
INPP5E and Coordination of Signaling
Networks in Cilia
Renshuai Zhang1, Jianming Tang2, Tianliang Li1, Jun Zhou1 and Wei Pan1*

1Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Institute of Biomedical Sciences,
Shandong Normal University, Jinan, China, 2Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang, China

Primary cilia are ubiquitous mechanosensory organelles that specifically coordinate a
series of cellular signal transduction pathways to control cellular physiological processes
during development and in tissue homeostasis. Defects in the function or structure of
primary cilia have been shown to be associated with a large range of diseases called
ciliopathies. Inositol polyphosphate-5-phosphatase E (INPP5E) is an inositol
polyphosphate 5-phosphatase that is localized on the ciliary membrane by anchorage
via its C-terminal prenyl moiety and hydrolyzes both phosphatidylinositol-4, 5-
bisphosphate (PtdIns(4,5)P2) and PtdIns(3,4,5)P3, leading to changes in the
phosphoinositide metabolism, thereby resulting in a specific phosphoinositide
distribution and ensuring proper localization and trafficking of proteins in primary cilia.
In addition, INPP5E also works synergistically with cilia membrane-related proteins by
playing key roles in the development and maintenance homeostasis of cilia. The mutation
of INPP5E will cause deficiency of primary cilia signaling transduction, ciliary instability and
ciliopathies. Here, we present an overview of the role of INPP5E and its coordination of
signaling networks in primary cilia.
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INTRODUCTION

The cilium is an antenna-like organelle that is ubiquitous in various cell types. They can be divided into two
classes: motile cilia and non-motile cilia (also called primary cilia). Motile cilia have an axoneme that
contains a central pair of microtubules surrounded by nine pairs of microtubules in a configuration called
9 + 2 and mainly distribute in the respiratory tract epithelium, ventricular ependymal epithelium, sperm
and fallopian tube epithelium (Gudis and Cohen, 2010). However, primary cilia does not contain the
central pair of microtubules and mainly distribute in the cone tube, vestibular sensory hair cells and
olfactory epithelium (Takeda andNarita, 2012; Toriello and Parisi, 2009). Themicrotubule-based axoneme
protruding from the basal body is enclosed by a bilayer lipid membrane (ciliary membrane) that is rich in
membrane-associated proteins (Singla and Reiter, 2006). These proteins are pivotal in ciliary function and
structure. Firstly, as a cell signal receiver and transmitter, cilia play essential roles in the reception and
transmission of signals from extracellular stimuli. Signals are received through membrane proteins on the
ciliary membrane and transmitted to downstream pathways, resulting in cascade reactions, such as
Hedgehog (HH) and G-protein-coupled receptors (GPCR) pathway (Singla and Reiter, 2006). Moreover,
cilia are unable to synthesize their ownproteins and require intraciliary transport systems to transport these
proteins. This process was conducted in a transition zone (TZ) which is maintained by the cilia membrane
proteins. Within the TZ, the entry, localization of the transmembrane receptors and other proteins
mediated formation and maintenance homeostasis of cilia are also elaborately regulated by membrane
transport protein (Williams et al., 2011; Chih et al., 2012).
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The localisation and activity of membrane associated proteins
were dictated by phosphoinositides (PI). Due to distinct PI
compositions, the protein composition of the ciliary
membrane is different from that of the surrounding,
contiguous plasma membrane. In additional, the distribution
and abundance of PI were tightly modulated by the activity of
PI kinases and PI phosphatases. Among these regulatory
enzymes, INPP5E play critical roles in regulating the
distribution and quantity of PI on cilia membrane. INPP5E is
an inositol polyphosphate 5-phosphatase with a specific affinity
for lipid substrates (Dyson et al., 2012). As a lipid signaling
molecule, INPP5E regulates many cellular processes, including
vesicle trafficking, cytoskeletal dynamics, protein synthesis,
proliferation, and survival (Ooms et al., 2009). Here, we
detailed summarize the roles of INPP5E in ciliary homeostasis
and signal transduction.

CILIA ASSOCIATED CELLULAR
SIGNALLING

Cilia are ancient organelles with hair-like structures that extend
from the cell body into the fluid surrounding the cell (Eley et al.,
2005). Traditionally, motile cilia were thought to be a motor
organ that generation of movement (Ran et al., 2021). In contrast,
primary cilia serve an essential sensory purpose in transducing
stimuli from extracellular environment to the cell interior to
modulate the basic cellular processes (Singla and Reiter, 2006;
Song and Zhou, 2020). These indicated that the main function of
primary cilia is detection and transduction of cellular signalling.
Among these pathways, Hedgehog (HH) and G-protein-coupled
receptors (GPCR) pathway play critical roles in fulfiling the
function of primary cilia (Ko, 2016; Loskutov et al., 2018).

The Hh pathway is a leading paradigm for ciliary signaling,
and has diversity of functions in tissue homeostasis and
proliferation (Briscoe and Thérond, 2013). It is initiated by Hh
lipoprotein ligand binds to its transmembrane receptor protein
patched (Ptch). Then, Ptch is inactivated and relieves
smoothening (SMO), resulting in the activation of downstream
targets through Gli transcription factors, which are processed
from repressors to activators that organize the Hh transcriptional
program (Bangs and Anderson, 2017; Zhang et al., 2021). GPCR
signaling play critical roles in the sensory function of primary cilia
(Schou et al., 2015). GPCRs are largest receptor superfamily in
cilia which involve in numerous physiological functions. Once
activated by heterotrimeric G proteins, the specific sites of GPCRs
are phosphorylated by GRKs and recruit and bind with β-
arrestins which sequencely activate downstream signal
pathway, such as c-SRC and ERK1/2 (Eichel and von Zastrow,
2018).

Ciliary Membrane-Associated Proteins and
Ciliopathies
The composition of membrane-associated proteins confer the
cilia with specific functions and structure. Due to lack of the
ability to synthesis own proteins, the intracellular ciliogenesis

pathway requires transportation, fusion and reorganization of
ciliary proteins. And, membrane-associated proteins can
modulate the structure and molecular composition of the cilia.
Many studies have demonstrated that membrane-associated
proteins, small Rabs, play critical roles in modulating ciliary
structure. Currently, at least nine of the 66 Rabs have been
reported to be involved in cilium formation and control of
ciliary membrane protein levels (Hor and Goh, 2019). Rab8,
which plays critical roles in polarized exocytosis in polarized
epithelial cells and neurons, has been reported to promote
extension of the ciliary membrane. Disruption of Rab8
function in zebrafish inhibited ciliogenesis. Another study
demonstrated that Rab8 must coordinate with Rab11 to
execute this function. Knockdown of Rab11 expression
inhibited primary ciliogenesis (Knodler et al., 2010). ARL13B,
highly enriched in cilia, stabilizes ciliary membrane integrity and
anterograde IFT. Knock out this gene disrupts cilia architecture
(Gigante et al., 2020). The mutation of ARL13B may cause
Joubert Syndrome, a human disease now classified under the
cluster of ciliopathies (Dilan et al., 2019). Furthermore, ciliary
development and homeostasis are highly related to dynamic
changes of ciliary membrane associated proteins. The BBS
proteins were also involve in these process. They comprise a
family of at least 11 proteins that localize to cilia and/or ciliary
basal bodies (Blacque and Leroux, 2006; He and Axelrod, 2006).
Evidence from studies in model organisms such as C. elegans,
Chlamydomonas, Xenopus laevis and mice indicates that BBS
proteins assist in the organization of intracellular trafficking and
in coordinating motors responsible for anterograde IFT (Snow
et al., 2004), as well as in recruiting PCP proteins to the ciliary
basal body and cilium (Ross et al., 2005; Park et al., 2006).
Mutution in these proteins are characterized by a series of
disorders associated with ciliary dysfunction, such as obesity,
pigmentary retinopathy, polydactyly, mental and growth
retardation and renal failure (Mykytyn and Sheffield, 2004).

Except for modulating the structure and molecular
composition of the cilia, many membrane-associated proteins
also involve in receiving and transmitting extracellular signals.
The G protein-coupled receptors (GPCRs), which are specifically
located in the membrane compartment of the primary cilia, are
involved in receiving various extracellular signals (Schou et al.,
2015; Watabe et al., 2020). Multiple mutations of G protein-
coupled receptors (GPCRs) cause functional disorders of cilia and
lead to ciliary diseases. Some membrane-associated protein
family not only participate in maintaining the structure and
homeostasis of cilia, but also involve in regulating the cilia
associated signalling. Rab23, one of small Rabs, inhibits Shh
signaling by regulating Smoothened levels. However, the
mechanism by which Rab23 modulates the expression of
smoothened remains unknown elusive. The mutation of Rab23
in humans was characterized by carpenter’s syndrome (Hor and
Goh, 2019). A recent study demonstrated that ARL13B is also a
regulator of the Hh signaling pathway (Gigante et al., 2020).
However, the regulatory mechanism of Hh signaling mediated by
ARL13B was different from that of other ciliary genes that
promote the Hh response and the production of Gli repressors
and activators. Loss function of ARL13B may lead to an impaired
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response to Hh signaling and the production of activators but has
no effect on the expression of the repressor Gli3 (Gigante et al.,
2020). The mutation of ARL13B may cause Joubert Syndrome, a
human disease now classified under the cluster of ciliopathies
(Dilan et al., 2019). Arl6, also named as BBS3, is necessary for
localization of the BBSome complex on cilia. Inhibition the
expression of Arl6 cause reduction of ciliogenesis and Hh
activity (Liu et al., 2016). Abnormalities in these functions of
these proteins will cause various ciliary diseases (Pal et al., 2016;
Long and Huang, 2019). The detaied ciliopathies and related
symptom are shown in Figure 1.

INPP5E Modulates Signaling Networks in
Primary Cilia
As an inositol polyphosphate 5-phosphatase, INPP5E is mainly
located in cilia in quiescent cells to maintain it is function and
stability (Conduit et al., 2021; Kosling et al., 2018). A portion of
INPP5E is also located in the lysosome, and its membrane
anchoring and enzymatic activity are necessary for autophagy
(Hasegawa et al., 2016; Sierra Potchanant et al., 2017). INPP5E
located in the ciliary membrane could dephosphorylate
phosphatidylinositol-4,5-bisphosphate (PtdIns(4, 5)P2) to
generate phosphatidylinositol-4-phosphate (PtdIns(4)P) to
maintain a PtdIns(4)P-high, PtdIns(4,5)P2-low environment,
which was necessary for transmission of hedgehog signalling

and blockage the entry of TULP3 and Gpr161 into cilia just as
showed in Figure 2 (Chavez et al., 2015; Garcia-Gonzalo et al.,
2015). After INPP5E inactivation, PI(4, 5)P2 accumulates at the
apex of the ciliary body, while PtdIns (4)P is depleted. This process
was accompanied by the recruitment of the PI (4, 5) P2-interacting
proteins TULP3 and Gpr161 into cilia, and results in increased
production of cAMP and repression of the Shh transcriptional gene
Gli1, which affects the transmission of Shh signaling. (Han et al.,
2019). Moreover, the ciliary needed a higher shh response to
activate Smo when the function of INPP5E was lost. INPP5E
regulates the shh response by adjusting the production of GliA/
GliR in a time-dependent manner (Constable et al., 2020). By
regulating SHH signaling, INPP5E could promote
medulloblastoma progression through the PtdIns (3,4,5) P3/
AKT/GSK3β signaling axis (Conduit et al., 2017). Other
biological functions of cilia could also be regulated by the
production or substrate of INPP5E. Recent studies have
demonstrated that PIs in olfactory cilia participate in
recognizing chemical odorants. The interplay (including relative
abundance and localization) between phosphatidylinositol (3,4,5)-
trisphosphate (PIP3) and phosphatidylinositol (4,5)-bisphosphate
(PIP2), which are tightly regulated by INPP5E, play critical roles in
these biological processes (Bielas et al., 2009). Furthermore,
INPP5E regulate ciliary protein transport by controlling the
interaction of the phosphoinositide component of the ciliary
membrane with several centrosome proteins.

FIGURE 1 | The example of cilia associated disease and related Symptom. MKS, Meckel-Gruber syndrome; MORM, Mental retardation, truncal obesity, retinal
dystrophy, and micropenis; JBTS, Joubert syndrome; COACH, Cerebellar vermis hypo/aplasia, oligophrenia, congenital ataxia, ocular coloboma, and hepatic fibrosis;
SLSN, Senior-Løken syndrome Arima syndrome; LCA, Leber congenital amaurosis; ACLS, Acrocallosal syndrome; BBS, Bardet-Biedl syndrome; NPHP,
Nephronophthisis, truncal obesity, retinal dystrophy, andmicropenis; ALMS, Alström Syndrome; OFD, Orofaciodigital syndromes; PKD, polycystic kidney disease;
USH, Usher syndrome; JATD, Jeune asphyxiating thoracic dystrophy.
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INPP5E Functions Synergistically With
Other Cilia Membrane-Associated Proteins
Although playing critical roles in biological processes of cilia,
INPP5E may need to interact with membrane associated proteins
to perform its function. On one hand, the ciliary membrane
localization of INPP5E is determined by the membrane
associated proteins. INPP5E, which lacks the sequence to
which AR.L13B binds, was not detectable within cilia (Qiu
et al., 2021). PDE6δ which is essential for the classification
and entry of cilia of INPP5E also affect the retaining of
INPP5E on the ciliary membrane (Fansa et al., 2016; Kosling
et al., 2018). INPP5E targets primary cilia through a PDE6δ-
dependent mechanisms. The mutation of PDE6δ, which loses the
ability to bind with INPP5E, fails to target primary cilia (Thomas
et al., 2014).

On the other hand, INPP5E could modulate the functions of
membrane associated proteins in a direct or indirect manner. For
example, the ability of Aurora kinase A (AURKA) in promoting
the stability of cilia increases when binds with INPP5E. The
transcription of AURK is also partly regulated by INPP5E which
affect the activity of AKT (Plotnikova et al., 2015). INPP5E also
plays critical roles in rod photoreceptor cells. Mutations in the
RPGR gene are highly related to retinitis pigmentosa. Further
investigation demonstrated that these mutations lost the ability to
bind with INPP5E (Han et al., 2019; Zhang et al., 2019).
Moreover, Tulp3, which localizes to primary cilia, is a negative
regulatory factor in the Hh signaling pathway. The activation of

Tulp3 was modulated by the substrate of INPP5E: PtdIns(4,5)P2,
PtdIns(3,4)P2 and PtdIns(3,4,5)P3, which bind with the
phosphoinositide binding domain of Tulp3 to promote
MCHR1 trafficking to primary cilia (Mukhopadhyay et al.,
2010). The product of INPP5E also participate in the initiation
of ciliogenesis through modulate the function of ciliary
membrane associated proteins. PtdIns(4)P, which is tightly
regulated by INPP5E and PIPKIγ, could bind to TTBK2 and
CEP164 which inhibits the localization of TTBK2 in M-centriole
and the TTBK2-CEP164 interaction (Xu et al., 2016).

CONCLUSION AND PERSPECTIVES

Traditionally, motile cilia were thought to function by acting as
mechanical sweepers. For example, motile cilia in brain
ventricles promote the circulation of cerebrospinal fluid
(Ringers et al., 2020); the debris and mucociliary of lungs
and upper respiratory tract were cleared by cilia on epithelial
surface of the respiratory tract (Legendre et al., 2021); and
oviduct cilia transfer the fertilized egg to the uterus (Yuan
et al., 2021). On the contrary, the primary cilium is a
biosensor that transmits extracellular stimuli signals through
ciliary membrane proteins to intracellularly. Recent
investigations on the biology of cilia unveil many new
functions and roles of both primary and motile cilia. Such as
the role of motile cilia in organ homeostasis. And, primary cilia
have been confirmed to be pivotal in tumorigenesis and

FIGURE 2 | The critical roles of INPP5E in maintaining the PIs on cilia membrane.
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chemosensation (Cao et al., 2021; Shi et al., 2019). These
physiological processes are tightly modulated by ciliary
membrane-associated proteins. To fulfill these special
functions, the ciliary membrane need to have a diffferent
composition of proteins that from that of the contiguous
plasma membrane (Simons and Toomre, 2000). The quantity
and localization of ciliary membrane-associated proteins are
precisely regulated by the synergistic activity of PI kinases and
PI phosphatases. Among these PI enzymes, INPP5E plays
critical roles in ciliogenesis. An increasing number of
findings demonstrate that INPP5E executes its function by
interacting with membrane-associated proteins on cilia.
However, the detailed mechanisms by which INPP5E and
membrane-associated proteins cooperatively regulate the
functions and structure of the cilium still remain elusive. It is
necessary to elucidate these molecular mechanisms in the future
investigations. Furthermore, more studies should focus on
screening more membrane-associated proteins involved in
regulating the function and structure of the cilium. A
comprehensive understanding of how INPP5E and other

membrane-associated proteins affect protein transport inside
and outside the cilia and membrane protein structure as well as
how they change the trend aggregation of second messengers
may provide new insight for the diagnosis and treatment of
ciliary diseases.
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