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Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that regulate the
turnover of extracellular matrix (ECM) components. Gross and La Piere discovered MMPs
in 1962 during an experiment on tissue samples from a tadpole’s tail. Several subtypes of
MMPs have been identified, depending on their substrate specificity and localization.
MMPs are involved as essential molecules in multiple and diverse physiological processes,
such as reproduction, embryonic development, bone remodeling, tissue repair, and
regulation of inflammatory processes. Its activity is controlled at various levels such as
at transcription level, pro-peptide activation level and by the activity of a family of tissue
inhibitors of metalloproteinase, endogenous inhibitors of MMPs. Cancer metastasis, which
is the spread of a tumor to a distant site, is a complex process that is responsible for the
majority of cancer-related death It is considered to be an indicator of cancer metastasis.
Duringmetastasis, the tumor cells have to invade the blood vessel and degrade the ECM to
make a path to new loci in distant places. The degradation of blood vessels and ECM is
mediated through the activity of MMPs. Hence, the MMP activity is critical to determining
the metastatic potential of a cancer cell. Evasion of apoptosis is one of the hallmarks of
cancer that are found to be correlated with the expression of MMPs. As a result, given the
importance of MMPs in cancer, we describe the role of these multifunctional enzymes
MMPs in various aspects of cancer formation and their rising possibilities as a novel
therapeutic target in this review. There is also a brief discussion of various types of
therapeutic components and drugs that function against MMPs.
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INTRODUCTION

Matrix metalloproteinases (MMPs) are one of the most important families of proteases that act as a
biological tool to cleave different components during the reconstruction of an extracellular matrix
(ECM). ECM is a mechanical support to the cell and sets up to maintain the basic characteristic of the
tissue. The interaction of cells with the ECM of their microenvironment determines the cell
phenotype and its molecular functions. ECM is a complicated network composed of diverse
biochemical components such as proteins, glycoproteins, proteoglycans, and polysaccharides
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(Yue, 2014). Apart from being a scaffold for cells/tissues to
maintain their integrity and elasticity, ECM releases growth
factors and other molecules that participate in various cellular
pathways based on physiological demand (Csapo et al., 2020).
Moreover, it mediates intercellular communication, signal
transduction, and regulation of cellular events such as
proliferation and cell death. ECM is a dynamic environment
that constantly undergoes remodeling to maintain tissue
homeostasis (Lu et al., 2011). ECM remodeling is an
important and crucial event during normal and diseased
physiological conditions. During ECM remodeling, cells
undergo partial or complete degradation of different
components of ECM. Degradation not only decreases the
quantity of matrix proteins but also produces matrix protein
degradation-derived bioactive fragments that are involved in
various physiological and pathological processes (Cabral-
Pacheco et al., 2020). This process of degradation is mediated
by specific proteases such as MMPs that act spatially and
temporally to bring about the remodeling (Kessenbrock et al.,
2010).

The tight regulation of MMPs is responsible for maintaining
the homeostasis of the body. Dysregulation in any regulatory
mechanisms leads to aberrant expression of MMPs, which leads
to different disease conditions like arthritis/osteoarthritis and
fibrotic diseases as contributors to tissue destruction disease
progression (Bonnans et al., 2014). Abnormal MMP
expression has been observed in a variety of diseases,
including neurological disorders such as Parkinson’s disease,
Alzheimer’s disease, Japanese encephalitis, and glaucoma
(Singh et al., 2015). MMPs also play role in diseases such as
Crohn’s disease and hepatic ischemia (Ferrigno et al., 2020;
Rautava et al., 2020). MMPs expression is generally very low
in normal conditions, but elevated levels ofMMPs are observed in
different types of cancers and correlate with the enhanced
proliferation and growth of tumors (Jiang et al., 2002).
Inflammation is also now included in cancer hallmarks and
has been found to be linked with the advancement of cancers
and MMPs have been shown to influence inflammation in the
tumor microenvironment in myriad ways (Coussens and Werb,
2002). Likewise, MMPs are also involved in various aspects of the
development of cancer stem cells (Kessenbrock et al., 2015). In
this review, we cover the involvement of the multifunctional
enzymes MMPs in several facets of cancer formation, as well as
the various therapeutic categories that can work against MMPs.

Matrix Metalloproteinase in Proliferation,
Invasion, and Migration
Metastasis is the dissemination of the cancer cells from one organ
to another into a local or distant site, constituting more than 90%
of cell death. Metastasis has a crucial role in the prognosis of the
disease (Eccles and Welch, 2007). It occurs in a cascade of events,
involving seven different steps: 1) detachment of cells from the
primary site, 2) intravasation of cells into vascular or lymphatic
channels, 3) survival of cells in the circulation, 4) adhesion into
blood vessels, 5) extravasation of cells into new loci, 6)
establishment of colonies in a new site, and 7) formation of

tumor-specific blood vessels and angiogenesis. It is estimated that
only 0.01% of cells that enter the circulation will successfully
colonize in distant organs, hence considered to be a highly
inefficient process (Valastyan and Weinberg, 2011). Stephen
Paget proposed the “seed and soil hypothesis,” which states
that the spread of tumor cells is governed by the interaction
between the cancer cells (seed) and the host organ (soil). Studies
show that premetastatic niches prepare the target organ to accept
and form a secondary tumor (Liu and Cao, 2016; Peinado et al.,
2017). Premetastatic niches are a specialized environment that
favors cancer cell seeding and tumor development by containing
protumor immune cells and altered ECM components.

Degradation of ECM leads to the invasion of tumor cells to
promote metastasis. MMPs not only degrade the ECM
components but also expose some binding sites to other
receptors and release biologically active molecules (Walker
et al., 2018). Invasive cancer cells form specialized F-actin-
based protrusions of the plasma membrane called invadopodia
to clear the path by the ECM degradation (Paz et al., 2014).
Invadopodia are found in cancer cells with high metastatic
potential. Studies have documented that different types of
growth factors and cytokines are found to stimulate
invadopodia formation. In this regard, a trans-membrane-type
1 MMP (MT1-MMP), MMP-14, accumulates in the invadopodia
and facilitates the localized degradation of ECM during the intra/
extravasation process (Jacob and Prekeris, 2015). In 2020 Yan
et al., demonstrate that MT4-MMP regulates invadopodia
formation and cell movement and enhanced cell migration
and invasion Yan et al. (2020). MT1-MMP, a multifunctional
enzyme, is also involved in the activation of pro-MMP-2, leading
to tumor growth (Deryugina et al., 2001).

Moreover, MT1-MMP degrades MMP-8, and MMP-13 MT1-
MMP degrades multiple ECM components, including collagen
types I, II, and III; fibronectin; laminin-1; vitronectin; aggrecan;
gelatin; α2-macroglobulin; αl proteinase inhibitor (α1Pi); and
proteoglycans (Shiomi et al., 2010). Apart from degrading various
ECM components, MT1-MMPmay additionally release bioactive
matrix fragments named matrikines, which function as
extracellular modulators (Adair-Kirk and Senior, 2008).

Role of Matrix Metalloproteinases in
Epithelial–Mesenchymal Transition
Upregulated expression of MT1-MMP enhances metastasis by
enhancing epithelial-to-mesenchymal transition (EMT) (Pang
et al., 2016). In squamous cell carcinoma, EMT is associated
with downregulation of E-cadherin (epithelial cadherin, E-cad)
and upregulation of TWIST, ZEB, and zinc finger E-box-binding
homeobox 1 (ZEB1) (Zhang et al., 2015). According to a study by
Sato et al., MMP-2 was shown to be important in the invasive
spread of ovarian cancer, while MT1-MMP was involved in both
the activation and degradation of the extracellular matrix (ECM)
as well as their cooperation withMMP-2 (Sato and Takino, 2010).

EMT is a highly coordinated event during which epithelial
cells lose their epithelial characteristics and acquire a
mesenchymal phenotype. In this process, epithelial cells
undergo alterations in apical–basal polarity, disassemble their
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junctional structures, express mesenchyme cell proteins, acquire
more spindle-shaped mesenchymal-like cells, and become
migratory. This event is intrinsically linked to various
processes such as embryonic development, wound healing,
tissue fibrosis, and tumorogenesis. It has been considered to be
an essential event in the invasion andmigration of malignant cells
during metastasis (Singh and Settleman, 2010). The loss of
epithelial markers such as E-cad, claudins, and occludins and
the rise of mesenchymal markers like vimentin, fibronectin, and
N-cadherin are changes linked to EMT (neuronal cadherin, N-
cad) (Lamouille et al., 2014; Nieto et al., 2016).

In cancer, EMT programs can be activated by various factors
such as transforming growth factor-β (TGF-β), epidermal growth
factor, and hepatocyte growth factor. Tumor hypoxia is a
common feature of the microenvironment in solid tumors,
which regulates the transcriptional factors such as ZEB1/2,
TWIST, zinc finger protein SNAI1 (SNAIL), E2A proteins,
and E2A immunoglobulin enhancer-binding factors E12/E47
(E12/E47) to downregulate the epithelial cell markers E-cad
expression and induce mesenchymal gene expression.

Cadherins are transmembrane glycoproteins responsible for
cell–cell adhesion and maintenance of normal tissue architecture
(Oda and Takeichi, 2011). The role of different cadherins in the
process of tumorogenesis has been studied extensively.
“Cadherin-switch” is defined as the loss of E-cad and
increased expression of N-cad during EMT, and this transition
induces or enhances the metastatic potential of the tumor cells ( ).
The adhesive activity of E-cadherin prevents cells in the tumor
mass from dissociating from one another and therefore prevents
spread into other tissues. The loss of E-cad can also result in the
mislocalization of α-catenin and p120 catenin, which leads to the
activation of mitogen-activated protein kinase (MAPK)
pathways. E-cad thus acts as a tumor-suppressor protein (Na
et al., 2020). Signaling pathways such as Wnt and TGF-β activate
SNAIL and SLUG, and these molecules further regulate the
“cadherin switch” by downregulating E-cad and inducing the
expression of mesenchymal N-cad. N-cad stimulates cell
proliferation through MAPK pathways. EMT also depends on
the activity of MMPs through different mechanisms. Cells that
undergo EMT can produce more MMPs and facilitate cell
invasion and metastasis; the elevated levels of MMPs in turn
enhance the EMT. In addition, stromal-like cells that are
generated during EMT drive cancer progression via further
MMP production (Radisky and Radisky, 2010).
MMPs −1, −2, −3, −7, −9, −14, and −28 are the main MMPSs
that participate in the EMT.

TWIST, a basic helix-loop-helix transcription factor have a
major role in embryonic development. This gene was also found
to be expressed in a number of malignancies, where it promotes
the tumor initiation, its growth, and metastasis. Overexpression
of TWIST induces EMT. Overexpression of twist increases the
invasive and metastatic abilities of cancer cells by promoting the
downregulation of E-cad and the induction of an EMT (Yang
et al., 2004).

ZEB1 (also named TCF8 or DeltaEF1) is a zinc finger E-box
binding homeobox 1, transcription factor that promotes tumor
invasion and metastasis by inducing EMT. It induces EMT by

downregulating the E-cad expression. Apart from this,
ZEB1 regulates other target genes involved in tumor
progression such as Lgl2, PATJ, HUGL2, and Crumbs3
(Zhang et al., 2015). ZEB1 can promote drug resistance and
the survival of cancer cells (Zhang et al., 2015) According to a
study, after focal ischemia, gelatinase A (MMP-2) and gelatinase
B (MMP-9) activities in the human brain increase (Clark et al.,
1997). It also indicates that increased levels in several forms of
human malignancies are connected with a poor prognosis
(Roomi et al., 2009; Kunz et al., 2016). Elevated MMP activity
has been linked to a variety of pathologic diseases, and the
therapeutic effect of MMP inhibitors is being investigated in a
few animal models. MMP-7 mediated the conversion of E-cad
into a soluble form, allowing cancer cells to dislodge from the
primary tumor during the early stage of metastasis (Lee et al.,
2007). In addition to the proteolytic functions, MT1-MMP
controls the migration of tumor cells through non-proteolytic
mechanisms (Gifford and Itoh, 2019). Overexpression of MMP-
12 is positively correlated with metastasis of ovarian cancer
(Zhang and Chen, 2017).

Matrix Metalloproteinases in Angiogenesis
Cancer research is now much better at understanding the
functional mechanisms that focus on cell transformation, and
tumor progression and also aid in the development of new
indicators and medicines (Bremnes et al., 2011). MMPs have
been implicated in angiogenesis regulation as well as
angiogenesis, vasculogenesis, and lymphangiogenesis in cancer
(Quintero-Fabián et al., 2019). Angiogenesis is the formation of
new blood vessels or capillaries from existent vasculature.
Collagenases (MMP-1, 8, and 13) are the most important
proteins in angiogenesis. Although this is a healing process, it
begins in illnesses such as cancer. As a result, angiogenesis
provides cancer cells with nutrition, resulting in tumor growth
(Lugano et al., 2020). There are assays available to detect
angiogenesis and biological activity. During its Phase I clinical
investigation, Lockhart et al. outlined an angiogenesis assay of an
MMP inhibitor (MMPI), BMS-275291 Lockhart et al. (2003).
This method is widely used to assess the activity of noncytotoxic
chemotherapeutic medicines as a biomarker.

Angiogenesis is regulated by a fine balance of pro and
antiangiogenic molecules (Bisht et al., 2010). Disturbance in
this balance and dominancy of proangiogenic factors results in
“Angiogenic Switch” leading to sprouting, and proliferation of
endothelial cells results in angiogenesis (Miller et al., 2009). MMP
knockout mice model studies revealed that MMPs act as a critical
molecule in the “Angiogenic Switch” in the growth of malignant
cells. MMP-9 expression is required for the angiogenic switch,
whereas MMP-2 activates endothelial cell survival and
proliferation and initiates integrin signaling to support the
angiogenesis thereby contributing to tumor growth (Deryugina
and Quigley, 2015). In addition to its ECM degrading activity,
MMPs mediate the release of potent inducers of blood vessel
sprouting including vascular endothelial growth factor, basic
fibroblast growth factor, and tumor necrosis factor-α (Conway
et al., 2001). Moreover, MMPs are involved in the generation of
angiogenic molecules such as angiostatin and endostatin from
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their precursors (Ghajar et al., 2008). In short, MMPs contribute
to multiple events during angiogenesis.

Matrix Metalloproteinases in Inflammation
MMPs play a crucial role in cancer progression and become
therapeutic targets in cancer interventions (Shay et al., 2015).
MMPs are multifunctional enzymes in inflammation. Both acute
and chronic inflammation can be regulated by MMP activity.
Inflammation is associated with most tumor tissues and is now
considered to be a hallmark of cancer linked to genetic instability
(Fanjul-Fernández et al., 2010). Numerous factors, including
cytokines, growth factors, chemokines, and extracellular
matrix-modifying enzymes like metalloproteinases, can
contribute to inflammation's ability to increase the risk of
cancer (Landskron et al., 2014). Some MMPs can play both
beneficial and detrimental roles at different stages. MMPs
control inflammation as soluble factors, at cell surfaces and
even in nuclei. In almost every human tissue, the MMP family
of enzymes plays a greater role in inflammation (Fingleton, 2017).
MMPs act extensively in inflammation to modulate barrier
function and also play a role in cytokine and chemokine
activity, which leads to the formation of chemokine gradients,
as demonstrated by mouse models of human disease with
targeted deletions of individual MMPs (Löffek et al., 2011).
Figure 1 shows an overview of the essential steps of
metastasis. Because MMPs are involved in both host defense
and pathological inflammatory disease, it is critical to understand
the many molecular pathways by which specific MMPs
participate in normal and abnormal inflammatory processes.
Understanding the pathways through which MMPs work in
distinct health and disease states may lead to the development
of therapeutic approaches to combat MMP-mediated diseases.
The cross-link between MMPs and inflammation in tumor
progression is well addressed (Quintero-Fabián et al., 2019).

Overexpression of MAPK phosphatases has been
demonstrated to prevent MMP promoter activation
(Westermarck et al., 2001). Some members of the MMP
family behave as tumor-suppressor enzymes and should
therefore be regarded as anti-targets in cancer therapy
(Decock et al., 2011). Many investigations have found that
MMPs play an important role in tumor invasion. MMPs in
cancer have been extensively investigated; nevertheless, the
specific involvement of different MMPs in cancer progression
may be more complex than previously thought (Mittal et al.,
2016). MMP-3, MMP-7, MMP-9, and MMP-12 have been
identified as inhibitors of tumor development and invasion
(Table 1).

MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-2 research has
received considerable attention since they play a number of roles
in cancer. One study found that serum antigen concentrations of
MMP-7, MMP-9, TIMP-1, and TIMP-2 were considerably higher
in colorectal cancer and adenomas patients compared to controls
(Barabás et al., 2021). Their data suggest that MMPs, as well as
their inhibitors TIMP-1 and TIMP-2, play a crucial role in
colorectal cancer. MMP-2, MMP-7, MMP-9, and TIMP-2 were
also investigated in the development of the recurrent depressive
disorder (Table 2). A recent study sought to establish a link
between MMP-2, MMP-7, and their inhibitor, TIMP-2, in adult
and pediatric cancer (Kaczorowska et al., 2020).

C-c motif chemokine ligand 27 (CCL27), a chemokine
primarily expressed by keratinocytes, and its enhanced
expression activate the extracellular signal-regulated kinase 1/2
(ERK1/2) pathway and in turn overexpress MMP-7 leads to cell
invasion and migration of breast cancers (Korbecki et al., 2020).
Chemokines are a class of small proteins that play an important
role in leukocyte migration and invasion (Martínez-Rodríguez
and Monteagudo, 2021). They have the ability to participate in
tumor cell cellular proliferation and migration.

FIGURE 1 | Schematic overview of the essential steps of the metastasis.
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CCR10 expression was discovered to be elevated in breast cancer
cells, and the CCL27/CCR10 axis eventually promoted breast
cancer cell invasion and migration via elevating MMP-7 (Lin
et al., 2017). CCL27 is the ligand of CCR10 (Monteagudo et al.,
2012). Likewise, in gastric cancer activated CXCmotif chemokine
ligand 10 (CXCL10) during inflammation enhances the invasion
and migration of cells through the upregulation of MMP-2 and
MMP-9 (Ren et al., 2017).

MMP-8- and MMP-9-mediated collagen breakdown
generates N-acetyl-proline-glycine-proline (ac-PGP) tripeptides
that bind the CXC chemokine receptor 2 (CXCR2) and trigger
chemotaxis of neutrophils and increases lung metastasis (Bekaert

et al., 2017). In oral squamous cell carcinoma a positive
correlation was observed between MMP-7 and
cyclooxygenase-2. Thus, it is well documented that MMPs
regulate the inflammatory status of tumor microenvironment
and facilitate the advancement of tumors (Nasry et al., 2018).

Various Inhibitors of Matrix
Metalloproteinases
MMP inhibition has been extensively investigated in cancer
research. Tissue inhibitors of metalloproteinases (TIMPs) are
naturally occurring proteins that inhibit MMPs specifically

TABLE 1 | List of matrix metalloproteinases (MMPs), their enzymatic names, major substrates, and cellular location.

MMP
name

Enzymatic names Role in stages of cancer development/Major substrates Cellular location

MMP-1 Collagenase 1 or interstitial
collagenase

Invasion/native collagens (types II > I > II, VII, VIII, X, and XI) and
denatured collagens

Macrophages, lymphocytes, and vascular endothelial
cells (Mach et al., 1999)

MMP-2 Gelatinase A Angiogenesis, invasion, inflammation/native collagens (types I, II,
III, IV, V, VII, X, and XI), gelatin, elastin, and fibronectin

Macrophages, lymphocytes, and endothelial cells
(Oviedo-Orta et al., 2008)

MMP-3 Stromelysin-1 Inflammation/nontriple helical regions of native collagens (types III,
IV, V, VII, IX, X, and XI) and gelatin

Macrophages, T-lymphocytes, and endothelial cells (Choi
et al., 2019)

MMP-7 Matrilysin-1 Inflammation/nonhelical segments of native collagens (types IV, V,
IX, X, and XI), gelatin, elastin, and fibronectin

Endothelial cells and macrophages (Holnthoner et al.,
2006)

MMP-8 Collagenase 2 or neutrophil
collagenase

Native collagens (types I > II > III, VII, and X), gelatin, fibronectin,
laminin subunit gamma-2, entactin, aggrecan, tenascin, Brevican
core protein precursor, myelin basic protein, and fibrinogen

Vascular smoothmuscle cells, macrophages, T-cells, and
vascular endothelial cells (Yang et al., 2020)

MMP-9 Gelatinase B Inflammation, metastasis/native collagens (types I, IV, V, XI, and
XIV), gelatin, elastin, vitronectin, and laminin

Macrophages, T-lymphocytes, neutrophils, and
endothelial cells (Ardi et al., 2007)

MMP-10 Stromelysin-2 Inflammation/collagens (Types I, III, IV, and V), gelatin Endothelial cells and macrophages (Orbe et al., 2009)
MMP-11 Stromelysin-3 Gelatin, fibronectin, and collagen Type IV Smooth muscle cells, macrophages, fibroblasts and

B-cells, and endothelial cells (Chen et al., 2013)
MMP-12 Macrophage metalloelastase -------------------- Macrophage (Carmeliet et al., 1997)
MMP-13 Collagenases 3 Inflammation/native collagens (Types II > III > I, VI, VII, IX, X, and

XIV), gelatin, fibronectin, laminin subunit Gamma-2
Fibroblasts and macrophages, Lymphocytes and
macrophages Neutrophils (Mescher, 2017)

MMP-14 Membrane-anchored
MT1-MMP

Angiogenesis/native collagens (Types I, II, and III), Gelatin,
Fibronectin

Vasculardothelial cells, macrophages, and fibroblasts
(Zigrino et al., 2016)

MMP-15 MT 2-MMP Fibronectin, tenascin, entactin Fibroblasts, leukocytes, and T lymphocytes (Edsparr
et al., 2011)

MMP-16 MT3 –MMP Collagen type III, gelatin Leukocytes and T-lymphocytes (Bar-Or et al., 2003)
MMP-17 MT4- MMP Gelatin, fibrin, fibrinogen, myelin basic protein Monocytes and B-cells and fibroblast (Bar-Or et al., 2003)
MMP-19 Stromelysin-4 Native collagen type IV, gelatin Fibroblasts T lymphocytes monocytes (Hieta et al., 2003)
MMP-21 X-MMP—(Xenopus) Gelatin, aggrecan Fibroblasts and macrophages (Skoog et al., 2006)
MMP-23 Cysteine Array MMP (CA-MMP)

or femalysin
Gelatin, casein, fibronectin T cells (Moogk et al., 2014)

MMP-24 MT5 –MMP Fibronectin, gelatin, chondroitin sulphate proteoglycan T-lymphocytes and leukocytes (Bar-Or et al., 2003)
MMP-25 MT6-MMP or leukolysin Native collagen type IV, celatin Monocytes and leukocytes (Pei, 1999)
MMP-26 Matrilysin-2 Native collagen type IV, gelatin, fibronectin, vitronectin, fibrinogen Endothelial cells, fibroblasts, and macrophages (Skoog

et al., 2006)

TABLE 2 | Type of MMPs involved in various cancers.

S.No Cancer type Type of MMPs overexpressed References

1 Breast cancer MMP-1, 2, 8, 9, 10, 11, 12, 13, 15, 19, 23, 24, 27, and 28 Köhrmann et al. (2009)
2 Oral cancer MMP 2, 7, and 9 Farhadi and Mohamadi, (2017)
3 Prostate cancer MMP 2 and 9 Wilson et al. (2004)
4 Lung cancer MMP 1, 2, 7, 9, 13, and 26 Merchant et al. (2017)
5 Liver cancer MMP 1,3, 9, P10, 11, 13, 7, 12, and 14 Naim et al. (2017)
6 Head and neck cancer MMP 1, 2, 3, 7, 8, 9, 10, 11, 13, and 14 Rosenthal and Matrisian, (2006)
7 Colorectal cancer MMP 1, 2, 3, 7, 8, 9, 10, 11, 13, and 14 Said et al. (2014)
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(Wojtowicz-Praga et al., 1997). According to studies, potent and
selective MMPIs have been synthesized, and clinical trials of such
synthetic MMPIs began in the 1990s and early 2000s (Brown,
1999). These studies failed because of ineffectiveness and
significant. Batimastat (BB-94) and marimastat (BB-2516) are
synthetic, low-molecular-weight MMPIs. They have a
hydroxamate structure that mimics collagen. Batimastat was
the first synthetic MMP inhibitor studied in patients with
advanced cancer (Wojtowicz-Praga et al., 1997). Various
investigations are now being conducted to identify potent
MMP inhibitors (Hidalgo and Eckhardt, 2001; Vihinen and
Kähäri, 2002; Devy and Dransfield, 2011). Selective MMP
inhibition has been used with antibodies and small molecule
components based on binding to protease secondary binding
sites, blocking the protease active site, or preventing proMMP
activation. Several of these inhibitors have just undergone clinical
trials, whereas others are in advanced preclinical phases (Fields,
2019a). The humanized monoclonal antibody GS-5745, a potent
and highly selective allosteric MMP9 inhibitor, has been
developed for clinical trials in ulcerative colitis and colorectal
cancer (Marshall et al., 2015; Fields, 2019b). However, many
ongoing studies are attempting to comprehend the complexity of
MMP function in many diseases (Das et al., 2021). In terms of
inhibitingMMP expression through kinase pathways, it is feasible
that selective pharmacologic inhibitors for specific signaling
pathways (e.g., MAPK and PKC) may soon be accessible for
preliminary clinical trials. This will improve outcomes in a range
of illnesses, including cancer, heart disease, and
neurodegenerative disease. With a greater understanding of
MMP protein design, new techniques for designing MMP-
targeted therapeutics have emerged.

Collagen peptidomimetics and nonpeptidomimetic MMP
active site inhibitors, tetracycline derivatives, and
bisphosphonates are the most commonly investigated MMP
inhibitors (Hidalgo and Eckhardt, 2001). Batimastat, a
hydroxamate peptidomimetic inhibitor, and marimastat were
the first MMP inhibitors to be thoroughly explored. The
analog of batimastat, marimastat, binds to the active site of
MMPs (Chaudhary et al., 2010). Marimastat is the first orally
accessible MMP inhibitor to be evaluated in humans, and it has
been shown in animal models to limit the spread and progression
of pancreatic cancer (Rosemurgy et al., 1999). Several nonpeptidic
MMP inhibitors were also produced as part of the process of
generating potential therapeutic options and determining the
medicinal nature and bioavailability of peptidic medicines.
Angiogenesis-promoting matrix-targeting metalloproteinases
are also thought to be good therapeutic targets (Stetler-
Stevenson, 1999). These mechanisms are useful in
understanding how drugs work (Fields, 2019a).

To target specific MMPs, researchers are currently working to
identify new molecular components from nutraceuticals, such as
betulinic acid, genistein, theaflavin, myricetin, curcumin,
resveratrol, matlystatin B, nicotinamide, xanthorhizzol,
oleanolic acid, glycyrrhetinic acid, and catechin derivatives
(Mukherjee et al., 2013). Polyphenols, monophenols, and other
secondary metabolites of food and nonedible plants are among
these natural compounds (Pandey and Rizvi, 2009). Synthetic

MMPIs were designed to prevent tumor cell-induced changes in
ECM and thereby achieve antitumor activity (Mitsiades et al.,
2001). Among marine-derived MMPIs that aid to suppress
MMPs, marine saccharoid MMPIs are very popular (Zhang
and Kim, 2009).

Nanodelivery System for Targeting Matrix
Metalloproteinases in Cancer Treatment
Conventional cancer treatment options include radiation therapy,
chemotherapy, and surgery, either alone or in combination (Baskar
et al., 2012). Most of the time, these therapeutic approaches have
multiple major adverse effects. Cells that rapidly proliferate may be
destroyed because of a lack of specificity, resulting in
immunosuppression, the development of multidrug resistance,
and the growth of stem-like cells, all of which can lead to
treatment failure and a low survival rate. Due to the lack of
solubility, the drug will stay in circulation for a shorter amount
of time, lowering the penetrance or availability of the cells and
resulting in therapeutic failure. Inflammation of the digestive tract
lining, alopecia (hair loss), and organ failure have all been linked to
the drug. Nanotechnology’s application in cancer treatment
allowed researchers to overcome many of the constraints of
traditional treatments, resulting in significant advancements in
cancer therapy (Jin et al., 2020). Nanotechnology makes use of
nanoparticles with unique optical, magnetic, and electrical
properties that are designed at the atomic or molecular level.
Nanoparticles range in size from a few nanometers (nm) to
several hundred nanometers (nm), depending on their intended
function (Cheng et al., 2021). Nanomaterials of various sorts have
been synthesized for a variety of cancer therapies. Nanoparticles
may circulate more freely in the human body than larger particles
(Patra et al., 2018); therefore, they could be used to deliver drugs to
particular cells or tissues with a controlled release. The biophysical
and biochemical properties of the targeted medications and loci
being treated determine the use of an ideal nano-drug delivery
technology (Rizvi and Saleh, 2018).

The targeted delivery is achieved by either passive targeting or
active targeting. In active targeting, a drug is conjugated with a
nanoparticle, whereas in passive targeting, it is based on enhanced
permeability and retention effect (Ali et al., 2021). Thus, targeted
delivery helps reduce toxicity in normal cells, protects drugs from
degradation, increases half-life, etc., (Rosenblum et al., 2018).

MMPs are upregulated at all stages of expression in cancers.
Different strategies have been developed to inhibit their
expression and enzymatic activity. However, these inhibitors
have produced serious side effects and nonspecific inhibition
making other pathways or molecules involved in other pathways,
which causes other pathological situations. For example,
marimastat, a potent synthetic MMP inhibitor, chelates the
zinc ion of the MMPs catalytic site but might also inhibit the
activity of other zinc-dependent enzymes (Winer et al., 2018). In
this context, nanotechnology-based approaches have been
developed. The nanofiber system consisting of DOX linked to
the KGFRWR peptide (an amyloid ß protein derivate) was found
to reduce the tumor growth in hepatocellular carcinoma. In this
system, the cytotoxicity of DOX kills the tumor and the
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KGFRWR peptide inhibits the MMP activity (Ji et al., 2018).
Likewise, nanoparticles metallofullerenol Gd@C82(OH)22 can
block MMP-2 andMMP-9 synthesis through allosteric inhibition
(Kang et al., 2012). Nanocarriers such as lysolipid-containing
thermosensitive liposomes deliver marimastat (Lyu et al., 2019).
Likewise, peptide nanofibers conjugated with siRNA or shRNA
MMPs could effectively effective target MMPs (Mazza et al.,
2019). Another nanoplatform consisting of HPAA-MTX/
shMMP-9 (cationic hyperbranched poly (amido amine)
(HPAA) with MTX and shMMP-9 plasmid) could significantly
reduce the tumor growth in MCF 7 tumor-bearing animal as well
as the decrease in the invasiveness and apoptosis induction in
nasopharyngeal carcinoma HNE-1 cells (Tang et al., 2018; Liu
et al., 2019).

CONCLUSION

Remodeling and degradation of ECM are crucial events in
metastasis and MMPs; a family of zinc-dependent proteases
controls this process and promotes the progression of tumors
into the distant site. MMPs play an important role in the
inflammatory process and are known to influence the onset
and progression of many cancer cases. Furthermore, MMPs
play an important role in angiogenesis and cancer growth.
MMPs play an important role in precision medicine because
they can act as biomarkers. According to this review, investigating
diverse classes of MMPs is critical in understanding their

involvement in cancer progression and becoming
therapeutic targets in cancer therapies. MMPs also are
thought to promote the growth of the tumor cells once they
have metastasized. In addition to ECM degradation, they are
involved in the activation of cell surface proteins and the
shedding of membrane-bound receptor molecules,
regulating growth factors and chemokines. Moreover,
inflammation, migration, and invasion of tumor cells and
tumor-specific angiogenesis are also regulated by MMPs.
MMPs are involved at various levels, during transcription,
translation, and zymogen activation and by the activity of its
endogenous inhibitor, TIMPs. TIMPs bind MMPs in a
stoichiometric 1:1 ratio and thereby block access of
substrates to the catalytic domain of the endopeptidases. An
imbalance between active MMPs and TIMPs, favoring MMP
activity can lead to ECM degradation, whereas favoring TIMPs
leads to ECM deposition. Hence, MMPs is a novel target for
cancer therapy, and several agents based on small molecule
inhibitors, monoclonal antibody, and nanoparticles have been
developed to improve patient survival.
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