0.81 for ANN indicative of the robustness and
unbiased classification performance of our predictive ML
classifiers. Despite the structural diversity of DNMT1
inhibitors, our models optimally retained the classification
accuracy of 0.97 on the training set and 0.82 (DT) and 0.72
(ANN) on the test data. Notably, in comparison with the ANN
model, the DT classifier could classify active and least-active
compounds more efficiently as reported in table 1. The training
and test sets utilized for model generation and validation in this
study are shown in Section 2, Supplementary Tables S1, S2.

4 DISCUSSION

TNBC is the most aggressive subtype of breast cancer that lacks
obvious treatment options due to the availability of limited
information about definite biomarkers. Previously, aberrant
epigenetic modifications have been implicated in breast cancer,
highlighting RUNX3 as a promising prognostic biomarker (Wang
et al., 2014). Moreover, several former studies have reported the
depleted level of RUNX3 in breast cancer cell lines predominantly
due to local hypermethylation at the proximal promoter region of
TSG RUNX3, which is an early event in carcinogenesis (Chen,
2012; Lau et al., 2006; Chen et al., 2016). Therefore, the aberrant

TABLE 1 | Statistical parameters of classification models, J-48 decision tree and MLP neural network, for training data calculated from WEKA.

ML algorithm Accuracy Sensitivity Specificity Precision F-measure MCC

Training set (80%)
DT 0.974 0.993 0.920 0.973 0.983 0.932
ANN 0.969 0.979 0.940 0.979 0.979 0.919

Test set (20%)
DT 0.826 0.916 0.500 0.868 0.891 0.45
ANN 0.717 0.805 0.400 0.828 0.816 0.20
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DNA methylation pattern is known as the hallmark of cancer
epigenetics characterized by DNMT1, also known as the
maintenance methyltransferase. So far, the individual role of
RUNX3 as a TSG in breast cancer and DNMT1 as the
methylation maintenance protein has been reported in various
scientific studies (Jiang et al., 2008; Chen et al., 2016; Lau et al.,
2006; Subramaniam et al., 2009). However, the underlined
epigenetic-mediated RUNX3-shared signaling that instigates
and disseminates the tumorigenesis remains largely elusive.
This study provides an insight into the integrated
DNMT1–RUNX3 signaling by taking into account various
cancer-related significant upstream and downstream regulators
(such as p21, c-myc, p53, and MDM2) and presents the
DNMT1–RUNX3 signaling cascades as one consolidated
network. To the best of authors’ knowledge, this study is one
of its kind to illustrate and model the epigenetic-mediated
silencing of TSG RUNX3 through the René Thomas
framework modeling that has largely been a common practice
of systems biology to investigate the dynamics of biological
networks (Saeed et al., 2018).

Moreover, the model checking technique was adopted to build
the interaction graph rendered as a state graph (Figure 6B) by
utilizing the literature-driven information of the
DNMT1–RUNX3 signaling (Figure 2). The similar approach
of the model checking has been previously applied in different
former studies such as parameter estimation through formal
modeling (Ahmad et al., 2012; Bibi et al., 2017), tail resorption
in tadpole metamorphosis (Khalis et al., 2009), and immunity
control in bacteriophage lambda (Richard, Comet, and Bernot
2006). We utilized this technique in the SMBioNet tool to
exhaustively explore the model space of the DNMT1–RUNX3
BRN for the estimation of precise parameters by encoding the
existing wet-laboratory data in the form of computation tree logic
(CTL) (Figure 3B). Once the computational verification with
laboratory data is completed, the resultant model parameters and
all its trajectories were further analyzed to understand how
systematic evolution of the DNMT1–RUNX3 system takes
place with time, which might lead the system to invade cancer
metastasis (Figure 6B).

As a result, two important behaviors of the DNMT1–RUNX3
system were highlighted that shows the successive genetic events
of the recovery cycle (Figure 5) and a bifurcation state leading to
cancer invasion (Figure 6C). The trajectory (right side of
Figure 6C) from our model plotted as a state graph articulates
that the onset of oncogene c-myc infects the system and
anticipates the upregulation of DNMT1 by downregulating the
RUNX3 expression level. It generates a feedback loop where the
consistent onset of oncogene c-myc accompanied by the
persistent suppression of TSG RUNX3 contributes toward the
overproduction of DNMT1. These findings are in agreement with
the previous experimental studies, which reported the
transcriptional upregulation of DNMT1 in TNBC due to the
amplified c-myc expression level, emphasizing the importance of
DNMT1 and c-myc relation in tumorigenesis (Wu et al., 2021).

On the contrary, the activation of RUNX3 (left side of
Figure 6C) and subsequent TSGs (such as p21, p53) regulate
the adequate level of DNMT1 to acquire homeostasis. In addition,

network analysis emphasized the tumor-suppressive role of
RUNX3 by demonstrating the higher probability of the
infected system to recover to normal homeostasis in the
presence of RUNX3 (left side of Figure 6C) than its likelihood
to invade the tumorigenesis. This is in line with the former
findings that have conversely related the reactivation of
RUNX3 with a reduced potential of metastasis and
invasiveness in breast cancer cells (Widschwendter and Jones,
2002). Although computational models cannot replace
experiments, they are a step to demonstrate whether or not a
proposed mechanism is sufficient to produce an observed
phenomenon or an underlying assumption on the basis of
their mathematical framework.

Moreover, the findings of our qualitative modeling suggested
DNMT1 as a critical hub regulator of various oncogenic and
tumor suppressor proteins that determine the ultimate status of
the system. These outcomes advocate DNMT1 as a potential drug
target in epigenetic cancer signaling through logic-based
temporal evolution. Notably, the hypermethylation of TSGs by
DNMT1 is a reversible process; therefore, RUNX3 expression
could be restored using demethylating compounds.
Consequently, designing specific small modulators that inhibit
DNMT1 activity in order to restore the TSG RUNX3 could
represent new clinical avenues for breast cancer therapeutics.
Several pioneer studies have discussed the probable restoration of
RUNX3 and a reduced carcinogenic potential in cancer cell lines
when treated with demethylating drugs (Lau et al., 2006; Jung,
Park, Young Kim, et al., 2007).

To date, only two FDA-approved drugs (azacytidine and
decitabine) are available that target DNMT1 in addition to
other DNMTs for the treatment of myelodysplastic syndrome
(Gnyszka, Jastrzębski, and Flis 2013). However, potential side
effects of these drugs necessitate the design of less toxic and more
specific inhibitors of DNMT1. Ever since the breakthrough of
epigenetics in cancer treatment, several in silico studies such as
pharmacophore and QSAR modeling (Yoo, Kim, and Robertson
2012; Phanus-Umporn et al., 2020) have been reported for drug
discovery against DNMT1 through small modulators. However,
to the best of authors’ knowledge, no model is developed that
could learn the diverse features of DNMT1 inhibitors. Therefore,
in this study, we adopted machine-learning approaches to
identify potential 2D descriptors of DNMT1 modulators by
utilizing all the available chemical scaffolds of DNMT1
inhibitors (i.e., natural compounds, synthetic, nucleoside
inhibitors, and FDA drugs).

ML classifiers DT and ANN were developed to classify the
active and least-active compounds of the DNMT1 data set. All 10
captured features of the best-performing model (DT and ANN)
along with feature descriptions are provided in Section 4,
Supplementary Table S4. The trained DT identified vsa_acc,
h_logP, b_count, radius, PEOE_VSA-5, b_double, SlogP_VSA5,
SMR_VSA2, Q_VSA_PNEG, and Kier3 as key descriptors of
demethylating compounds targeting DNMT1. However, the
overall vDW surface area of hydrogen bond acceptors
(vsa_acc) was reflected as the most prominent and
distinguishing 2D descriptor by the DT model. This feature
has also been previously identified by Hassanzadeh et al.
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(2017), which further emphasizes the significance of HBA for the
activity of DNMT1 modulators. Furthermore, the developed
models were able to classify the training set and predict the
test set with optimal accuracies (table 1). The final selected
trained DT and ANN classifiers showed an optimal
classification accuracy of 0.97 and high sensitivity and
specificity along with MCC values of 0.93 and 0.92, respectively.

The subsequent screening of the diverse test set from the DT
and the ANN model resulted in the classification accuracies of
0.83 and 0.72, respectively. However, the DT classifier
outperformed the ANN model showing higher classification
accuracy of 0.83 and sensitivity of 0.92. Notably, despite the
structural diversity of the DNMT1 data set, the ML classifiers
developed in the current study retained an optimal classification
accuracy of 97% for the training data and greater than 70% for the
test data. The relatively low predictive accuracy of ML models on
the test set can be attributed to the diversity of DNMT1 inhibitors
as they differ highly in terms of chemical structure, molecular
weight, and other pharmacological variables such as clogP and
lipophilicity. Therefore, the learned features of the training set
might not be sufficient to fully predict and explain the behavior of
the test set. Also, the FDA-approved drug (azacytidine) was fairly
classified among most active modulators of DNMT1 by our
developed model, which strengthens the classification and
predictive ability of the ML models.

5 CONCLUSION

RUNX3 has been proposed as a potential biomarker in TNBC for
an early prognosis, which is known to be downregulated by
DNMT1. However, the precise mechanism of epigenetic-
mediated silencing of TSG RUNX3, which results in cancer
invasion and metastasis, has not yet been explored. This study
deals with the formal modeling of the DNMT1–RUNX3 signaling
and the development of ML models on a diverse data set of
DNMT1 modulators. First, we employed a qualitative modeling
approach to provide an insight into epigenetic-inspired RUNX3
signaling. The results revealed that the onset of oncogene c-myc
introduces pathogenesis in the system and its consistent
activation along with persistent suppression of TSG RUNX3
hyperactivates DNMT1 leading to cancer metastasis.
Conversely, the activation of RUNX3 leads the system to
acquire normal homeostasis by transactivating other TSGs
such as p21 and p53. Moreover, our findings advocate
DNMT1 as a potential epigenetic drug target to revive the
suppressed TSG RUNX3 in breast cancer therapeutics. Second,

predictive ML models (DT and ANN) have been developed that
identify some potential 2D descriptors essential to modulate the
DNMT1 activity, and the best-performingmodels have effectively
classified the active and least-active inhibitors. The trained (DT
and ANN) models acquired 97% classification accuracy on the
training data set, and the subsequent screening of the test set
through DT and ANN models achieved 83% and 72% predictive
accuracy, respectively, emphasizing the optimal efficiency of the
developedmodel. In general, the application of formal methods to
unveil the network and model the underline genetic events
responsible for DNMT1-inspired TSG RUNX3 silencing along
with ML approaches to predict the 2D attributes of
hypomethylating compounds (targeting DNMT1) could
present new computational avenues for the treatment of breast
cancer requiring epigenetic therapy.
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