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Exosomes are extracellular vesicles produced by various cell types and extensively
distributed in physiological fluids. Because of their significant role in cancer
progression, they have been a focal point for the novel cancer therapy approach.
Exosomes are highly efficient at transporting proteins, RNAs, and small drugs into
cancer cells for therapeutic purposes. In addition to their prominent role as potential
biomarkers for transporting targeted information from their progenitor cells, exosomes
have also emerged as a new avenue for developing more effective clinical diagnostics and
therapeutic techniques, also known as exosome theranostics. Lipids, proteins, and nucleic
acids transported by exosomes were investigated as potential biomarkers for cancer
diagnosis, prognosis, and future cancer treatment targets. The unique mechanism of
exosomes and their therapeutic as well as diagnostic uses, also known as theranostic
applications of exosomes in malignancies, are discussed in this review.

Keywords: exosomes, tumour etiopathology, cancer immuno-editing, theranostics (combined therapeutic and
diagnostic technology), clinical prognosis

INTRODUCTION

Cancer emerged as a severe hazard to humankind, with rising death rates worldwide (Zhao et al,,
2019a). The tumor microenvironment (TME) plays a crucial role in cancer start and progression
(Ragusa et al., 2017). Cell interaction is also vital in several diseases. To exist, reproduce, and spread,
cancer cells require interaction with other health and immune cells (Wang et al., 2019a). Exosomes
gained a lot of interest due to their cell-to-cell interaction property. The TME is altered by tumor-
exosome interaction, promoting tumor progression, longevity, immune invasion, and evasion
(Darband et al., 2018).

Exosomes, being the significant portion of TME, have shown to bear specific activities regarding
tumor formation, angiogenesis, progression as well as drug resistance (Wang et al., 2019a). Exosome-
related growth factors and cytokines may stimulate or inhibit lymphoid and immune cells of the
TME, leading to immunodeficiency and the formation of tumors (De Visser et al., 2006; Yang et al.,
2020a). Furthermore, exosomes have been successfully utilized in medication delivery (Zhao et al.,
2020; H. Rashed et al., 2017). Also, exosomes’ drug carrier capacity (Srivastava et al., 2018a; Zhang
etal,, 2019) makes them ideal drug delivery vehicles. They were invented to give various medications,
including tiny molecules, nucleic acids, and proteins, to animal models for cancer treatment.
Exosomes are also secreted by a variety of cells which can be used as preclinical biomarkers in various
cancers (Maji et al., 2017; He et al., 2018a; Farooqi et al., 2018; Das et al., 2019; Doyle and Wang,
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2019; Mannavola et al, 2019; Yu et al, 2020). Alternative
treatment techniques, such as inhibiting exosome synthesis
and blocking exosome absorption to particular receptors, have
also been considered potential cancer therapies (Qiu et al., 2020).
Overall, the extensive applicability shows that several prospective
therapeutic techniques involving the inhibition of tumor-derived
exosome synthesis, release, or absorption are attractive avenues
for the future development of cancer theranostics (Tai et al., 2018;
Wang et al.,, 2020).

According to mounting evidence, exosomes can be released by
various cells, including lymphocytes and fibroblasts. Exosomes
generated from various cells have distinct properties (Cheng et al.,
2020; Li et al., 2020). Cancer cell exosomes and MSC-derived
exosomes are used to diagnose and treat various cancers, such as
liver cancer, pancreatic cancer, etc., as demonstrated in murine
experiments (Aqil et al., 2019; Nakamura et al,, 2019; Qiu et al,,
2020). Exosomes, irrespective of where they come from, can
influence tumor development or suppression through various
signaling channels (Pinheiro et al., 2018).

This review seeks to give an insight into exosome dynamics
and progression in cancer theranostics, including their
relationships, exosome uses, and exosome roles derived from
different origins. The latest innovations in exosome technology
will aid in developing cancer treatment applications shortly.

Biogenesis of Exosomes

Extracellular Vesicles (EVs) are Nano-scale membrane vesicles that
are actively released by cells. They occur through the outward
budding of the plasma membrane or microvesicle pathway or
inward budding by the inner body membrane or exosomal
pathway. The vesicle formed through outward sprouting of the
plasma membrane is called Multivesicular bodies (MVBs).
Exosomes are vesicles of endocytic origin. The early endosome
is formed by the intrusion of the plasma membrane inwardly, and
the limiting layer of the subsequent endosome grows further to
produce tiny vesicles, resulting in the development of MVBs. The
MVB is distinguished by the formation of Intraluminal Vesicles
following invagination of the inner body membrane (ILVs).
During  their  development,  cytoplasmic  inclusions,
transmembrane, and peripheral proteins are incorporated into
ILVs. ILVs collected in the MVB lumen have two possible
outcomes: a) fusion with lysosomes, causing the contents of the
vesicles to break down [Multivesicular Endosomes or Bodies
(MVBs or MVEs)], or b) fusion with the plasma membrane,
releasing ILVs into the extracellular space as exosomes. On the
other hand, direct budding from the plasma membrane forms
microvesicles, which sequester sections of the cytoplasm (Figure
1). Microvesicle production is calcium-dependent and related to
membrane asymmetry loss and cytoskeleton instability.

More specifically, the role of various proteins varies in
different processes and origins of the exosomes. Leading cargo
into ILV involves the ESCRT and other related proteins. ESCRRT
includes PDCDG6IP (also known as ALIX), TSG101, HRS, CD9,
and CD82, etc., Other proteins include PLG2, DGKa, etc., After
MVBs fuse with the cell membrane, exosomes are secreted. This
process relies on small GTPases such as RAB27A and RAB27B.
RAB7, RABI11, RAB31, and RAB35 in some cells or SNARES
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FIGURE 1 | Process of formation of Exosomes: describes the formation

of exosomes which is done by invagination of late endosomal membranes
within large MVBs, resulting in the development of intraluminal vesicles (ILVs).
Specific proteins are integrated into the invaginating membrane during

this process, whereas cytosolic components are absorbed and confined
inside the ILVs. When ILVs fuse with the plasma membrane, they are
discharged into the extracellular region, known as “exosomes.” While
microvesicles result from direct budding from the plasma membrane.

family proteins like YKT6, VAMP7, etc., Microvesicles (MVs)
represent a relatively heterogeneous population of vesicles
formed on the outward germination fission of cell membrane
lipid microdomains and regulatory proteins such as ADP
ribosylation factor 6 (ARF6). MVs participate in immune
modulation by assisting in antigen presentation and
transmitting MHC molecules and antigens (Figure 2). It is
also possible to directly activate cell surface receptors through
proteins and biologically active lipid ligands, transfer cell surface
receptors, transcriptional factors, oncogenes, etc., Various RNAs,
including mRNA, and miRNA, are contained in extracellular
vesicles (EVs) and are functionally delivered to recipient cells.

EXOSOME AND CANCER PROGRESSION

Exosomes are produced in greater quantities (approximately 10
times) by tumor cells than normal cells, resulting in higher
exosome concentrations in the blood of cancer patients (Liu
et al, 2018). Due to paracrine subversion of
microenvironments, Tumour-derived Exosomes (TEXs)
regulate TME structuring, immune escape, and many more
(Datta et al,, 2018). As TEXs interact with various cells and
deliver a large number of biomolecules, including oncogenic
features, these organelles play a significant role in multiple
malignancies through induction of angiogenesis, tumor
metastasis, and aberrant metabolism, tumor progression,
immune dysfunction, and drug resistance.

Exosome- Angiogenesis and Tumour
Metastasis

Neovascularization is a well-known biochemical phase in the
progression of tumors and metastasis. Both stromal and tumor
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FIGURE 2 | Biogenesis of exosomes: Exosome biogenesis, cargo, and
secretion are depicted schematically. Exosomes are generated when the
endocytic membrane is invaginated and ILV is created inside the cell. The
payloads (RNAs, proteins, and lipids) are integrated into ILV via ESCRT-
dependent or ESCRT-independent pathways during maturation, and MVBs
are formed by the maturation of early endosomes. MVBs can be sent to
lysosomes for breakdown or migrate along microtubules to fuse with the
plasma membrane and release exosomes into the extracellular environment.
MVB fusion with the cellular membrane is a delicate process that necessitates
the presence of numerous key components such as Rab GTPases and
SNARE complexes. Endocytosis, direct membrane fusion, and receptor-
ligand interaction can all be used to transfer exosomal payloads from a source
cell to target cells.

cells control tumor angiogenesis by producing numerous
signaling molecules and proteins (Kerbel, 2008; Weis and
Cheresh, 2011). Proangiogenic factors discovered in TEXs
include angiogenin, TGF and many more (Webber et al., 2010;
Kucharzewska et al., 2013; Wang et al., 2016).

Exosomal VEGF regulates angiogenesis through several
pathways (Bryan et al, 2010; Weddell et al., 2018; Yang
et al, 2020b). Mesenchymal Stem Cells derived exosomes
increased VEGF expression in tumor cells by ERK1/2 and
p38 MAPK pathways activation, which led to increased
tumor development and angiogenesis (Zhu et al, 2012).
MMP-2 and MMP-9 break down matrix proteins to structure
the basement membrane of vessels and detach pericytes, while
PDGF increases pericyte recruitment in the new tube (Guo et al.,
2003; Webb et al., 2017).

Tumor metastasis begins with tumor cells splitting from the
primary neoplasm and traveling to a distant organ location,
which entails complicated biological processes. Exosomes
promote metastasis by interfering with various cellular
pathways (Jafari et al., 2021). Exosomes containing HSP90
have been shown to aid cancer cell migration and invasion by
boosting the degradation of plasminogen and E-cadherin
(Mccready et al., 2010).

Exosomes derived from metastatic breast cancer cells drive
signaling pathways for PI3K/AKT mitogen-activated protein
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kinase (MAPK), which stimulate migration and invasion of
cancer cells by degrading ECM components (Hendrix et al.,
2010). Moreover, cancer invasion simultaneously requires
invadopodia biogenesis and exosome secretion (Hoshino et al.,
2013). Rab27a-dependent exosome secretion, in conjunction with
cytokines and metalloproteinases, is thought to cause neutrophil
aggregation, which contributes to the development of metastatic
breast carcinoma (Bobrie et al., 2012).

According to several studies, exosomes, via modulating Wnt/
[-catenin and ERK signaling pathways promote EMT (Hu et al.,
2019). Exosomal miR-21 also reduces apoptosis in GC cells
(Zheng et al., 2017) while also downregulating the PTEN
tumor suppressor gene (Han et al, 2012). In BC cells,
exosome IL-6 promotes tumor development (Yu et al.,, 2019),
exosome HSP70 promotes tumor progression in cells of MSC (Li
et al,, 2016), and exosome TGF- promotes tumor growth in cells
of LAMA84 (Raimondo et al., 2015). Exosomes miR-222 help
stimulate the signaling pathway of NF-B and cause cancer cell
motility and invasion (Ding et al., 2018).

Exosomes and Cancer Immuno-Editing

The ability of the tumor to suppress the host immune system
against cancer is the primary factor responsible for hampering
immune surveillance. Additionally, TEXs mediate the
communication between cancer and TME cells, which is
critical for developing an immune-suppressive pro-tumor
microenvironment. They limit the activation and function of
helper and cytotoxic T cells, activating Tregs, inhibiting the
cytotoxicity of NK cells, and decreasing leukocyte adhesion. Ye
et al. (2014); Moloudizargari et al. (2018).

The PTEN/PI3K signaling pathway is activated by exosomes
containing miR-301a-3p, leading macrophages to polarize
from M1 to M2. By producing VEGF, TGF-b, and other
soluble chemicals, M2 macrophages are important in
angiogenesis, immunological suppression, tumor formation,
and metastasis. In studies, it was observed that exosomes
containing PD-L1 inhibited IFN production and activated
apoptosis in T-cells. Exosomes can travel further and have a
lower influence on immune cell activation than exosomes
without PD-L1 (Kim et al, 2019). As a result, TEXs
facilitate immune evasion and, as a result, tumor
development via the PD-L1/PD-1 pathway Wang et al.
(2018); Babajani et al. (2020).

Since the discovery of the Warburg effect, many attempts have
been made to investigate metabolic reprogramming in cancer
cells from oncogene acquisition to metastatic growth and
treatment response. Malignancies have been shown to contain
mutations, deletions, and variations in the number of copies of
mitochondrial DNA (mtDNA), notably in response to therapy
(Cormio et al.,, 2015; Kong et al., 2015; Dang et al., 2016). These
changes might be unintended consequences of treatment-
induced cancer cell selection. A recent study has shown that
mitochondria and mtDNA might migrate across mammalian
cells via dynamic intercellular organelle highways or nanotubes,
proving that they are not exclusively located and propagated in
somatic cells of higher species (Pasquier et al., 2013; Jackson et al.,
2016).
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Exosomes and Their Role in Cancer

Metabolism

Alterations in cell metabolism are one of the hallmarks of cancer.
Exosomes have long been thought to be essential mediators in
cancer progression, regulating extracellular communication with
cancer cells (Barros et al., 2018). It is well-established that
Tumour Microenvironment (TME) development is essential
for cancer progression. Exosome-mediated metabolic
reprogramming is observed in cancer cells and stromal cells in
the TME, implying that exosome-mediated metabolic
reprogramming plays a significant role in the progression of
aggressive cancers (Yang et al.,, 2020c). The cancer cells affect
stromal cell metabolic remodeling, which operates as a feedback
loop to help cancer cells grow faster (Tan et al., 2020).

Cancer-Associated Fibroblasts (CAFs), a bulk of TME cell
types, are characterized by the conversion to a synthetic
phenotype which could be ascertained by the expression of
markers such as a-smooth muscle actin (a-SMA), fibroblast-
specific protein-1 (FSP1/S100A4), and fibroblast activation
protein (FAP) (Ostman and Augsten, 2009). Cancer
development can cause normal fibroblasts to act as a precursor
of CAFs. CAFs promote tumor growth and progression by
inflammatory and growth factor production, among other
mechanisms (Xing et al., 2010).

The Warburg effect is defined as cancer cells’ reliance on
aerobic glycolysis even in normoxia, a frequent feature of many
cancer types. This causes glucose to be diverted to lactate,
resulting in low pH circumstances that affect TME (Warburg
etal,, 1927; Salimian Rizi et al., 2015). CAF glycolysis can be aided
by cancer cells. CAFs can then feed cancer cells with metabolites
and aid cell growth via the TCA cycle and OXPHOS. This
phenomenon is known as the “Reverse Warburg Effect”
(Martinez-Outschoorn et al., 2011). Lactate export in CAFs
and lactate uptake by cancer cells has recently been proven to
aid the turnover rates in cancer metabolism (Diehl et al., 2018).
MCT1 and MCT4 are lactate symporters that play a crucial role in
building a lactate shuttle system. MCT4 promotes lactate export,
whereas MCT1 promotes cellular lactate uptake. This lactate is
utilized as fuel by various cancer cells under complete aerobic
conditions, as it can be converted into glucose in the liver by the
Cori cycle. Caveolin-1 (Cav-1, a membrane-bound scaffolding
protein involved in endocytosis, signaling, cell motility, and
cholesterol distribution) may also contribute to cancer
progression by controlling the metabolism of CAFs, according
to more recent research (Nwosu et al., 2016).

Incremental evidence suggests an explicit role of exosomes in
metabolic reprogramming between CAFs and cancer cells.
Cancer cells cultivated with exosomes have been shown to
have lower OXPHOS and increased glycolysis, as evidenced by
increased glucose absorption and lactate production (Zhao et al.,
2016). CAF-derived Exosomes (CEDs) induce a hypoxia-like
environment in cancer cells, resulting in an increase in
glutamine reductive carboxylation, which is a crucial
mechanism for tumor cells to develop low-oxygen
environments. Cancer cells rely on this reductive glutamine
carboxylation when stromal exosomes are present. According

Exosomes as Theranostic Targets in Cancer

to a study, exosomes from pancreatic and prostate CAFs were
shown to include intact intracellular metabolite pool
components such as amino acids, acetate, stearate, palmitate,
and lactate. Exosomes can fuel the TCA cycle in a similar way as
macropinocytosis in prostate cancer, and the metabolite
enrichment resulting from exosomes is independent of Kras
mutation (Zhao et al, 2016). Furthermore, the critical
involvement of exosomes produced by cancer cells in
modifying fibroblast metabolism and increasing glycolysis
was established in breast cancer cells (Yan et al., 2018; Sung
et al.,, 2020). Exosomes produced from cancer cells may also
trigger the expression of MCT4 in CAFs, allowing the cancer
cells to export B-HB and lactate, and cancer cells expressing
MCT1 use lactate to increase OXPHOS levels (Yan et al., 2018;
Wu et al., 2020).

Exosomes and Drug Resistance

Exosomes act as a barrier to drug permeation and impart drug
resistance by transporting cargo from resistant cells to susceptible
ones (Sansone et al, 2017). According to numerous studies,
exosomes are thought to play a role in modulating
chemosensitivity to recipient cells by delivering the resistant
phenotype (Qin et al,, 2017). The trafficking of ncRNAs such
as miRNAs and IncRNAs by exosomes is a good approach for
cancer cells to gain treatment resistance. In ovarian cancer, the
exosomal transmission of miR-433, for example, can promote
cellular senescence and hence increase paclitaxel resistance
(Sousa et al., 2015).

The capacity of cancer cells to adapt to a stressful environment
is one of their most essential characteristics (Weiner-Gorzel et al.,
2015). Exosomes retain CSC self-renewal as property by carrying
these cargos, increasing resistance to numerous cancer therapies
(Luga et al,, 2012; Gradilla et al., 2014; Ayob and Ramasamy,
2018).

By upregulating PI3K/Akt signaling via miR-21, exosomes
from M2-macrophages decreased apoptosis and cisplatin
resistance in GC cells (Chairoungdua et al, 2010). The
IncRNA urothelial cancer associated-1 (UCA1) can increase
tamoxifen resistance in estrogen receptor-positive MCE-7 cells
via the mTOR signaling pathway (Fan et al.,, 2014). By activating
the Wnt signaling pathway, exosomal transfer of the IncRNA
UCAI1 can increase bladder cancer cell chemoresistance (Liao
et al., 2016). Exosomes derived from MSCs helped transmit the
IncRNA PSMA3-AS1, which provides resistance to proteasome
inhibitors (Xu et al., 2016).

Another method of acquired drug resistance in cancer is
proto-oncogene transmission via exosomes, which activates the
PI3K/AKkt signaling pathway. Anti-apoptotic signaling cascades
are stimulated by the penetration of proteins such as Ras, Src, and
MAPK families into recipient cells, resulting in a rise in drug-
resistant cells (Xu et al, 2019). Exosome-mediated drug
transporter molecules have been linked to the spread of
treatment resistance in various cancer types (Dutta et al,
2015). Exosome trans locates chloride channel one enhanced
GC cell line SGC-7901, conferring vincristine resistance (Sinha
et al., 2021).
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CLINICAL APPLICATION OF EXOSOMES

Exosomes have emerged as a new avenue in developing more
effective clinical diagnostics and therapeutic techniques.

Exosome as Biomarkers

Exosomes are suitable biomarkers for cancer diagnosis in a
non-invasive manner. For example, Exosomal caveolin-1 and
CD63 are the non-invasive markers for melanoma (Zhao et al.,
2019b). In numerous cancer types, exosomal IncRNA was
linked to tumor classification (III/IV), tumor stage, and
lymph node/distant metastases, either in combination with
miR-21 or on its own (Peinado et al., 2012). Within TEXs,
pancreatic ductal adenocarcinoma cells produce a type II
transmembrane  protein called cytoskeleton-associated
protein 4 (CKAP4). CKAP4 can be employed as a biomarker
for pancreatic ductal adenocarcinoma diagnosis, staging, and
targeted treatment, according to a study of patient blood
samples (He et al, 2018b). Exosomes extracted from
glioblastoma  patients’ plasma also included TrkB
(Tropomyosin receptor kinase B) expression, suggesting that
this receptor might be employed as a biomarker for
glioblastoma diagnosis (Kimura et al., 2019).

Exosomes have recently been discovered to have DNA and
RNA sources in circulation (Pinet et al., 2016). Exosome DNA
(exoDNA) was significantly predictive of the outcome of cancer
therapy and progression in patients with metastatic malignancy
(San Lucas et al., 2016). MicroRNAs, in addition to DNA, are
valuable indicators of cancer diagnosis and progression. MiR-21
and miR-155, for example, have been reported to be considerably
elevated in recurrent tumors compared to original tumors in lung
cancer (Sohn et al., 2015; Bernard et al., 2019).

Exosomes can also be utilized to track how well a patient
responds to treatment. In NSCLC patients and melanoma treated
with an antibody’s combination of PD1/PD-L1, there was an
essential link between exosomal PD-L1 mRNA expression levels
and therapeutic response. Exosomes derived from plasma
exhibited greater PD-L1 mRNA levels, indicating a stronger
reaction (Hornick et al., 2015).

Exosomes in Immunotherapy

Despite clinical advancements, cancer remains the leading cause
of death globally. Researchers are also working on a new
technique to use exosomes to modify immune responses
against cancer: cell-free vaccinations. Exosomes produced
from DCs are loaded with a tumor-specific antigen in a
classic strategy to re-establish anticancer immunity; miRNAs
or exosomes alone are used to induce an immune response in
the recipients. After a tumor peptide pulse, André et al. isolated
exosomes from DCs and gave them to mice with preexisting
tumors, resulting in tumor rejection mediated by T-cell
activation (Munoz et al, 2013). Exosomes expressing
modified IL-2 were later discovered to be capable of causing
a considerable regression of a preexisting tumor by targeting the
antigen-specific Th1-polarized immune response and cytotoxic
T lymphocytes (CTL) with exosomes expressing modified IL-2
(André et al., 2004). Because DCs have a lot of lactadherin on
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their surfaces, which enhances exosome absorption, exosomes
produced from DCs are beneficial in treatment (del Re et al.,
2018). The functional moieties of exosomes contribute in the
induction of antitumor immune responses, both innate and
adaptive (Yang et al., 2007).

IFN and polycytidylic acid were used as adjuvants to create
mature exosomes formed from DC with increased capacity for
Th1 cell activation (Viaud et al., 2011; Syn et al., 2017). MS-275, a
histone deacetylase inhibitor, and Hsp70 release increased
lymphocyte proliferation and NK cytotoxicity (Pitt et al,
2016). Exosomes formed from heat shock tumors were
discovered to have higher immune-stimulating capabilities due
to increased MHC expression and cytokine quantities (Xiao et al.,
2013). After being pre-incubated with HSP70 surface-positive
exosomes, NK cells promote apoptosis in colon cancer cells by
releasing granzyme B (Chen et al., 2006). Extracellular HSP70 was
later discovered to activate macrophages, and this immunological
modulator effect depended on HSP70’s capacity to translocate
into the plasma membrane from the cell surface (Gastpar et al,,
2005).

Exosomes and Delivery of Drugs

Exosomes are non-toxic, non-immunogenic, and have a greater
penetration rate through tumor cells than conventional drug
delivery methods. Exosomes, due to their stable load capacity,
can carry proteins, miRNAs, small interfering RNAs (siRNAs),
and other therapeutic compounds (Figure 3) (Vega et al., 2008).
Exosomes also have the advantage of crossing biological barriers
such as the blood-brain barrier (BBB) and settling in specific areas
(Brannon-Peppas and Blanchette, 2004; Hood et al., 2011; Zhao
et al., 2018).

The modified exosomes have significant anti-neoplastic effects
in pancreatic adenocarcinoma cells of humans (Tominaga et al.,
2015). Exosomes carrying paclitaxel derived from human
prostate adenocarcinoma cells, which are androgen-sensitive,
were found to negatively affect the cancer cells’ viability
(Pascucci et al, 2014). In BC cells, exosomes expressing
anticancer action was demonstrated when cholesterol-modified
miRNA 159 and doxorubicin were administered along with
metalloproteinase 15 (ADAM15) (A15-Exo) and disintegrin
(Saari et al., 2015).

Exosomes might be used to deliver anticancer proteins to
cancer cells with pinpoint accuracy. TNF-related apoptosis-
inducing ligand (TRAIL) activates death receptors in cancer
cells, causing them to perish Gong et al. (2019). Tumor cells
lacking LATS1/2, a Hippo pathway kinase, have produced
exosomes rich in nucleic acid boosting tumor immunogenic
behavior (Rivoltini et al., 2016).

Because clinical use of nucleic acid medications is limited due
to insufficient delivery methods, exosomes may be a good vehicle
for delivering therapeutic nucleic acids. RNAs (siRNA and
miRNA) have been delivered to tumor cells using exosomes.
Exosomes derived from adipose stem cells were utilized to
provide miR-122, making hepatocellular  carcinoma
chemoresistant (Lou et al., 2015; Moroishi et al, 2016).
Exosomes were also utilized to transport siRNA against
RAD51, which reduced RAD51 expression in cervical and
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fibrosarcoma cancer cells, resulting in significant cell death in the
recipients (Zhang et al., 2020).

Clinically, nanotechnology-based drug delivery systems are
among the most promising tools to achieve this goal. Compared
with liposome nanomaterials, metal nanomaterials, and polymer
nanomaterials, exosomes as carriers can overcome the
shortcomings of poor bioavailability and reduce non-targeted
cytotoxicity and immunogenicity (Sun et al., 2010; Srivastava
et al, 2018b). And exosomes contain transmembrane and
membrane anchoring proteins, which enhance endocytosis and
thus promote the transfer of their contents (Blanco et al., 2015).
For instance, Kim et al. found that paclitaxel-loaded macrophage-
derived exosomes significantly increased cell uptake in 3LL-M227
mouse Lewis lung cancer cell line compared to paclitaxel-loaded
liposomes (Kamerkar et al., 2017; Luan et al., 2017).

Scientists developed a new technique for decreasing drug
resistance traits using vesicles derived from tumor cells packed
with antitumor drugs. Chemotherapeutic medications were
bundled into tumor cell-derived vesicles to improve
medication access into the nucleus. TRCs preferentially
absorbed these vesicles, allowing antitumor medications to be
released and assisting in reversing treatment resistance in TRCs
in vitro (Shtam et al., 2013). According to research, curcumin
stimulates myeloid cells through exosomes, resulting in anti-
inflammatory effects and monocyte death (Ma et al., 2016).
Moreover, compared with free drugs, exosome-based delivery
platforms can significantly reduce side effects. The use of
engineered exosomes containing miR-21 sponge constructs
could downregulate the expression of miR-21 in glioma cell
lines U87-MG and C6, thereby upregulating the target genes
PDCD4 and RECK of miR-21 and preventing their malignant
behavior (Kim et al., 2016).

Recent studies have shown that exosome surface modification
is performed using oligonucleotide binding methods. Such cargo

may potentially alter cell function and alter cell-to-cell transport
(Monfared et al, 2019). Triple-negative breast cancer is one
subtype of breast cancer with the most metastatic and
recurrent characteristics. A study by Li et al. (Yerneni et al,
2019) modified the surface of the exosomes with a peptide
targeting the mesenchymal-epithelial transition factor gene
(c-Met), for hepatocyte growth factor, which is overexpressed
on triple-negative breast cancer cell surfaces Li et al. (2018).
Since exosomes can also affect CSCs by targeting CSC-specific
signaling pathways, such as Wnt, Notch, Hippo, Hedgehog, NF-
kB, and TGF-B pathways, selective targeting of CSCs via the
above pathway using exosome loading inhibitors (miRNA or
siRNA) is considered to be achievable. Existing results have
shown that exosomal Wnt from fibroblasts could induce
dedifferentiation of cancer cells to promote chemotherapy
resistance in CRC, suggesting that interference with exosomal
Wnt signaling could help improve chemosensitivity and
treatment window. Exosomes are projected to be beneficial in
treating cancer as a whole, with uses in biomarker detection,
tumor immunology, and drug delivery. They might potentially
alter medicine as a significant participant in theranostic oncology.

Antitumour Vaccine Using Exocrine System
TEXs have a dual effect on the immune system,
ie, immunosuppressive or immunostimulatory effects.
Numerous research has shown that TEXs can interfere with
the maturation of DCs, weaken the activation of NK cells,
induce suppressor cells of myeloid origin, and transform
macrophages into tumor-promoting phenotypes (Raghav et al.,
2012; Whiteside, 2016; Chen et al., 2017). The activated CD8"
effector T cells in the circulation system of cancer patients were
induced apoptosis by TEXs, which was one of many
immunoinhibitory mechanisms of TEXs and suppressed the
patient’s general immune system. As a carrier for delivery
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products, exosomes can initiate antitumor immune responses
with significant therapeutic effects on tumor progression (Olejarz
et al., 2020). In a mouse model with melanoma, mice were treated
with a-galactosylceramide/ovalbumin-loaded exosomes, which
induced an early T cell response and eventually slowed tumor
growth compared to the control group. Abundant alpha-
fetoprotein in exosomes produced by in vitro cultured HCC
could stimulate the antigen-presenting function of DCs,
stimulate the proliferation of CD8" T cells, regulate the
secretion of inflammatory cytokines (reducing IL-10 and TGEF-
B secretion and increase the secretion of IFN-y and IL-2), and
enhance immune-induced apoptosis (Rao et al., 2016; Huang
etal., 2018; Wang et al., 2019b). According to Xie et al. (2010), a
vaccine developed by exosomes was effective in antitumor
immunity. Their study used exosomes from MM (multiple
myeloma) cells to stimulate antitumor immune responses and
generate prophylactic immunity in MM cell lines (Shi et al., 2018;
Li et al,, 2019). TEXs recovered and enriched from patient sera
may provide an optimized, individual-specific antigen source for
DCs vaccination (Xie et al., 2010). How to make full use of the
advantages of TEXs, and bypass their disadvantages to regulate
tumor immunity needs further research, which has great
potential in the application of cancer targeted therapy (Gu
et al., 2015; Liu et al.,, 2015).

CONCLUSION AND FUTURE PROSPECTS

We believe that the intricate nuances associated with the
biogenesis as well as the prospecting of exosomes as a
theranostic target for aggressive cancers is yet to be exploited
to its fruition as cumulative evidence from populations with
heterogeneous genetic makeup are yet to be documented.
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